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On a generalized conjecture of Hopf with symmetry

Manuel Amann and Lee Kennard

ABSTRACT

A famous conjecture of Hopf states that S? x S? does not admit a Riemannian metric
with positive sectional curvature. In this article, we prove that no manifold product
N x N can carry a metric of positive sectional curvature admitting a certain degree of
torus symmetry.

Among compact, simply connected, even-dimensional smooth manifolds, the examples known to
admit a Riemannian metric with positive sectional curvature form a short list: spheres, complex
projective spaces, quaternionic projective spaces, the Cayley plane, the three flag manifolds
discovered by Wallach [Wal72], and the biquotient SU(2)//T? discovered by Eschenburg [Esc84].

In order to find additional examples, it is natural to look among metrics with symmetry.
This strategy has recently resulted in a new example in dimension seven (see Dearricott [Deall]
and Grove et al. [GVZ11]). To narrow the search, one seeks topological obstructions to positive
curvature and symmetry. This broad research program was formulated by Grove and developed
by him and many others over the past two decades (see Grove [Gro09], Wilking [Wil07], and
Ziller [Zil07, Zil14] for surveys).

In this article, we prove further topological restrictions in the presence of torus symmetry.
Our first theorem considers the case where the positively curved Riemannian manifold M?2"
(n > 2) has vanishing fourth Betti number. To motivate this assumption, recall that, if the

rank of the isometric torus action exceeds log, f3(2n — 3), then the Betti numbers of M satisfy
bo(M) < by(M) < 1 (see §4).

THEOREM A. Let M?" (n > 2) be a simply connected, closed manifold with by(M) = 0. Assume
M admits a Riemannian metric with positive sectional curvature invariant under the action of
a torus T with dim(T') > logy/3(2n — 3). The following hold:

(1) the Euler characteristic satisfies x(M) = x(S**) = 2;
(2) the signature satisfies o(M) = o(S*™) = 0;
(3) the fixed-point set MT is an even-dimensional rational sphere;

(4) for g € T, MY is non-empty, and the number of components is at most two, with equality
only if g is an involution.

As an application of this result, consider an arbitrary closed manifold N™ with n > 2, and
consider its two-fold product M?"® = N x N. Suppose that M admits a metric with positive
curvature and an isometric torus action of rank r > log, X3(2n — 3). By Synge’s theorem, M is
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M. AMANN AND L. KENNARD

simply connected. As mentioned above, it follows that ba(M) < bs(M) < 1. By the Kiinneth
formulas, by(M) = 0. By Theorem A,

2 =x(M) =x(N)?,

which is impossible. Hence N x N has no such metric. A similar conclusion can be drawn for
connected sums. We summarize this corollary as follows.

COROLLARY B. Let N" be a closed manifold with n > 2. The product N x N does not admit
a Riemannian metric with positive sectional curvature and an isometric torus action of rank
r > logy/3(2n — 3). Similarly, if n is even and x(N) # 2, the connected sum N#N does not
admit a positively curved metric invariant under a torus action of rank r > log,3(n — 3).

Hopf conjectured that S? x S? does not admit a Riemannian metric with positive sectional
curvature. Corollary B can be seen as positive evidence for the generalized conjecture that no
product N x N admits such a metric.

We also remark that Hsiang and Kleiner proved that S? x S? does not admit a Riemannian
metric with positive sectional curvature and an isometric circle action (see [HK89, GW14]).
Hence Corollary B also holds when n = 2, and it can be seen as a partial generalization of the
Hsiang—Kleiner result.

The conclusion of Theorem A can be improved by imposing additional topological conditions
on M. For example, suppose that M is rationally elliptic, as conjectured by Bott, Grove and
Halperin (see [Gro02, §5]). Since x(M) = 2, it follows that the odd Betti numbers vanish, hence
M is a rational sphere. We summarize similar corollaries here (see § 3 for proofs).

CoROLLARY C. Let M?" be a simply connected, closed Riemannian manifold with by(M) = 0.
Assume M admits a metric with positive sectional curvature and an isometric torus action of
rank greater than log, 5(2n — 3). The following hold:

(1) if M has vanishing odd-dimensional rational cohomology, e.g., if M is rationally elliptic,
then M is a rational S*";

(2) if M is p-elliptic for some prime p > 2n, then M is a mod p homology S*"*;

(3) if M has vanishing homology in odd degrees, then M is homeomorphic to $?*;

(4) if M is a biquotient, then M is diffeomorphic to S**;

(5) if M admits a smooth, effective cohomogeneity-one action by a compact, connected Lie
group, and if the homology of M has no 2-torsion, then M is equivariantly diffeomorphic
to §?" equipped with a linear G-action;

(6) if M is a symmetric space, then M is isometric to S™.

We remark that the torus action in this corollary need not respect the biquotient,
cohomogeneity-one, or symmetric space structure. We also remark that, whenever M is spin and
homeomorphic to S*. its elliptic genus vanishes. Corollary C can therefore be seen as further
evidence for a conjecture by Dessai (see [Des05, Des07] and Weisskopf [Weil3]).

Note that, in Corollary C, M is a rational S?" if the torus action is equivariantly formal.
Indeed, this assumption together with Theorem A implies that the odd Betti numbers of M
vanish (see §3).
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ON A GENERALIZED CONJECTURE OF HOPF WITH SYMMETRY

To prove Theorem A, we show that the fixed-point set M T of the torus action is a rational
sphere. Since the Euler characteristic and signature of M and M7 agree, the first two conclusions
immediately follow. In order to prove that M7 is a rational sphere, we combine two important
ideas from previous work. The first involves proving the existence of fixed-point components N; of
isometries that are rational spheres (see [Ken14]). Smith theoretic results then imply restrictions
on the components of MT. The second main idea is to control the number of components of M7T
that these submanifolds N; contain (see [AK14]).

We conclude by remarking on the assumption that bs(M) = 0. In the presence of positive
curvature and torus symmetry as in Theorem A, the only other possibility is bs(M) = 1. Since
our results when by (M) = 0 suggest that M might be a rational sphere, one might similarly hope
to show that bs(M) = 1 implies that M has the rational type of a projective space. In particular,
one might hope to calculate the Euler characteristic and signature of such a manifold.

1. Preliminaries

The main tool for proving Theorem A is the following proposition. This section is devoted to its
proof.

PRrROPOSITION 1.1. Let M™ be a closed, positively curved Riemannian manifold with n > 21.
Assume T'® acts effectively by isometries on M with s > log, X3(n —3). If x and y are fixed by
T*, and if M is not rationally 4-periodic, then there exist an involution ¢« € T'® and a component

N C M* such that (n —4)/4 < cod(N) < (n —4)/2, dimker(T'|y) < 1, and z,y € N.

Here, M* denotes the fixed-point set of « € T', M} the component of M* containing x, and
ker(T'|pr:) the kernel of the induced T-action on Mj. For the definition of periodic cohomology
in this context, see [AK14, Definition 1.8|. (The only fact we will use later is that a rationally
4-periodic manifold M with by(M) = 0 is a rational sphere.)

The proof of Proposition 1.1 requires two technical lemmas. The first is a refinement of the
proof setup for [AK14, Theorem A].

LEMMA 1.2. Let M be a closed, simply connected, positively curved Riemannian n-manifold, let
T be a torus acting effectively on M, and let = be a fixed point. Fix ¢ 2 1, ko < (n — ¢) /4, and
some subset A C MT. Set j = |logy(ko)| + 1 or j = |logs(ko)| according to whether n is even
or odd. If there exist independent involutions t1,...,tj € T such that My contains A and has
codimension at most (n — ¢)/2 for all i, then one of the following holds:

o M has 4-periodic rational cohomology; or

e there exists an involution ¢ € T® such that A C Mg, ko < cod(M3) < (n—c)/2, and

dimker(T'[p) < 1.

Proof. Assume that the second conclusion does not hold. Note that, if some involution ¢+ € T
satisfies cod(My) < (n — ¢)/2 and dimker(T'|js:) > 2, then M is rationally 4-periodic by [AK14,
Proposition 2.2]. In particular, we may assume that every involution ¢« € T' with A C M! and
cod(M,) < (n — ¢)/2 actually has cod(M,) < ko.

In particular, we may assume that ¢; satisfies A C M and cod(M,*) < ko for all 7. We claim
that ot satisfies these two properties any time o and 7 do, where 0,7 € (i1, ...,¢;). Indeed, given
any such o and 7, we have

n—=c

cod(MJ") < cod(M7) + cod(My) < 2ky < 5
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M. AMANN AND L. KENNARD

Moreover, by Wilking’s connectedness lemma (see [Wil03, Theorem 2.1]), MJ N M is connected,
SO

ACMZNME =M™ C MZ™.

Since MJ" contains A and has codimension at most (n — c)/2, it actually has codimension at
most kg, so the proof of the claim is complete.

With the claim established, it follows that every o € (1q,...,t;) satisfies cod(M7) < ko. We
conclude the proof as in the proof of [AK14, Proposition 2.1]. There is only one modification. In
the notation of that proof, the codimension k; is estimated as follows:

ki k
In our case, k; < ko, and the definition of j implies that k; < 2 if n is even and k; < 4 if n is
odd. If, in fact, k; = 0, then the proof concludes as in [AK14]. Otherwise, k; = 2 and n is odd.
It is an easy consequence of Wilking’s connectedness theorem to show in this case that N is a
rational sphere and hence rationally 4-periodic. One then proceeds again as in the cited proof,
using the connectedness lemma to lift the property of being rationally 4-periodic up to M. O

To apply Lemma 1.2, one must prove the existence of the involutions ¢1,...,¢;. To do this,
we generalize [AK14, Proposition 2.4].

LEMMA 1.3. Let n > ¢ =2 0 and 7 = 1. Let M™ be a closed, positively curved Riemannian

manifold, assume T acts effectively by isometries on M, and let x,...,xz; € M be fixed points.
If
t(h—c)+1
[s)eso o)
then there exist independent involutions t1,...,tj € T® such that, for all 1 < i < j, the maximal

component of M*“ has codimension at most (n — c)/2 and contains at least [(t+ 1)/2] of the
points x1,...,T;.

Proof. Set m = |n/2]. For each z;, choose a basis of T, M’ such that the image of every ¢ € Z§ C
T'* under the isotropy representation takes the form diag(e;l,...,eyI) or diag(e!,...,ep1,1)
according to whether n is even or odd. Here, the ¢; = +1, and I denotes the 2 x 2 identity matrix.
Observe that cod(M;, ) equals twice the Hamming weight of (e1,...,€n) € Z3'.

The direct sum of these ¢t maps induces a homomorphism ¢ : Z§ — @;_, ZT* = Z§". Let
¢, denote the composition of ¢ with the projection onto the uth component. For example, the

codimension of M, is equal to twice the Hamming weight of the vector (¢1(z),...,dm(t)) € Z5.
Consider now an integer 0 < h < j — 1 such that there exist independent ¢,,...,¢, € Z35 and
integers uj,...,uy such that, for all 1 <7 < h:

(1) there is a component N; of M*“ with codimension at most (n — c¢)/2 that contains at least
[(t +1)/2] of the points z1,...,z:;

(2) ¢u,(ti) € Z3 is non-trivial; and

(3) @u, (1) € Zz is trivial for all 1 < i’ <.

Note that these conditions are vacuously satisfied for h = 0. We claim that, given ¢1,...,¢p
as above, there exists ¢,y such that all of these properties hold. By induction, this suffices to
prove the existence of ¢1,...,¢; as in the conclusion of the lemma.
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ON A GENERALIZED CONJECTURE OF HOPF WITH SYMMETRY

To start, choose a Z5™™ C ker(¢y,) N --- N ker(¢y,) C Z5. Note that every ¢ € Z5 "
automatically satisfies the last condition above. Moreover, every non-trivial ¢ &€ Z;_h is
independent of ¢1,...,¢; and is non-trivial since the T action is effective. It therefore suffices to
prove that some ¢ € Zg_h’ has a fixed-point component with codimension at most (n — ¢)/2 that
contains [(t + 1)/2] of the z1,...,z;.

Consider the composition

zshczs Snm s ng—",

where the last map projects away the u;th components for 1 € i € h. By the choice of the w;,
the Hamming weight of the image of ¢ € ZQ under this comp051t10n is half of the sum of the
codimensions k; = cod(My,). As in the proof of [AK14, Proposition 2.4], an argument based on
Frankel’s theorem implies the following. If ¢ € Z5™" exists such that S ki < t(n—c)/2, then
there exists a component of M* with codimension at most (n — ¢)/2 that contains [(t + 1)/2] of
the z1,...,z:. It therefore suffices to prove that some non-trivial ¢ & Z;_h exists whose image
under the above map Z5 " — Z™ " has weight at most #(n — c)/4.

If no such involution exists, the Griesmer bound (see, for example, the proof of [AK14,
Proposition 2.4]) implies that

Since every summand on the right-hand side is at least one, this inequality is preserved if we
replace h by h+ 1. Inductively, this inequality is preserved if we replace h by 5 — 1. On the other
hand, this contradicts inequality (1.1), so the proof is complete. O

With Lemmas 1.2 and 1.3 established, Proposition 1.1 is an easy consequence.

Proof of Proposition 1.1. Set ¢ =4, ko = (n —4)/4, and j = |logy(ko)| + 1 — €, where € is zero
or one according to whether n is even or odd. By Lemma 1.2, it suffices to prove the existence
of independent involutions t1,...,¢; € T such that each M* has a component of codimension
at most kp that contains both x and y.

Set ¢ = 2, and note that [(t+ 1)/2] = 2. By Lemma 1.3, such a collection of involutions
exists if inequality (1.1) holds. To verify this inequality for all n > 21, first observe that

s—Jj+12>[logy;(n—3)] —j+1=logy(n—3)

and hence that [(n — 3)/2iT1] =1 for all i > s— j. In particular, we can estimate the right-hand
side, denoted by R, of inequality (1.1) as follows. First,

_J_HZ[ [MH%_HE[%] Sl

i=0

Second, note that s > 6, hence

s—6
R>5+y 23 1
.2z 90+ i1 >n-+
i=0
since s — 5 > logy(n — 3). This proves that inequality (1.1) holds. O
317
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2. Proof of Theorem A

For an isometric action by a torus T on a Riemannian manifold M, the fixed-point set MT
is a union of closed, oriented, totally geodesic submanifolds of even codimension. By Synge’s
theorem, each component of M7 is simply connected when M has positive sectional curvature.
In addition, we recall the following results that relate the topology of M and MT (see [Con57]
and [HBJ92, p. 72]):

e the Euler characteristics satisfy x(M) = x(MT);

e the signatures satisfy o(M) = o(M7T);

e (Conner) the even Betti numbers satisfy 3 by;(MT) < 3 by; (M), and likewise for the odd

Betti numbers.

Note that, if M is an even-dimensional, positively curved rational sphere, then M7 is as well.
Since a positive- and even-dimensional sphere trivially has Euler characteristic two and signature
zero, the first three conclusions of Theorem A are an immediate consequence of the following
result (the fourth conclusion is proved at the end of the section).

THEOREM 2.1. Let M™ be a closed, simply connected, positively curved Riemannian manifold
with by(M) = 0. If a torus T acts effectively by isometries on M with dim(T) > log, s(n — 3),
then MT = NT for some totally geodesic, even-codimensional, rational sphere N C M to which
the T-action restricts. Moreover, if n is even, then N may be chosen to have positive dimension.

This result can be seen as a less localized version of the main theorem in [Kenl4]. Under
the assumptions of Theorem 2.1, the results in [Kenl4] imply that each component of M T is
a component of the fixed-point set of some N as in this theorem. The novelty here is that the
entire fixed-point set M7 is contained in this submanifold N.

The proof of Theorem 2.1 is by induction over the dimension in the style of Wilking [Wil03].
First, if n < 3, the result is trivial since M is a homotopy sphere. Second, if n = 4, the result
is vacuous since by(M) = 1 in this case. Third, for 5 < n < 20, s > n/2, hence the result of
Grove and Searle implies that M is diffeomorphic to the sphere (see [GS94]). In particular, M
is a rational sphere, so the conclusion of the theorem holds by taking N = M.

Finally, suppose that n > 21. As in the previous paragraph, if M itself is a rational sphere,
then the theorem immediately holds. We assume throughout that M is not a rational sphere.
Since by(M) = 0, this is equivalent to assuming that M does not have 4-periodic rational
cohomology. The induction step has two parts. The first considers the case where some component
MY has positive dimension.

LEMMA 2.2. If some component Mg of MT has positive dimension, then MT = M;r and is a
rational sphere. In particular, the theorem holds with N = MT.

Proof. Let y € MT. By Proposition 1.1, there exist an ¢ € T and a component N C M* such that
(n—4)/4 < cod(N) < (n—4)/2, dimker(T|y) <1, and z,y € N. By Wilking’s connectedness
lemma, N is simply connected and bs(IN) = 0. Moreover, since cod(N) = (n — 3)/4,

dim(7 /ker(T'|n)) = dim(T') — 1 > logy/3(n — 3) — 1 > logy/3(dim N — 3).

Since T'/ker(T'|n) is a torus that acts effectively on N, a closed, simply connected, positively
curved Riemannian manifold with b4(N) = 0, the induction hypothesis applies to N. Since MJ{
and Mg are components of NI = N N MT, we therefore have

D bi(Mg UM) <> bi(NT) =2.
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Observe that 3 b;(MI) > 2 since MI has positive dimension. In particular, if y lies in a
component of MT different from M. g , then the the left-hand side is at least

D b(ME)+> (M) >2+1,

a contradiction. This shows that MT = M g . Moreover, the above argument works with z = v,
hence 3 b;(MY) = 2, which implies that MY is a rational sphere. O

The other possibility is that T' has only isolated fixed points.

LeEmMA 2.3. If dim(M T) = 0, then there are exactly two isolated fixed points. Moreover, there
exists a totally geodesic, positive-dimensional, and even-dimensional rational sphere N C M on

which T acts such that MT = NT.

Proof. First, a theorem of Berger implies there is at least one fixed point (see [Ber66]), and there
cannot be exactly one fixed point (see Bredon [Bre72, Corollary IV.2.3, p. 178]).

Suppose for a moment that MT has exactly two isolated fixed points. By Proposition 1.1,
MT C P for some totally geodesic, even-dimensional, closed submanifold P with bsy(P) =0 and
an isometric torus action of rank at least log, /3 (dim P — 3). By the induction hypothesis applied

to P, PT = NT for some totally geodesic, even-dimensional, positive-dimensional rational sphere
N C P. Since MT ¢ NT c MT , this proves the lemma in this case.
Finally, suppose that M7 has at least three (distinct) isolated fixed points, z, y, and z. Two
applications of Proposition 1.1 imply the existence of involutions o, 7 € T such that:
e M7 has dimker(T'|ye) <1, (n —4)/4 < cod(M7) < (n—4)/2, and y € M; and
e M has dimker(T|p7) <1, (n—4)/4 <cod(Mg) < (n—4)/2, and z € M.
As before, the induction hypothesis applies to both MJ and M. Since the torus action on
M has only isolated fixed points, the same is true of the torus action on MJ and M. Hence

(M2)T = {z,y} and (MT)T = {z, z}. This further implies
(Mg N M)T = (M) n (M) = {=}.

On the other hand, Frankel’s theorem implies that M7, and M, intersect, and Wilking’s
connectedness lemma implies that MJ N M is connected and simply connected. In particular,
as with M, this intersection cannot have exactly one fixed point. This concludes the proof. O

This concludes the proof of Theorem 2.1 and hence of the first three conclusions of
Theorem A. We now prove the fourth conclusion.

Proof of Theorem A. [Conclusion (d)] Let g € T'. The Lefschetz number of the map g: M — M
is equal to x(M) since g is homotopic to the identity. Hence x(MY9) = x(M) = 2, so MY is
non-empty.

Since g : M — M is orientation-preserving, each component of MY is a closed, even-
dimensional, totally geodesic submanifold of M to which the T-action restricts. Hence each
component of M9 contains a fixed point of T' by Berger’s theorem. Since M7 is a rational sphere,
either MY is connected or it has two components and the T-actions on them have exactly one
fixed point each. The latter case can only occur if each component of MY is non-orientable (see

again Bredon [Bre72, Corollary IV.2.3, p. 178]), which in turn can only occur if g = id. a
319
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3. Proof of Corollary C

Corollary C is an easy consequence of Theorem A together with a few general classification
results. We only use Theorem A to deduce that x(M) = 2.

First, it is immediate that, if M has vanishing odd-dimensional rational homology, then M
is a rational homology sphere. Since M is simply connected, this is equivalent to M having
the rational homotopy type of a sphere. In particular, this case applies if M is rationally
elliptic (see [FHTO1, Proposition 32.10]) or if the action is equivariantly formal, that is, if the
Leray—Serre spectral sequence of the Borel construction degenerates at the Ea-term (see [AP93,
Corollary 3.1.15]).

Second, we refer to Powell [Pow97] for a definition of p-elliptic for a prime p. In particular, it
follows that M is rationally elliptic and hence a rational sphere. In [Pow97, Theorem 1], Powell
classified p-elliptic rational spheres for p > dim(M), and it follows immediately that M is a mod
p homology sphere.

Third, if M has vanishing odd-dimensional integral homology, then its homology is torsion-
free. Since M is a rational homology sphere, M is, in fact, an integral homology sphere. Since
M is simply connected, it follows from the resolution of the Poincaré conjecture that M is
homeomorphic to a sphere.

Fourth, since biquotients are rationally elliptic, M is again a rational sphere. Totaro [Tot02,
Theorem 6.1] and Kapovitch and Ziller [KZ04, Theorem A] classified such biquotients, and their
results immediately imply that M is diffeomorphic to S?".

Fifth, if M admits a cohomogeneity-one structure, it is rationally elliptic by Grove and
Halperin [GH87], hence M is a rational sphere. Since M has no 2-torsion in its homology, it
follows that M is a mod 2 homology sphere. The result now follows from Asoh’s classification
up to equivariant diffeomorphism of mod 2 homology spheres that admit a cohomogeneity-one
action (see [Aso81, Main Theorem]|).

Finally, if M is a simply connected, compact symmetric space, then it factors as My x- - - x My,
for some irreducible symmetric spaces M;. Since x(M) > 0, it follows that each x(M;) > 2, with
equality only if M; is a sphere. By Theorem A, k =1 and M = M is a sphere.

4. A simplified proof of a Betti number estimate

Fix n > 4. Consider a closed, simply connected, even-dimensional Riemannian manifold M™ with
positive sectional curvature. If M admits an isometric action by a torus 7" with r = dim(T') >
2logy(n) + 1, the second author showed that the Betti numbers of M satisfy ba(M) < by(M) < 1
(see [Kenl4]). In this section, we provide a simplified and self-contained proof of this conclusion
under the assumption that r > logy/3(n — 3).

First, if n = 4, the bound on r implies 7 > 1, so the Hsiang—Kleiner result implies by(M) <
by(M) =1.1If 6 < n < 22, the bound on r implies 7 > n/2, so the diffecomorphism classification
of Grove and Searle implies by(M) = by(M) < 1 (see [GS94]). We proceed by induction on the
dimension n to prove the result in general. Note that, if M has 4-periodic rational cohomology,
then ba(M) < bsy(M) < 1 by Poincaré duality. Indeed, the subring of H*(M;Q) made up of
elements of even degree is isomorphic to that of S*, CP"/2 HP™4 or S? x HP("—2)/4, (See, for
example, the proofs of Wilking [Wil03, Propositions 7.3 and 7.4].) We may suppose that M is
not rationally 4-periodic.

By the Berger theorem, there is a fixed point x € M of the torus action. Take y = =
in Proposition 1.1, and choose an involution ¢ € T and a component N C M" such that
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dimker(T'|ny) < 1 and (n —4)/4 < cod(N) < (n —4)/2. Note that N is a closed, totally geodesic
submanifold of even codimension. Also note that N is simply connected by the connectedness
lemma. The T-action restricts to N, and T'/ker(T'|y) is another torus that acts effectively on V.
Since the dimension of this torus is at least

dim(T') — 1 > logy/3(n — 3) — 1 > logy3(dim(N) — 3),

the induction hypothesis implies that ba(N) < bs(N) < 1. By the connectedness lemma again,
the inclusion N — M is 5-connected, so the Betti numbers of M satisfy the same bounds.
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