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Abstract

We quantitatively study the interaction between diffusion and mixing in both 

the continuous, and discrete time setting. In discrete time, we consider a 

mixing dynamical system interposed with diffusion. In continuous time, we 

consider the advection diffusion equation where the advecting vector field is 

assumed to be sufficiently mixing. The main results of this paper is to estimate 

the dissipation time and energy decay based on an assumption quantifying the 

mixing rate.
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1. Introduction

Diffusion and mixing are two fundamental phenomena that arise in a wide variety of appli-

cations ranging from micro-fluids to meteorology, and even cosmology. In incompressible 

fluids, stirring induces mixing by filamentation and facilitates the formation of small scales. 

Diffusion, on the other hand, efficiently damps small scales and the balance between these 

two phenomena is the main subject of our investigation. Specifically, our aim in this paper is 

to quantify the interaction between diffusion and mixing in a manner that often arises in the 

context of fluids [DT06, CKRZ08, LTD11, Thi12].

In the absence of diffusion, the mixing of tracer particles passively advected by an incom-

pressible flow has been extensively studied. Several authors [MMP05, LTD11, Thi12] meas-

ured mixing using multi-scale norms and studied how efficiently incompressible flows can 
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mix (see for instance [Bre03, LLN+ 12, IKX14, ACM16, YZ17] and references therein). In 

this scenario, however, there is no apriori limit to the resolution attainable via mixing.

In contrast, in the presence of diffusion, the effects of mixing may be enhanced, balanced, 

or even counteracted by diffusion (see for instance [FP94, TC03, FNW04, CKRZ08, INRZ10, 

KX15, MDTY18, MD18]). In this paper we quantify this interaction by studying the energy 

dissipation rate. Roughly speaking, our main results can be stated as follows:

 (1)  In the continuous time setting we show (theorem 2.16) that if the flow is strongly mixing, 

then the dissipation time (i.e. the time required for the system to dissipate a constant 

fraction of its initial energy) can be bounded explicitly in terms of the mixing rate. In 

particular, for exponentially mixing flows, then the dissipation time is bounded by Cν−δ, 

where ν  is the strength of the diffusion, and δ ∈ (0, 1) is an explicit constant. If instead 

the flow is weakly mixing at a polynomial rate, then the dissipation time is bounded by 

C/(ν| ln ν|δ) for some explicit δ > 0 (theorem 2.19).

 (2)  Under similar assumptions in the discrete time setting we obtain stronger bounds on the 

dissipation time (theorems 2.4 and 2.7). In particular, we show that the dissipation time 

of a pulsed diffusion with a map that is exponentially mixing is at most at most C |ln ν|
2
. 

If the map is mixing at a polynomial rate, we show that the dissipation time is bounded 

by C/νδ for some explicit δ ∈ (0, 1).
 (3)  In the discrete time setting we also show (theorem 2.12) that the energy can not decay 

faster than double exponentially in time. Moreover, we obtain a family of examples where 

the energy indeed decays double exponentially in time. (In the continuous time setting the 

double exponential lower bound is known [Poo96], however, to the best of our knowledge 

there are no smooth flows which are known to attain this lower bound.)

 (4)  In bounded domains, Berestycki et  al [BHN05] studied asymptotics of the principal 

eigenvalue of the operator −ν∆+ u · ∇ as ν → 0. We show (proposition 2.24) that one 

can use the dissipation time to obtain quantitative bounds on the rate at which the prin-

cipal eigenvalue approaches 0.

We remark that in the continuous time setting recent work of Coti Zelati et  al [CZDE18] 

obtains a stronger bound on the dissipation time for two classes of strongly mixing flows. 

Their result is discussed further below.

Plan of this paper. We begin by defining mixing rates, and state our main results in section 2. 

Next, in section 3, we prove the dissipation time bounds in the discrete time setting (theorems 

2.4 and 2.7). In section 4 we study toral automorphisms, and use them to prove our result on 

energy decay (theorem 2.12). These proofs require certain facts on algebraic number fields, 

and may be skipped by readers who are not familiar with this material. In section 5 we prove 

the dissipation time bounds in the continuous time setting. The proofs are similar to the dis-

crete case, with a few key differences that we highlight. Finally we conclude this paper with 

two appendices. The first (appendix A) provides a brief introduction to mixing rates and the 

notions used to formulate our results. The second (appendix B) shows that the characteriza-

tion of relaxation enhancing flows in [CKRZ08, KSZ08] still applies in the context of pulsed 

diffusions.

2. Main results

We devote this section  to stating our main results. In the discrete time setting we consider 

pulsed diffusions (mixing maps interposed with diffusion), and our results concerning these 
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are stated in section 2.1, below. In the continuous time setting we consider the advection dif-

fusion equation, and our results in this setting are stated in section 2.2, below.

2.1. Pulsed diffusions

In our setup we will consider a mixing map on a closed Riemannian manifold. While the 

primary manifold we are interested in is the torus, there are, to the best of our knowledge, no 

known examples of smooth exponentially mixing maps on the torus that can be realized as the 

time one map of the flow of a smooth incompressible vector field. There are, however, several 

examples of closed Riemannian manifolds that admit such maps (see [Dol98, BW16] and refer-

ences therein). Since working on closed Riemannian manifolds does not increase the complex-

ity by much, we state our results in this context instead of restricting our attention to the torus.

Let M be a closed d-dimensional Riemannian manifold, and ϕ : M → M  be a smooth vol-

ume preserving diffeomorphism. For simplicity we will subsequently assume that the volume 

form on M is normalized so that the total volume, |M|, is 1. Let ν > 0 be the strength of the 

diffusion, ∆ denote the Laplace–Beltrami operator on M, and L2
0 = L2

0(M) denote the space 

of all mean zero square integrable functions on M. Given θ0 ∈ L2
0, we consider the pulsed dif-

fusion defined by

θn+1 = eν∆Uθn. (2.1)

Here U : L2(M) → L2(M) is the Koopman operator associated with ϕ, and is defined by 

Uf = f ◦ ϕ. Our aim is to understand the asymptotic behaviour of the energy ‖θn‖L2
0
 in the 

long time, small diffusivity limit. For notational convenience, we will use ‖ · ‖ to denote the 

L2
0 norm, and 〈·, ·〉 to denote the L2

0 inner-product.

Since ϕ is volume preserving, the operator U is unitary and hence if ν = 0 the system (2.1) 

conserves energy. If ν > 0 and ϕ is mixing, then Koopman operator U produces fine scales 

which are rapidly damped by the diffusion. We quantify this using the notion of dissipation 

time in [FW03] (see also [FNW04, FNW06]).

Definition 2.1 (Dissipation time). We define the dissipation time of the operator U by

τd
def
= inf

{

n ∈ N

∣

∣

∣
‖(eν∆U)n‖L2

0
→L2

0
<

1

e

}

= inf
{

n ∈ N

∣

∣

∣
‖θn‖ <

‖θ0‖

e
for all θ0 ∈ L2

0

}

.

Since U is unitary we clearly have ‖θn‖ � e−νλ1‖θn−1‖, where λ1 > 0 is the smallest non-

zero eigenvalue of −∆ on M. Consequently, we always have

τd �
1

νλ1

. (2.2)

Our aim is to investigate how (2.2) can be improved given an assumption on the mixing prop-

erties of ϕ. In continuous time, Constantin et al [CKRZ08] (see also [KSZ08]) characterized 

flows for which the dissipation time is o(1/ν). Their result can directly be adapted to pulsed 

diffusions as follows.

Proposition 2.2. The Koopman operator U has no eigenfunctions in Ḣ1 if and only if

lim
ν→0

ντd = 0.
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Since the proof is a direct adaptation of [CKRZ08, KSZ08], we relegate it to appendix B. 

We remark, however, that without a quantitative assumption on the mixing rate of ϕ, it does 

not seem possible to obtain more information regarding the rate at which ντd → 0.

Our main results obtain bounds for the rate at which ντd → 0 in terms of the mixing rate 

of ϕ. Recall, (strongly) mixing maps are those for which the correlations 〈Unf , g〉 decay to 0 

as n → ∞ for all f , g ∈ L2
0. Weakly mixing maps are those for which the Cesàro averages of 

|〈Unf , g〉|
2
 decay to 0 (see appendix A for a brief introduction and [EFHN15, KH95, SOW06] 

for a comprehensive treatment). We quantify the mixing rate of ϕ by imposing a rate at which 

these convergences occur.

Definition 2.3. Let h : [0,∞) → (0,∞) be a decreasing function that vanishes at infinity.

 (1)  Given α,β > 0, we say that ϕ is strongly α, β mixing with rate function h if for all 

f ∈ Ḣα, g ∈ Ḣβ and n ∈ N the associated Koopman operator U satisfies
∣

∣〈Unf , g〉
∣

∣ � h(n)‖f‖α‖g‖β . (2.3)

 (2)  Given α,β � 0, we say that ϕ is weakly α, β mixing with rate function h if for all f ∈ Ḣα, 

g ∈ Ḣβ and n ∈ N the associated Koopman operator U satisfies

(1

n

n−1
∑

k=0

∣

∣〈Ukf , g〉
∣

∣

2
)1/2

� h(n)‖f‖α‖g‖β . (2.4)

Here Ḣα = Ḣα(M) is the homogeneous Sobolev space of order α, and ‖ · ‖α denotes the 

norm in Ḣα. In the dynamical systems literature it is common to use Hölder spaces instead 

of Sobolev spaces, and study strongly mixing maps that are exponentially mixing (i.e. 

h(t) = c1e−c2t  for some c1 < ∞ and c2  >  0). Using Sobolev spaces and asymmetric norms on 

f  and g, however, is more convenient for our purposes. In order not to detract from our main 

results, we briefly motivate and study the above notions of mixing in appendix A. Our main 

results on the dissipation time are as follows:

Theorem 2.4. Let α,β > 0, and h : [0,∞) → (0,∞) be a decreasing function that van-

ishes at infinity. If ϕ is strongly α, β mixing with rate function h, then the dissipation time is 

bounded by

τd �
C

νH1(ν)
. (2.5)

Here C is a universal constant which can be chosen to be 34, and H1 : (0,∞) → (0,∞) is 

defined by

H1(µ)
def
= sup

{

λ

∣

∣

∣
h
( 1

2
√
λµ

)

�
λ−(α+β)/2

2

}

. (2.6)

Before proceeding further, we compute the dissipation time τd  in two useful cases.

Corollary 2.5. Let α,β, h,ϕ be as in theorem 2.4.

 (1)  If the mixing rate function h : (0,∞) → (0,∞) is the power law

h(t) =
c

t p
, (2.7)

  for some p   >  0, then the dissipation time is bounded by
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τd �
C

νδ
where δ

def
=

α+ β

α+ β + p
, (2.8)

  and C = C(c,α,β, p) > 0 is a finite constant

 (2)  If the mixing rate function h : [0,∞) → (0,∞) is the exponential function

h(t) = c1 exp(−c2t), (2.9)

  for some constants c1, c2 > 0, then the dissipation time is bounded by

τd � C |ln ν|
2

, (2.10)

  and C = C(c1, c2,α,β) > 0 is a finite constant

Remark 2.6. In the proof of corollary 2.5 (page 3.1) we will see that the bound (2.10) can 

be improved to a bound of the form

τd � C0

(

|ln ν| − C1 ln
∣

∣ ln ν − ln |ln ν|
∣

∣

)2

for explicit constants C0, C1 depending only on c1, c2, α, β and the constant C appearing in 

(2.5). However, since C is not optimal, this improvement is not significant.

When ϕ is weakly mixing, the bounds we obtain for the dissipation time are weaker than 

that in theorem 2.4. We state these results next.

Theorem 2.7. Let α,β � 0, and h : [0,∞) → (0,∞) be a decreasing function that van-

ishes at infinity. If ϕ is weakly α, β mixing with rate function h, then the dissipation time is 

bounded by

τd �
C

νH2(ν)
. (2.11)

Here C is a universal constant which can be chosen to be 34, and H2 : (0,∞) → (0,∞) is 

defined by

H2(µ)
def
= sup

{

λ

∣

∣

∣
h
( 1

2
√
µλ

)

�
1

2
√

c̃
λ−(2α+2β+d)/4

}

, (2.12)

where c̃ = c̃(M) > 0 is a finite constant that only depends on the manifold M.

Remark 2.8. We will see in the proof of theorem 2.7 that the constant c̃ can be deter-

mined by the asymptotic growth of the eigenvalues of the Laplacian on M. Explicitly, let 

0 < λ1 < λ2 � · · · be the eigenvalues of the Laplacian, where each eigenvalue is repeated 

according to its multiplicity. Then for any ε ∈ (0, 1) we can choose

c̃ = (1 + ε) lim
j→∞

j

λ
d/2

j

=
(1 + ε)vol(M)

(4π)d/2 Γ( d
2
+ 1)

.

The existence, and precise value, of the limit above is given by Weyl’s lemma (see for instance 

[MP49]).

We now compute τd  explicitly when the weak mixing rate function h decays polynomially.
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Corollary 2.9. Let α,β, h,ϕ be as in theorem 2.7. If the mixing rate function h is the power 

law (2.7) for some p ∈ (0, 1/2]1, then the dissipation time is bounded by

τd � Cν−δ , where δ
def
=

d + 2α+ 2β

d + 2p + 2α+ 2β
, (2.13)

and C = C(ϕ, M, s,α,β) is some finite constant.

Remark 2.10. Note that as ν → 0, both H1(ν) → ∞ and H2(ν) → ∞. Thus the bounds 

obtained in both theorems 2.4 and 2.7, guarantee ντd → 0 as ν → 0, and hence are stronger 

than the elementary bound (2.2).

Remark 2.11. Notice that if ϕ is strongly α, β mixing with rate function h, then it is also 

weakly α, β mixing with rate function hw, where hw : [0,∞) → (0,∞) is any continuous de-

creasing function such that

hw(n)
def
=

(1

n

n−1
∑

k=0

h(k)2
)1/2

for every n ∈ N.

In this case, however, one immediately sees that the bound provided by theorem 2.7 is weaker 

than that provided by theorem 2.4. In particular, suppose ϕ is strongly α, β mixing with rate 

function h given by the power law (2.7) for some p ∈ (0, 1/2]. Then ϕ is also weakly α, β 

mixing with rate function given by

hw(t) =







Cp

(1+t) p p < 1/2,
(

Cp ln(1+t)
1+t

)1/2

p = 1/2,

for some constant Cp = Cp(c, p). In this case corollary 2.9 applies when p   <  1/2, and asserts 

that the dissipation time τd  is bounded by (2.13). This, however, is weaker than (2.8).

Before proceeding further, we note that Fannjiang et  al [FNW04] (see also [FW03, 

FNW06]) also obtain bounds on the dissipation time τd  assuming the time decay of the cor-

relations of the diffusive operator eν∆U  for sufficiently small ν . Explicitly they assume suf-

ficient decay of 〈(eν∆U)nf , g〉 as n → ∞, and then show that the dissipation time τd  is at 

most C/ |ln ν|. In contrast, our results only assume decay of the correlations of the operator U 

(without diffusion) as in definition 2.3.

We now turn to studying the energy decay as n → ∞. Clearly

‖θn‖ � ‖
(

(eν∆U)τd
)⌊n/τd⌋

θ0‖ � ‖(eν∆U)τd‖⌊n/τd⌋‖θ0‖ � e−⌊n/τd⌋‖θ0‖,

and thus the energy ‖θn‖ decays at least exponentially with rate 1/τd  as n → ∞. This bound, 

however, is not optimal. Indeed, if ϕ is the Arnold cat map, it is known [TC03] that the energy 

decays double exponentially. We show that this remains true for a large class of toral auto-

morphisms. Moreover, Poon [Poo96] proved a matching lower bound for the continuous time 

advection diffusion equation. This is readily adapted to the discrete time setting.

1 We require p ∈ (0, 1/2], instead of p   >  0, as the weak mixing rate can never be faster than 1/
√

n. This can be seen 

immediately by choosing f   =  g in (2.4).
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Theorem 2.12 (Energy decay). For any θ0 ∈ Ḣ1, there exist finite constants C  >  0 and 

γ = γ(‖ϕ‖C1) > 1 for which the double exponential lower bound

‖θn‖
2
� ‖θ0‖

2 exp
(

−
Cν‖θ0‖

2
1

‖θ0‖2
γn
)

, (2.14)

holds. Moreover, there exists a smooth, volume preserving diffeomorphism on the torus for 

which the above bound is achieved. Explicitly, if ϕ is any toral automorphism which has no 

proper invariant rational subspaces, and has no eigenvalues that are roots of unity, then there 

exists finite constants C and γ > 1 such that

‖θn‖
2
� ‖θ0‖

2 exp
(

−
νγn

C

)

, (2.15)

for all θ0 ∈ L2
0.

Remark 2.13. Note, even though both (2.14) and (2.15) are double exponential in time, the 

decay rates do not match. Namely, the constant in the first exponential in (2.14) depends on 

the initial data and is large for ‘highly mixed’ initial data. On the other hand, the exponential 

factor in (2.15) is universal, and independent of the initial data.

We prove theorem 2.12 in section 4. Recall toral automorphisms are diffeomorphisms of 

the torus onto itself that can be lifted to a linear transformation on the covering space Rd, and 

section 4 also contains a brief introduction to such maps.

Remark 2.14. The lower bound (2.14) immediately implies that the dissipation time can 

always be bounded below by

τd � C |ln ν| , (2.16)

for some constant C = C(‖ϕ‖C1). For maps ϕ that achieve the upper bound (2.15), the dis-

sipation time also satisfies the matching upper bound

τd � C |ln ν| . (2.17)

In the best case scenario, our results (theorem 2.4 and corollary 2.5) show that for exponen-

tially mixing maps we have τd � C |ln ν|
2
, missing this bound by a factor of |ln ν|. While we 

produce (proposition 4.1, below) a family of exponentially mixing diffeomorphisms for which 

the dissipation time is of order |ln ν|, we do not know if this is true for general exponentially 

mixing diffeomorphisms.

2.2. Advection diffusion equation

We now turn to the continuous time setting. Let M be a (smooth) closed Riemannian manifold, 

and u be a smooth, time dependent, divergence free vector field on M. Let θ be a solution to 

the advection–diffusion equation
{

∂tθs + (u(t) · ∇)θs − ν∆θs = 0 in M, for t > s,

θs(t) = θs,0 for t = s
 (2.18)

for t  >  s, with initial data θs(s) = θs,0 ∈ L2
0(M). Since u is divergence free we have
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1

2
∂t‖θs(t)‖

2 + ν‖θs(t)‖
2
1 = 0, (2.19)

and hence

‖θs(t)‖ � e−νλ1(t−s)‖θs,0‖. (2.20)

Our interest, again, is to to investigate how this decay rate can be quantifiably improved when 

the flow of u is mixing. Similar to our treatment of pulsed diffusions, we define the dissipation 

time of u by

τd
def
= sup

s∈R

(

inf
{

t − s

∣

∣

∣
t � s, and ‖θs(t)‖ �

‖θs,0‖

e
for all θs,0 ∈ L2

0

})

= sup
s∈R

(

inf
{

t − s

∣

∣

∣
t � s, and ‖Ss,t‖L2

0
→L2

0
�

1

e

})

,

where Ss,t is the solution operator to (2.18).

From (2.20) we immediately see that for any smooth divergence free advecting field u we 

again have

τd �
1

νλ1

,

where λ1 is the smallest non-zero eigenvalue of −∆ on M. If the flow of u is mixing, then we 

expect that τd  to be much smaller than than 1/(λ1ν). It turns out that all stationary vector fields 

for which ντd → 0 can be elegantly characterized in terms of the spectrum of the operator 

u · ∇. Indeed, seminal work of Constantin et al [CKRZ08] shows2 that for time independent 

incompressible vector fields u, ντd → 0 if and only if the operator (u · ∇) has no eigenfunc-

tions in Ḣ1. Consequently, it follows that if the flow generated by u is weakly mixing, we must 

have ντd → 0 as ν → 0.

Our aim is to obtain bounds on the rate at which ντd → 0, under an assumption on the rate 

at which the flow of u mixes. The analog of definition 2.3 in continuous time is as follows.

Definition 2.15. Let h : [0,∞) → (0,∞) be a continuous, decreasing function that van-

ishes at ∞, and α,β � 0. Let ϕs,t : M → M be the flow map of u defined by

∂tϕs,t = u(ϕs,t, t) and ϕs,s = Id.

 (1)  We say that the vector field u is strongly α, β mixing with rate function h if for all f ∈ Ḣα, 

g ∈ Ḣβ we have
∣

∣〈f ◦ ϕs,t, g〉
∣

∣ � h(t − s)‖f‖α‖g‖β . (2.21)

 (2)  We say that ϕ is weakly α, β mixing with rate function h if for all f ∈ Ḣα, g ∈ Ḣβ we 

have

( 1

t − s

∫ t

s

∣

∣〈f ◦ ϕs,r, g〉
∣

∣

2
dr
)1/2

� h(t − s)‖f‖α‖g‖β . (2.22)

Our first result bounds the dissipation time of vector fields u that are strongly α,β  mixing.

2 More precisely, in [CKRZ08] the authors show that an incompressible, time independent, vector field u is relax-

ation enhancing if and only if (u · ∇) has no eigenfunctions in Ḣ1. It is, however, easy to see that a vector field is 

relaxation enhancing if and only if ντd → 0.
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Theorem 2.16. Let α,β > 0, and h : [0,∞) → (0,∞) be a decreasing function that van-

ishes at infinity. If u is strongly α, β mixing with rate function h, then the dissipation time is 

bounded by

τd �
C

νH3(ν)
. (2.23)

Here C is a universal constant which can be chosen to be 18, and H3 : (0,∞) → (0,∞) is 

defined by

H3(µ) = sup
{

λ

∣

∣

∣

λ exp
(

4‖∇u‖L∞h−1( 1
2
λ−

α+β

2 )
)

h−1( 1
2
λ−

α+β

2 )
�

‖∇u‖2
L∞

2µ

}

, (2.24)

where h−1 is the inverse function of h.

As before, we now compute H3 explicitly for polynomial, and exponential rate functions.

Corollary 2.17. Let α,β, u, h be as in theorem 2.16.

 (1)  If the mixing rate function h is the power law (2.7), then

τd �
C

ν |ln ν|
δ

, where δ
def
=

2p

α+ β
, (2.25)

  and C = C(α,β, c, ‖∇u‖L∞) is a finite constant.

 (2)  If the mixing rate function h is the exponential (2.9), then

τd �
C

νδ
, where δ

def
=

2(α+ β)‖∇u‖L∞

c2 + 2(α+ β)‖∇u‖L∞

, (2.26)

  and C = C(α,β, c1, c2, ‖∇u‖L∞) is a finite constant.

Remark 2.18. The cases considered in corollary 2.17 were also recently studied by Coti 

Zelati, Delgadino and Elgindi [CZDE18]. Here the authors show that if the mixing rate is 

given by the power law (2.7), then the dissipation time is bounded by

τd �
C

νδ
, where δ =

α+ β

α+ β + p
.

Alternately, if the mixing rate is the exponential (2.9), then [CZDE18] show that the dissipa-

tion time is bounded by

τd � C |ln ν|
2

.

In both these cases, the bounds provided by [CZDE18] are stronger than those provided by 

corollary 2.17.

Next we bound the dissipation time for weakly mixing flows.

Theorem 2.19. Let α,β > 0, and h : [0,∞) → (0,∞) be a decreasing function that van-

ishes at infinity. If u is strongly α, β mixing with rate function h, then the dissipation time is 

bounded by
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τd �
C

νH4(ν)
. (2.27)

Here C is a universal constant which can be chosen to be 18, and H4 : (0,∞) → (0,∞) is 

defined by

H4(µ) = sup
{

λ

∣

∣

∣

λ exp
(

4‖∇u‖L∞h−1( 1

2
√

c̃
λ−(d+2α+2β)/4)

)

h−1( 1

2
√

c̃
λ−(d+2α+2β)/4)

�
‖∇u‖2

L∞

2µ

}

,

 

(2.28)

where h−1 is the inverse function of h and c̃ = c̃(M) > 0 is the same constant as in theorem 

2.7 and remark 2.8.

As before, we compute the above dissipation time bound explicitly when the mixing rate 

function decays polynomially.

Corollary 2.20. Suppose u is weakly α, β mixing with rate function h, where α,β > 0, and 

h is power law (2.7). Then the dissipation time is bounded by

τd �
C

ν |ln ν|
δ

, where δ =
4p

d + 2α+ 2β
, (2.29)

and C = C(c, c̃,α,β, ‖∇u‖L∞) is some finite constant.

Remark 2.21 (Comparison with pulsed diffusions). In continuous time, the estimate 

on the dissipation time (2.23) is weaker than that of a pulsed diffusion, with the same mixing 

rate function. In particular, if h decays algebraically, then ντd decays algebraically for pulsed 

diffusions (as in corollary 2.5) but only logarithmically (as in corollary 2.17) for the advection 

diffusion equation. The reason our method yields a stronger results for pulsed diffusions is be-

cause because pulsed diffusions are better approximated by the underlying dynamical system 

than solutions to (2.18) are. Thus when studying pulsed diffusions one is able to better use the 

mixing properties of the underlying dynamical system.

Remark 2.22 (Shear flows). In the particular case of shear flows a stronger estimate on 

the dissipation time can be obtained using theorem 1.1 in [BCZ17]. Namely let u = u(y) be a 

smooth shear flow on the 2-dimensional torus with non-degenerate critical points, and let L2
0 

denote the space of all functions whose horizontal average is 0. Now theorem 1.1 in [BCZ17] 

guarantees that the dissipation time is bounded by

τd � C
|ln ν|

2

ν1/2
, (2.30)

for some constant C  >  0.

To place this in the context of our results, we restrict our attention to L2
0 functions on T2 

whose horizontal averages are all 0. On this space, the method of stationary phase can be used 

to show that the flow generated by u is strongly 1, 1 mixing with rate function h(t)  =  Ct−1/2 

(see equation (1.8) in [BCZ17]). Consequently, by corollary 2.17 guarantees that the dissipa-

tion time is bounded by

τd �
C

ν |ln ν|
δ

, where δ =
2p

α+ β
.
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This, however, is weaker than (2.30).

Remark 2.23 (Optimality). We recall that Poon [Poo96] (see also [MD18, equation (9)]) 

showed the double exponential lower bound

‖θs(t)‖ � exp
(

−
νC‖u‖C1‖θ0‖

2
1

‖θ0‖2
γt−s

)

‖θs,0‖,

 (2.31)

for some constants C  >  0 and γ > 1. To the best of our knowledge, there are no incompressible 

smooth divergence free vector fields for which the lower bound (2.31) is attained. Moreover, on 

the torus, recent work of Miles and Doering [MD18] suggests that the Batchelor length scale 

may limit the long term effectiveness of mixing forcing only a single-exponential energy decay.

As with the case of pulsed diffusions remark 2.14, the lower bound (2.31) implies that the 

dissipation time is again bounded below by O(|ln ν|) as in (2.16). The upper bounds currently 

available are either algebraic (corollary 2.17), or O(|ln ν|
2
) (as in [CZDE18]). Thus there is a 

gap between the currently available upper and lower bounds on the dissipation time. Moreo-

ver, while we are able to exhibit pulsed diffusions that have a logarithmic dissipation time 

(theorem 2.12 and remark 2.14), we do not know examples of smooth flows whose dissipation 

time is O(|ln ν|).

Finally, we turn our attention to studying the principal eigenvalue of the operator 

−ν∆+ u · ∇ in a bounded domain Ω with Dirichlet boundary conditions. In this case, in 

addition to u being smooth and divergence free, we also assume u is time independent and 

tangential on the boundary (i.e. u · n̂ = 0 on ∂Ω, where n̂ denotes the outward pointing unit 

normal). Let µ0(ν, u) denote the principal eigenvalue of −ν∆+ u · ∇ with homogeneous 

Dirichlet boundary conditions on ∂Ω.

By Rayleigh’s principle we note

µ0(ν, u) � µ0(ν, 0) = νµ0(1, 0)

where µ0(1, 0) is the principal eigenvalue of the Laplacian. Our interest is in understanding the 

behaviour of µ0(ν, u)/ν as ν → 0. Berestycki et al [BHN05] showed that µ0(ν, u)/ν → ∞ if 

and only if u · ∇ has no first integrals in H1
0. That is, µ0(ν, u)/ν → ∞ if and only if there does 

not exist w ∈ H1
0(Ω) such that u · ∇w = 0.

In general it does not appear to be possible to obtain a rate at which µ0(ν, u)/ν → ∞. 

If, however, the flow generated by u is sufficiently mixing then we obtain a rate at which 

µ0(ν, u)/ν → ∞ in terms of the mixing rate of u. This is our next result.

Proposition 2.24. If u is a smooth, time independent, incompressible vector field which is 

tangential on ∂Ω, then

µ0(ν, u)

ν
�

1

ντd

. (2.32)

Proposition 2.24 follows immediately by solving the advection diffusion equation with the 

principal eigenfunction as the initial data. For completeness we present the proof in section 5.3.

Now we note the proof of theorems 2.16 and 2.19 only use the spectral decomposition of 

the Laplacian, and are unaffected by the presence of spatial boundaries. Thus theorems 2.16 

and 2.19 still apply in this context. Consequently, if u is known to be (strongly, or weakly) 

mixing at a particular rate, then µ0(ν, u)/ν must diverge to infinity, and the growth rate can 

be obtained by using (2.32) and theorems 2.16, 2.19, or corollaries 2.17, 2.20 as appropriate.
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For example, if α,β > 0 and u is strongly α, β mixing with the exponentially decaying 

rate function (2.9), then

µ0(ν, u)

ν
�

1

Cνγ
, where γ =

c2

c2 + 2(α+ β)‖∇u‖L∞

, (2.33)

and C = C(α,β, h) is a finite constant. Using [CZDE18], this can be improved to the bound

µ0(ν, u)

ν
�

1

Cν |ln ν|
2

.

We remark, however, that in view of remark 2.23 and (2.32), we expect that if u that generates 

an exponentially mixing flow, then one should have

µ0(ν, u)

ν
�

1

Cν |ln ν|
.

We are, however, presently unable to prove this stronger bound.

The rest of this paper is devoted to the proofs of the main results. A brief plan can be found 

at the end of section 1.

3. Dissipation enhancement for pulsed diffusions

In this section we prove theorems 2.4 and 2.7. The main idea behind the proof is to split the 

analysis into two cases. In the first case, we assume ‖θn‖1/‖θn‖ is large, and obtain decay 

of ‖θn‖ using the energy inequality. In the second case, ‖θn‖1/‖θn‖ is small, and hence the 

dynamics are well approximated by that of the underlying dynamical system. The mixing 

assumption now forces the generation of high frequencies, and the rapid dissipation of these 

gives an enhanced decay of ‖θn‖.

3.1. The strongly mixing case

We begin by stating two lemmas handling each of the cases stated above.

Lemma 3.1. Given θ ∈ L2
0 , define Eνθ by

Eνθ
def
=

1

ν
‖(1 − e2ν∆)1/2Uθ‖2. (3.1)

If for θ0 ∈ L2
0 and c0  >  0 we have

Eνθ0 � c0‖θ0‖
2, (3.2)

then

‖θ1‖
2
� e−νc0‖θ0‖

2.

Lemma 3.2. Let 0 < λ1 < λ2 � · · · be the eigenvalues of the Laplacian, where each ei-

genvalue is repeated according to its multiplicity. Let λN be the largest eigenvalue satisfying 

λN � H1(ν), where we recall that H1 is defined in (2.6). If

Eνθ0 < λN‖θ0‖
2, (3.3)
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then for

m0 = 2

⌈

h−1
(1

2
λ
−(α+β)/2

N

)

⌉

 (3.4)

and all sufficiently small ν > 0, we have

‖θm0
‖2

� exp
(

−
νH1(ν)m0

16

)

‖θ0‖
2. (3.5)

Here h−1 is the inverse function of h.

Momentarily postponing the proofs of lemmas 3.1 and 3.2 we prove theorem 2.4.

Proof of theorem 2.4. Choosing c0 = λN  and repeatedly applying lemmas 3.1 and 3.2 we 

obtain an increasing sequence of times nk such that

‖θnk
‖2

� exp
(

−
νH1(ν)nk

16

)

‖θ0‖
2, and nk+1 − nk � m0.

This immediately implies

τd �
32

νH1(ν)
+ m0. (3.6)

Note by choice of λN we have

h
( 1

2
√
νλN

)

�
λ
−(α+β)/2

N

2
.

And since h is decreasing, it further implies

h−1
(λ

−(α+β)/2

N

2

)

�
1

2
√
νλN

.

By the choice of m0, we then have

m0 �
1√
νλN

�
1

νλN

. (3.7)

Recall by Weyl’s lemma (see for instance [MP49]) we know

λj ≈
4π Γ( d

2
+ 1)2/d

vol(M)2/d
j2/d, (3.8)

asymptotically as j → ∞. This implies λj+1 − λj = o(λj). Using this, and the fact that 

H1(ν) → ∞ as ν → 0, we must have

1

2
H1(ν) � λN � H1(ν), (3.9)

when ν  is sufficiently small. Substituting this in (3.7) gives

m0 �
2

νH(ν)
,

and using this in (3.6) yields the desired result. □ 
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To prove corollary 2.5, we only need to compute the function H1 explicitly for the specific 

rate functions of interest.

Proof of corollary 2.5. When the mixing rate function h is the power law as defined in 

(2.7), we compute

H1(ν) =
(4 p−1

c2ν p

)
1

α+β+p .

Substituting this into (2.5) yields (2.8) as desired.

When the mixing rate function h is the exponential function as defined in (2.9), we can not 

compute H1 exactly, as (2.6) only yields

H1(ν) =
c2

2

4ν

(

ln 2 + ln c1 +
α+ β

2
lnH1(ν)

)

−2

. (3.10)

Since H1(ν) → ∞ as ν → 0, we know H1(ν) � 1 for sufficiently small ν .

H1(ν) �
C

ν

,

for some constant C = C(c1, c2,α,β). Using this in (3.10) yields

H1(ν) �
C

ν |ln ν|
2

.

Substituting this in (2.5) yields (2.10) as desired. This argument can also be iterated to obtain 

improved bounds as stated in remark 2.6. □ 

It remains to prove lemmas 3.1 and 3.2.

Proof of lemma 3.1. Let {ei} be a Hilbert basis of L2
0 with −∆ei = λiei. Note that (2.1) 

and (3.1) imply the energy equality

‖θ1‖
2 =

∞
∑

i=1

e−2νλi |〈Uθ0, ei〉|
2
=

∞
∑

i=1

|〈Uθ0, ei〉|
2
− νEνθ0

= ‖θ0‖
2 − νEνθ0.

 (3.11)

Now using (3.2) immediately implies

‖θ1‖
2
� (1 − c0ν)‖θ0‖

2
� e−c0ν‖θ0‖

2. (3.12)
□ 

In order to prove lemma 3.2, we first need to estimate the difference between the pulsed 

diffusion and the underlying dynamical system. We do this as follows.

Lemma 3.3. Let φn, defined by

φn = Unθ0,

be the evolution of θ0  under the dynamical system generated by ϕ. Then for all n � 0 we have

‖θn − φn‖ �

n−1
∑

k=0

√

νEνθk. (3.13)
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Proof. Since φn = Uφn−1, we have

‖θn − φn‖ � ‖(eν∆ − 1)Uθn−1‖+ ‖U(θn−1 − φn−1)‖

=
(

∞
∑

i=1

(e−νλi − 1)2 |〈Uθn−1, ei〉|
2
)1/2

+ ‖θn−1 − φn−1‖

�

(

∞
∑

i=1

(1 − e−2νλi) |〈Uθn−1, ei〉|
2
)1/2

+ ‖θn−1 − φn−1‖

�
√

νEνθn−1 + ‖θn−1 − φn−1‖,

and hence (3.13) follows by induction. □ 

We now prove lemma 3.2.

Proof of lemma 3.2. By (3.11), we have

‖θm0
‖2 = ‖θ1‖

2
− ν

m0−1
∑

m=1

Eνθm. (3.14)

Thus the decay of ‖θm0
‖ is governed by the growth of 

∑m0−1

m=1 Eνθm. In order to estimate Eνθm 

we claim

2‖θm+1‖
2
1 � Eνθm � 2‖Uθm‖

2
1, for all m ∈ N. (3.15)

Indeed, by definition of Eν (equation (3.1)) we have

νEνθm =

∞
∑

k=1

(

1 − e−2νλk
)

|(Uθm)
∧(k)|

2
,

where (Uθm)
∧(k)

def
= 〈Uθm, ek〉 is the kth Fourier coefficient of Uθm, and {ek} is a Hilbert basis 

of L2
0 with −∆ek = λkek. Now (3.15) follows from the inequalities

2νλke−2νλk � 1 − e−2νλk � 2νλk.

We next claim that for all sufficiently small ν  we have

‖θ1‖
2
1 < λN‖θ1‖

2. (3.16)

To see this, note that (3.3) and (3.15) imply

‖θ1‖
2
1 �

1

2
Eνθ0 <

λN

2
‖θ0‖

2. (3.17)

Moreover, our choice of λN (in equation (2.6)) guarantees λN � 1/(2ν) for all ν  sufficiently 

small. Thus

‖θ1‖
2 = ‖θ0‖

2
− νEνθ0 � (1 − νλN)‖θ0‖

2
�

1

2
‖θ0‖

2,

and substituting this in equation (3.17) gives (3.16) as claimed.
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We now claim that for N and m0 as in the statement of lemma 3.2 we have

m0−1
∑

m=1

Eνθm �
λNm0

8
‖θ1‖

2. (3.18)

Note equation (3.18) immediately implies (3.5). Indeed, by (3.14), we have

‖θm0
‖2

�

(

1 −
νλNm0

8

)

‖θ1‖
2
� exp

(

−
νλNm0

8

)

‖θ0‖
2

� exp
(

−
νH1(ν)m0

16

)

‖θ0‖
2,

where last inequality followed from (3.9).

Thus it only remains to prove equation (3.18). For this we let φm, defined by

φm = Um−1θ1,

be the evolution of θ1 under the dynamical system generated by ϕ. Let PN : L2
0 → L2

0 be the 

orthogonal projection onto span{e1, . . . , eN}. Using (3.15) we have

m0−1
∑

m=1

Eνθm �

m0−1
∑

m=m0/2

Eνθm � 2

m0−1
∑

m=m0/2

‖θm+1‖
2
1

� 2λN

m0−1
∑

m=m0/2

‖(I − PN)θm+1‖
2

� λN

(

m0−1
∑

m=m0/2

‖(I − PN)φm+1‖
2

− 2

m0−1
∑

m=m0/2

‖(I − PN)(θm+1 − φm+1)‖
2
)

� λN

(m0

2
‖φ1‖

2 −

m0−1
∑

m=m0/2

‖PNφm+1‖
2 − 2

m0−1
∑

m=m0/2

‖θm+1 − φm+1‖
2
)

.

 (3.19)

Now using lemma 3.3 we estimate the last term on the right of (3.19) by

m0−1
∑

m=m0/2

‖θm+1 − φm+1‖
2
�

m0−1
∑

m=m0/2

(

m
∑

l=1

√

νEνθl

)2

�

m0−1
∑

m=m0/2

mν

m
∑

l=1

Eνθl

�
m2

0ν

2

m0−1
∑

l=1

Eνθl.

 

(3.20)

For the second term on the right of (3.19) we note that since U is strongly α,β  mixing with 

rate function h, we have

‖Umf‖−β � h(m)‖f‖α,

for every f ∈ Ḣα (see also (A.5) in appendix A). This implies
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m0−1
∑

m=m0/2

‖PNφm+1‖
2
�

m0−1
∑

m=m0/2

λ
β
N‖φm+1‖

2
−β �

m0−1
∑

m=m0/2

λ
β
Nh(m)2‖φ1‖

2
α

� m0h
(m0

2

)2

λ
β
N‖φ1‖

2
α � m0h

(m0

2

)2

λ
β
N‖θ1‖

2−2α‖θ1‖
2α
1

� m0h
(m0

2

)2

λ
α+β
N ‖θ1‖

2,

 (3.21)

where the last inequality followed from (3.16).

Substituting (3.20) and (3.21) in (3.19) we obtain

m0−1
∑

m=1

Eνθm �
m0λN

1 + λNνm2
0

(1

2
− h

(m0

2

)2

λ
α+β
N

)

‖θ1‖
2. (3.22)

Clearly, by choice of m0 in (3.4), we know

h
(m0

2

)2

λ
α+β
N �

1

4
. (3.23)

Moreover, using the definition of H1 (2.6) and the fact that λN � H1(ν), we see

λNνm2
0 � 1. (3.24)

Now using (3.23) and (3.24) in (3.22) implies (3.18). This finishes the proof of lemma 3.2. □ 

3.2. The weakly mixing case

We now turn our attention to theorem 2.7. The proof is very similar to the proof of theorem 

2.4, the only difference is that the analog of lemma 3.4 is not as explicit.

Lemma 3.4. Let λN be the largest eigenvalue of −∆ such that λN � H2(ν), and suppose

Eνθ0 < λN‖θ0‖
2.

Then, for all sufficiently small ν > 0, we have

‖θm0
‖2

� exp
(

−
νH2(ν)m0

16

)

‖θ0‖
2

where

m0 = 2

⌊

h−1
( 1

2
√

c̃
λ
−(d+2α+2β)/4

N

)

⌋

, (3.25)

and c̃ is the constant in theorem 2.7 and remark 2.8.

Given lemma 3.4, the proof of theorem 2.7 is essentially the same as the proof of theorem 

2.4.

Proof of theorem 2.7. Choosing c0 = λN  and repeatedly applying lemmas 3.1 and 3.4 we 

obtain an increasing sequence of times nk such that

‖θnk
‖2

� exp
(

−
νH2(ν)nk

16

)

‖θ0‖
2, and nk+1 − nk � m0.
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This immediately implies

τd �
32

νH2(ν)
+ m0. (3.26)

By the choice of m0 and λN, we notice that

m0 �
1

√
νλN

�
1

νλN

�
2

νH2(ν)
.

This proves (2.11). □ 

Before proving lemma 3.4, we prove corollary 2.9.

Proof of corollary 2.9. The proof only involves computing H2 explicitly when h is given 

by the power law (2.7). Using (2.12) we see

H2(ν) =
(

2( p+2)/2c
√

c̃
)

−4δ′

ν
−2pδ′ , where δ′

def
=

1

2α+ 2β + 2p + d
.

Substituting this into (2.11) yields (2.13) as desired. □ 

It remains to prove lemma 3.4.

Proof of lemma 3.4. We first claim that (3.18) still holds if λN, m0 chosen as in the state-

ment of lemma 3.4. Once (3.18) is established, then the remainder of the proof is identical to 

that of lemma 3.2.

To prove (3.18), we observe that the lower bound (3.19) (from the proof of lemma 3.2) still 

holds in this case. For last term on the right of (3.19), we use the bound (3.20). The only dif-

ference here is to estimate the second term using the weak mixing assumption (2.4) instead. 

Observe

1

m0

m0−1
∑

m=0

‖PNφm+1‖
2 =

N
∑

l=1

1

m0

m0−1
∑

m=0

|〈el, Umθ1〉|
2

.

Since ϕ is weak α,β-mixing with rate function h, (2.4) yields

1

m0

m0−1
∑

m=0

|〈el, Um
θ1〉|

2
� h(m0 − 1)2‖θ1‖

2
αλ

β
l � h(m0 − 1)2λ

β
N‖θ1‖

2
α

� h(m0 − 1)2λ
β
N‖θ1‖

2−2α‖θ1‖
2α
1 � h(m0 − 1)2λ

β+α
N ‖θ1‖

2.

Note that the last inequality above comes from (3.16). This gives

1

m0

m0−1
∑

m=0

‖PNφm+1‖
2
� h(m0 − 1)2Nλ

β+α
N ‖θ1‖

2

� c̃h(m0 − 1)2λ
(d+2α+2β)/2

N ‖θ1‖
2.

Here, the last inequality follows from our choice of c̃ in remark 2.8 which guarantees

c̃λ
d/2

N

2
� N � c̃λ

d/2

N ,
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for all sufficiently large N. This yields3

m0−1
∑

m=m0/2

‖PNφm+1‖
2
�

m0−1
∑

m=0

‖PNφm+1‖
2

� c̃m0h(m0 − 1)2
λ
(d+2α+2β)/2

N ‖θ1‖
2.

 (3.27)

Substituting this and (3.20) in (3.19) gives

m0−1
∑

m=1

Eνθm �
m0λN

1 + m2
0νλN

(1

2
− c̃ h(m0 − 1)2λ

(d+2α+2β)/2

N

)

‖θ1‖
2. (3.28)

Now, the choice of m0 in (3.25) forces

c̃ h(m0 − 1)2λ
(d+2α+2β)/2

N �
1

4
. (3.29)

Moreover, using (2.12) and the fact that λN � H2(ν), we see

λNνm2
0 � 4h−1

( 1

2
√

c̃
λ
−(d+2α+2β)/4

N

)2

νλN � 1. (3.30)

Substituting (3.29) and (3.30) in (3.28) implies (3.18), which finishes the proof. □ 

4. Toral automorphisms and the energy decay of pulsed diffusions

In this section we study pulsed diffusions where the underlying map ϕ is a toral automor-

phism, and prove theorem 2.12. Recall a toral automorphism is a map of the form

ϕ(x) = Ax (mod Z
d), (4.1)

where A ∈ SLd(Z) is an integer valued d × d matrix with determinant 1. Maps of this form are 

known as ‘cat maps’, and one particular example is when d  =  2 and

A =

(

2 1

1 1

)

.

The reason for the somewhat unusual name is that originally ‘CAT’ was an abbreviation for 

Continuous Automorphism of the Torus. However, it has now become tradition to demonstrate 

the mixing effects of this map using the image of a cat [SOW06].

3 Note that in the proof of lemma 3.2, used

m0−1
∑

1

Eνθm �

m0−1
∑

m0/2

Eνθm

and focussed on bounding the tail of the sum in order to effectively use the decay of h. In (3.27), however, using 

only the tail of the sum does not improve our final result, and we can directly sum over the entire history. We only 

do it here because it allows us to directly use last part of the proof of lemma 3.2.
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4.1. Mixing rates of toral automorphisms

It is well known that no eigenvalue of A is a root of unity, if and only if ϕ is ergodic, if and 

only if ϕ is strongly mixing (see [Kat71], p 160, problem 4.2.11 in [KH95]) Our interest is in 

understanding the mixing rates in the sense of definition 2.3.

Proposition 4.1. Let A ∈ SLd(Z) be such that:

 (C1)  No eigenvalue of A is a root of unity,

 (C2)  and the characteristic polynomial of A is irreducible over Q.

If α,β > 0 then the toral automorphism ϕ : Td → T
d  defined by (4.1) is strongly α, β mixing 

with rate function

h(n) = Cα,β exp

(

−
n

C0

(

α ∧
β

d − 1

))

, (4.2)

for some finite non-zero constants Cα,β = Cα,β(A,α,β) and C0 = C0(A).

Remark 4.2. Condition (C2) above is equivalent to assuming that A has no proper invariant 

subspaces in Qd.

For completeness, we also mention that if A satisfies condition (C1) above, then A is also 

weakly α, β if either α = 0 or β = 0 (but not both).

Proposition 4.3. Let A ∈ SLd(Z) satisfy the condition (C1) in proposition 4.1.

 (1)  If either α > 0 and β = 0, or α = 0 and β > 0, then there exists a finite constant 

Cα,β = C(α,β) such that ϕ is weakly α, β mixing with rate function

h(n) =































Cα,β√
n

, α ∨ β >
d

2
,

Cα,β

( ln n

n

)1/2

, α ∨ β =
d

2
,

Cα,β

n(α∨β)/d
, α ∨ β <

d

2
.

 (4.3)

 (2)  If further A satisfies condition (C2) in proposition 4.3, and both α > 0 and β > 0, then 

there exists a finite constant Cα,β = C(A,α,β) such that ϕ is weakly α, β mixing with 

rate function

h(n) =
Cα,β√

n
. (4.4)

When d  =  2, proposition 4.1 is well known and can be proved elementarily. In higher 

dimensions, a version of proposition 4.1 was proved by Lind [Lin82, theorem 6] using a 

lemma of Katznelson [Kat71, lemma 3] on Diophantine approximation. Proposition 4.1 can 

also be deduced from the results on the algebraic structure of toral automorphisms developed 

in [FW03]. These arguments, however, rely on three sophisticated results from number theory: 

the Schmidt subspace theorem [Sch80], Minkowski’s theorem on linear forms [New72, chap-

ter VI] and van der Waerdern’s theorem on arithmetic progressions [vdW27, Luk48]. We will 

avoid using these results, and instead prove proposition 4.1 directly using the following two 

algebraic lemmas. These lemmas will be reused subsequently in the proof of sharpness of the 

double exponential bound (2.14) in theorem 2.12.
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Lemma 4.4. Suppose A ∈ SLd(Z) satisfies the assumptions (C1) and (C2) in proposition 

4.1. There exists a basis {v1, . . . , vd} of Cd such that the following hold:

 (1)  Each vi is an eigenvector of A.

 (2)  If k ∈ Z
d − 0, and ai = ai(k) ∈ C are such that

k =

d
∑

1

ai(k)vi =

d
∑

1

aivi,

  then we must have

d
∏

i=1

|ai(k)| � 1. (4.5)

Lemma 4.5 (Kronecker [Kro57]). Let p  be a monic polynomial with integer coefficients 

that is irreducible over Q. If all the roots of p  are contained in the unit disk, they must be roots 

of unity.

The proofs of lemmas 4.4 and 4.5 use elementary facts about algebraic number fields, and 

to avoid breaking continuity, we defer the proofs to section 4.3. The reason these lemmas 

arise here is as follows. Lemma 4.5 will guarantee that (AT)−1 has at least one eigenvalue, λ1, 

strictly outside the unit disk. Lemma 4.4 now guarantees that all non-zero Fourier frequencies 

have a certain minimum component in the eigenspace of λ1. This will of course dominate the 

long time behaviour, leading to exponential mixing of ϕ and rapid energy dissipation of the 

associated pulsed diffusion.

Proof of proposition 4.1. Let B = (AT)−1, and f ∈ L2
0. Observe

(Uf )∧(k) =

∫

Td

e−2πik·xf (Ax) dx =

∫

Td

e−2πi(Bk)·xf (x) dx = f̂ (Bk),

and hence

(Unf )∧(k) = f̂ (Bnk), (4.6)

for all n � 0. Now to prove that ϕ is exponentially mixing, let f ∈ Ḣα, and g ∈ Ḣβ. Using 

(4.6) we have

〈Unf , g〉 =
∑

k∈Zd−0

f̂ (Bnk)ĝ(k) =
∑

k∈Zd−0

1

|Bnk|
α
|k|

β
|Bnk|

α
f̂ (Bnk) |k|

β
ĝ(k).

Consequently

|〈Unf , g〉| �
(

sup
k∈Zd−0

1

|Bnk|
α
|k|

β

)

‖f‖α‖g‖β . (4.7)

We now estimate the pre-factor on the right of (4.7) using lemmas 4.4 and 4.5. First note 

that B ∈ SLd(Z) also satisfies the assumptions (C1) and (C2). Let v1, . . . , vd  be the basis given 

by lemma 4.4, and λ1, . . . ,λd be the corresponding eigenvalues. Since the characteristic poly-

nomial of B satisfies the conditions of lemma 4.5, we see that B has at least one eigenvalue 

outside the unit disk. Without loss of generality we suppose |λ1| > 1.

By equivalence of norms on finite dimensional spaces, we know there exists c∗  >  0 such 

that
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1

c∗
|k′| �

(

∑

|ai(k
′)|

2
)1/2

� c∗ |k
′| , for all k′ ∈ Z

d. (4.8)

Using lemma 4.4, we note

|Bnk| =
∣

∣

∣

∑

aiλ
n
i vi

∣

∣

∣
�

|a1| |λ1|
n

c∗
�

|λ1|
n

c∗ |a2| · · · |ad|
�

|λ1|
n

cd
∗
|k|

d−1
.

Thus

sup
k∈Zd−0

1

|Bnk|
α
|k|

β
� |λ1|

−nα
(

sup
k∈Zd−0

cdα
∗

|k|
β−(d−1)α

)

.

If (d − 1)α � β, (4.7) and the above shows that ϕ is strongly α, β mixing with rate function 

h(n) = C |λ1|
−nα

. This proves (4.2) in the case (d − 1)α � β.

On the other hand, if (d − 1)α > β, we let α′ = β/(d − 1). By the previous argument we 

know ϕ is α′, β mixing with rate function h(n) = C |λ1|
−nα′

. Since α > α′, ‖f‖α′ � ‖f‖α and 

it immediately follows that ϕ is also α, β mixing with the same rate function. This proves 

(4.2) when (d − 1)α > β completing the proof. □ 

Proof of proposition 4.3. The second assertion follows immediately from proposition 

4.1. Indeed, when both α,β > 0, proposition 4.1 implies ϕ is strongly α, β mixing with rate 

function h given by (4.2). Since the rate function decays exponentially, it is square summable 

and equation (4.4) holds with Cα,β = (
∑

∞

i=1 h(i)2)1/2.

To prove the first assertion, suppose first α = 0 and β > 0. As before set B = (AT)−1, and 

let f , g ∈ L2
0 and observe

1

n

n−1
∑

i=0

∣

∣〈Uif , g〉
∣

∣

2
=

1

n

n−1
∑

i=0

∣

∣

∣

∣

∑

k∈Zd
−0

f̂ (Bik)ĝ(k)

∣

∣

∣

∣

2

�
‖g‖2

β

n

n−1
∑

i=0

∑

k∈Zd
−0

∣

∣

∣
f̂ (Bik)

∣

∣

∣

2

|k|
2β

.

 (4.9)

We now split the analysis into cases. First suppose β > d/2. By Kronecker’s theorem (lem-

ma 4.5) we see that the matrix B can not have finite order, and hence k, Bk, B2k, . . . , Bn−1k are 

all distinct. Thus (4.9) implies

1

n

n−1
∑

i=0

∣

∣〈Uif , g〉
∣

∣

2
�

‖g‖2
β

n

∑

k∈Zd
−0

n−1
∑

i=0

∣

∣

∣
f̂ (Bik)

∣

∣

∣

2

|k|
2β

�
‖g‖2

β

n

∑

k∈Zd
−0

‖f‖2

|k|
2β

.

Since β > d/2, the sum on the right is finite, showing ϕ is 0, β mixing with rate function 

C/n1/2 as desired.

Suppose now β < d/2. Let m ∈ N be a large integer that will be chosen shortly, and split 

the above sum as

1

n

n−1
∑

i=0

∣

∣〈Uif , g〉
∣

∣

2
�

‖g‖2
β

n

(

∑

0<|k|�m

n−1
∑

i=0

∣

∣

∣
f̂ (Bik)

∣

∣

∣

2

|k|
2β

+

n−1
∑

i=0

∑

|k|>m

∣

∣

∣
f̂ (Bik)

∣

∣

∣

2

|k|
2β

)

 (4.10)
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� ‖f‖2‖g‖2
β

[(1

n

∑

0<|k|�m

1

|k|
2β

)

+
1

m2β

]

� ‖f‖2‖g‖2
β

(Cmd−2β

n
+

1

m2β

)

,

 (4.11)

for some (explicit) constant C = C(d), independent of n. (Note, we again used the fact that 

k, Bk, B2k, …, are all distinct when computing the first sum on the right of (4.10) to obtain 

(4.11).) We now choose m  =  Cn1/d in order to minimize the right hand side. This implies

1

n

n−1
∑

i=0

∣

∣〈Uif , g〉
∣

∣

2
�

C‖f‖2‖g‖2
β

n2β/d

proving (4.3) when β < d/2.

Finally, when β = d/2 we repeat the same argument above to obtain (4.11). When summed 

(4.11) now yields

1

n

n−1
∑

i=0

∣

∣〈Uif , g〉
∣

∣

2
� ‖f‖2‖g‖2

β

(C lnm

n
+

1

md

)

, (4.12)

and choosing m  =  n1/d yields (4.3) as desired.

We have now proved (4.3) when α = 0 and β > 0. For the case α > 0 and β = 0, note 

that 〈Uif , g〉 = 〈f , U−ig〉. Thus replacing the matrix A with A−1 reduces the case when 

α > 0,β = 0 to the case when α = 0, β > 0. This finishes the proof. □ 

4.2. Energy decay, and the proof of theorem 2.12

We now turn our attention to studying the energy decay of pulsed diffusions. Our first result 

shows that if a toral automorphism satisfies conditions (C1) and (C2) in proposition 4.1, then 

the energy of the associated pulsed diffusion decays double exponentially. This will prove 

sharpness of the lower bound (2.14) in theorem 2.12. Following this we will prove lower 

bound (2.14) itself using a convexity argument.

Proposition 4.6. Suppose A ∈ SLd(Z) satisfies the assumptions (C1) and (C2) in proposi-

tion 4.1. Let ϕ be the associated toral automorphism defined in (4.1), and θn  be the pulsed 

diffusion defined by (2.1). Then there exist constants c  >  0 and γ > 1 such that

‖θn‖ � exp
(

−
νγn

c

)

. (4.13)

Remark 4.7. In the proof of proposition 4.6 we will see that the constant γ  can be chosen 

to be

γ =

d
∏

i=1

(|λi| ∨ 1)2/d

where λ1, . . . ,λd are the eigenvalues of A.

Proof. Using (4.6) we see

θ̂n+1(k) = e−ν|k|2
θ̂n(Bk).
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Setting A∗ = AT , iterating the above, squaring and summing in k gives

‖θn‖
2 =

∑

k∈Zd−0

exp
(

− 2ν

n
∑

j=1

∣

∣A j
∗
k
∣

∣

2
) ∣

∣

∣
θ̂0(k)

∣

∣

∣

2

. (4.14)

Observe that the matrix A∗ also satisfies the conditions (C1) and (C2) in proposition 4.1. 

Let v1, . . . , vd  be the basis of Cd given by lemma 4.4, and λ1, . . . ,λd be the corresponding 

eigenvalues. Now (4.14) implies

‖θn‖
2
�

∑

k∈Zd−0

exp
(

−
2ν

c2
∗

n
∑

j=1

d
∑

i=1

|ai|
2
|λi|

2j
) ∣

∣

∣
θ̂0(k)

∣

∣

∣

2

=
∑

k∈Zd−0

exp
(

−
2ν

c2
∗

d
∑

i=1

|ai|
2
( |λi|

2(n+1)
− |λi|

2

|λi|
2
− 1

))
∣

∣

∣
θ̂0(k)

∣

∣

∣

2

� ‖θ0‖
2 sup

k∈Zd−0

exp
(

−
2ν

c2
∗

d
∑

i=1

|ai|
2
( |λi|

2(n+1)
− |λi|

2

|λi|
2
− 1

))

 (4.15)

where c∗ is the constant in (4.8).

We will now show that the last term decays double exponentially in n. Indeed, the inequal-

ity of the means implies

d
∑

i=1

|ai|
2
( |λi|

2(n+1)
− |λi|

2

|λi|
2
− 1

)

� d
(

d
∏

i=1

|ai|
2
( |λi|

2(n+1)
− |λi|

2

|λi|
2
− 1

))1/d

= d
(

d
∏

i=1

|ai|
2
)1/d(

d
∏

i=1

( |λi|
2(n+1)

− |λi|
2

|λi|
2
− 1

))1/d

� d
(

d
∏

i=1

( |λi|
2(n+1)

− |λi|
2

|λi|
2
− 1

))1/d

,

 (4.16)

where the last inequality followed from lemma 4.4. As in the proof of proposition 4.1 and lem-

ma 4.5 guarantees that maxi |λi| > 1. The right hand side of (4.16) is of order 
∏

i(|λi| ∨ 1)2n/d  

and substituting this in (4.15) gives (4.13) as desired. □ 

We now prove theorem 2.12.

Proof. Proposition 4.6 immediately shows that the double exponential upper bound equa-

tion (2.15) is achieved for the desired class of toral automorphisms. Thus it only remains to 

prove the double exponential lower bound (2.14). For this, observe

ln ‖θn+1‖
2
− ln ‖θn‖

2 = ln

(‖θn+1‖
2

‖θn‖2

)

= ln

(‖θn+1‖
2

‖Uθn‖2

)

= ln

(

∑

i e−2νλi |〈Uθn, ei〉|
2

∑

i |〈Uθn, ei〉|
2

)

,

where we recall that λi are the eigenvalues of the Laplacian, and ei’s are the corresponding 

eigenfunctions. Using concavity of the logarithm and Jensen’s inequality to bound the last 

term on the right we obtain
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ln ‖θn+1‖
2 − ln ‖θn‖

2
�

−2ν
∑

i λi |〈Uθn, ei〉|
2

∑

i |〈Uθn, ei〉|
2

= −2ν
‖Uθn‖

2
1

‖Uθn‖2

� −2ν‖∇ϕ‖2
L∞

‖θn‖
2
1

‖θn‖2
.

 (4.17)

We now claim

‖θn‖
2
1

‖θn‖2
� ‖∇ϕ‖2n

L∞

‖θ0‖
2
1

‖θ0‖2
. (4.18)

Note that substituting (4.18) in (4.17) and summing in n immediately implies (2.14). Thus to 

finish the proof we only need to prove (4.18).

For this we observe

‖θn+1‖
2
1

‖θn+1‖2
−

‖Uθn‖
2
1

‖Uθn‖2
=

‖θn+1‖
2
1‖Uθn‖

2 − ‖θn+1‖
2‖Uθn‖

2
1

‖θn‖2‖Uθn‖2

=
1

‖θn‖2‖Uθn‖2

(

∑

i,j

e−2νλi(λi − λj) |〈Uθn, ei〉|
2
|〈Uθn, ej〉|

2
)

=
1

‖θn‖2‖Uθn‖2

(

∑

i<j

e−2νλi(λi − λj) |〈Uθn, ei〉|
2
|〈Uθn, ej〉|

2

+
∑

i>j

e−2νλi(λi − λj) |〈Uθn, ei〉|
2
|〈Uθn, ej〉|

2
)

�
1

‖θn‖2‖Uθn‖2

(

∑

i<j

e−2νλi(λi − λj) |〈Uθn, ei〉|
2
|〈Uθn, ej〉|

2

+
∑

i>j

e−2νλj(λi − λj) |〈Uθn, ei〉|
2
|〈Uθn, ej〉|

2
)

= 0.

Thus

‖θn+1‖
2
1

‖θn+1‖2
�

‖Uθn‖
2
1

‖Uθn‖2
=

‖Uθn‖
2
1

‖θn‖2
� ‖∇ϕ‖2

L∞

‖θn‖
2
1

‖θn‖2
,

and iterating yields (4.18). This finishes the proof. □ 

4.3. Diophantine approximation and Kronecker’s theorem

We now prove lemmas 4.4 and 4.5. The proofs rely on standard facts on algebraic num-

ber fields, and we refer the reader to the books [Mar77] and [Rib01] for a comprehensive 

treatment.

Before beginning the proof, we remark that a weaker version of lemma 4.4 follows directly 

from the Schmidt subspace [Sch80]. Explicitly, the Schmidt subspace theorem guarantees that 

for any ε > 0 we have

∣

∣

∣

d
∏

i=1

ai(k)
∣

∣

∣
�

1

|k|
ε ,
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at all integer points k ∈ Z
d , except on finitely many proper rational subspaces. To use the 

Schmidt subspace theorem in our context we would need to handle the exceptional subspaces. 

The approach taken by Fannjiang et al in [FW03] is to use van der Waerdern’s theorem on 

arithmetic progressions [vdW27, Luk48] to construct an equivalent minimization problem 

whose minimizer is guaranteed to lie outside the exceptional subspaces. In our specific con-

text we can directly prove the stronger bound (4.5), and avoid using the Schmidt subspace 

theorem entirely.

Proof of lemma 4.4. Let p  be the characteristic polynomial of A, and λ1, . . . ,λd be the 

roots of p . Let F = Q(λ1, . . . ,λd) and G = Gal(F/Q) denote the Galois group. Let G1 ⊆ G 

be the group of field automorphisms that fix λi, and let

F1 = {x ∈ F |σ(x) = x ∀σ ∈ G1},

be the fixed field of G1. Since det(A − λ1I) = 0, there must exist v1 in the F1 vector space Fd
1  

such that Av1 = λ1v1. For i �= 1, let τi ∈ G be any element such that τi(λ1) = λi. (Since p  is 

irreducible over Q, the Galois group G  acts transitively on the roots λ1, . . . ,λd, and hence such 

an element τi must exist.) Now we define

vi
def
= τi(v1).

We now view each vi as an element of Cd, we let V ∈ GLd(C) be the matrix with columns 

v1, . . . , vd . Dividing each vi by a large integer if necessary, we may assume that each entry of 

V−1 is an algebraic integer. We claim that v1, . . . , vd  is the desired basis.

To see this we first note that the basis {v1, . . . , vd} has the following property: if σ ∈ G  

is such that σ(λi) = λj , then σ(vi) = vj. Indeed, note that τ−1
j στi(λ1) = λ1, and hence 

τ
−1
j στi ∈ G1. Since all coordinates of the vector v1 are in F1, the fixed field of G1, this must 

mean that τ−1
j στi(v1) = v1. This implies σ(vi) = vj as claimed.

Now we show that the basis {v1, . . . , vd} has the second property stated in lemma 4.4. Let 

k ∈ Z
d − {0}, choose ai = ai(k) ∈ C such that k =

∑

aivi, and define

p∗
def
=

∏

σ∈G

σ(a1).

Note that if σ(λi) = λj , then σ(vi) = vj and hence σ(ai) = aj. Consequently,

p∗ =
∏

σ∈G1

d
∏

i=1

τiσ(a1) =
(

d
∏

i=1

ai

)m

,

where m = |G1|. Thus p ∗ is in the fixed field of G , and hence must be rational.

Further, since ai = (V−1k) · ei, each ai must also be an algebraic integer. This forces p ∗ to 

be a rational algebraic integer, and hence an integer. By transitivity of the Galois group we see 

that if ai  =  0 for some i, then we must have aj   =  0 for all j . Thus p ∗ must be a non-zero, and 

hence |p∗| � 1. This proves (4.5) as desired. □ 

Lemma 4.5 is due to Kronecker [Kro57]. This result was improved by Stewart [Ste78] and 

Dobrowolski [Dob79]. More generally Lehmer’s conjecture [Leh33] asserts that if λ1, . . . ,λd 

are the roots of p  and the product 
∏

(1 ∨ |λi|) is smaller than an absolute constant µ (widely 

believed to be approximately 1.176 . . .), then each λi is a root of unity. For our purposes, 
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however, Kronecker’s original result will suffice. Since the proof is short and elementary, we 

present it below.

Proof of lemma 4.5. Let λ1, . . . ,λd be the roots of p . For any n ∈ N, let p n be the minimal 

monic polynomial satisfied by λn
1. Since the Galois conjugates of λn

1 are precisely λn
2, . . . ,λn

d, 

the coefficients of p n are symmetric functions of λn
1, . . . ,λn

d. By assumption |λi| � 1, which 

implies |λn
i | � 1, which in turn implies that the coefficients of p n are uniformly bounded as 

functions of n. There are only finitely many polynomials with degree at most d, and uniformly 

bounded integer coefficients. Thus for some infinite set A ⊆ N, we must have pm = pn for 

all m, n ∈ A. This forces the existence of one i ∈ {1, . . . , d} and distinct m, n ∈ N such that 

λm
i = λn

i . Hence λi is a root of unity. Since λ1, . . . ,λd are all Galois conjugates, they must all 

be roots of unity. □ 

5. Dissipation enhancement for the advection diffusion equation

We now prove theorems 2.16 and 2.19, bounding the dissipation time in the continuous time 

setting. The main idea is similar to the discrete time case. However, in the continuous time 

setting the approximation of the diffusive system by the underlying dynamical system is not 

as good as in the discrete time setting. This is the reason why the estimates in theorems 2.16 

and 2.19 are not as strong as those in theorems 2.4 and 2.7.

5.1. The strongly mixing case

As in section 2.2, let θs,0 ∈ L2
0(M), let θs(t) be the solution of (2.18). By the energy inequality 

(2.19) we know

‖θs(t)‖
2 = ‖θs(s)‖

2 exp

(

− 2ν

∫ t

s

‖θs(r)‖
2
1

‖θs(r)‖2
dr
)

.

Thus, ‖θs(t)‖ decays rapidly when the ratio ‖θs(t)‖1/‖θs(t)‖ remains large. Precisely, if for 

some c0  >  0, we have

‖θs(t)‖
2
1 � c0‖θs(t)‖

2, for all s � t � t0,

then

‖θs(t)‖
2
� e−2νc0(t−s)‖θs,0‖

2, for all s � t � t0. (5.1)

As in the proof of theorems 2.4 and 2.7, we will show that if the ratio ‖θs,0‖1/‖θs,0‖ is small, 

then the mixing properties of u will guarantee that for some later time t0  >  s, ‖θs(t0)‖ becomes 

sufficiently small. This is the content of the following lemma.

Lemma 5.1. Choose λN to be the largest eigenvalue satisfying λN � H3(ν) where H3(ν) is 

defined in (2.24). If

‖θs,0‖
2
1 < λN‖θs,0‖

2, (5.2)

then we have

‖θs(t0)‖
2
� exp

(

−
νH3(ν)(t0 − s)

8

)

‖θs,0‖
2 (5.3)
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at a time t0 given by

t0
def
= s + 2h−1

(λ
−(α+β)/2

N

2

)

.

Momentarily postponing the proof of lemma 5.1, we prove theorem 2.16.

Proof of theorem 2.16. Choosing c0 = λN  and repeatedly applying the inequality (5.1) 

and lemma 5.1, we obtain an increasing sequence of times (t′k), such that

‖θs(t
′
k)‖

2
� exp

(

−
νH3(ν)(t

′
k − s)

8

)

‖θs,0‖
2, and t′k+1 − t′k � t0.

This immediately implies

τd �
16

νH3(ν)
+ (t0 − s). (5.4)

By choice of λN and t0, we know that t0 − s � 1/(νλN) � 2/(νH3(ν)) for ν  sufficiently small. 

The last inequality followed from Weyl’s lemma as in the proof theorem 2.4 (equation (3.9)). 

This proves (2.23) as desired. □ 

We now compute H3 explicitly when the mixing rate function decays exponentially, or 

polynomially.

Proof of corollary 2.17. Suppose first the mixing rate function h satisfies the power law 

(2.7). In this case the inverse is given by h−1(t) = (c/t)1/p. Thus, by definition of H3 (in 

(2.24)), we have

exp
(

2(2p+1)/pc1/p‖∇u‖L∞H3(ν)
α+β

2p

)

=
(2c)1/p‖∇u‖2

L∞

2ν
H3(ν)

α+β−2p

2p .

Since H3(ν) → ∞ as ν → 0, the above forces

H3(ν) ≈ C |ln ν|
2p

α+β ,

asymptotically as ν → 0, for some constant C = C(c, p,α,β, ‖∇u‖L∞). Using this in (2.23) 

yields (2.25) as desired.

Suppose now the rate function h is the exponential (2.9). Then we see 

h−1(t) = (ln c1 − ln t)/c2. By the definition of H3 in (2.24), we have

H3(ν) exp
(4‖∇u‖L∞

c2

(

ln(2c1) +
α+ β

2
lnH3(ν)

))

=
‖∇u‖2

L∞

2νc2

(

ln(2c1) +
α+ β

2
lnH3(ν)

)

.

Taking the logarithm of both sides shows

H3(ν) = O
( 1

ν
1−δ

)

,

asymptotically as ν → 0, where δ is defined in (2.26). Substituting this in (2.23) yields (2.26) 

as desired. □ 
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It remains to prove lemma 5.1. For this we will need a standard result estimating the differ-

ence between θ and solutions to the inviscid transport equation.

Lemma 5.2. Let φs, defined by

φs = θs,0 ◦ ϕs,t,

be the evolution of θs,0 under the dynamical system generated by ϕs,t . If θs,0 ∈ Ḣ1(M), then 

for all t � s, we have

‖θs(t)− φs(t)‖
2
�

ν

2‖∇u‖L∞

exp
(

2‖∇u‖L∞(t − s)
)

‖θs,0‖
2
1. (5.5)

Proof. Let w(t) = θs(t)− φs(t). Note w(s) = 0, and for t � s we have

∂tw + u · ∇w − ν∆w = ν∆φs.

Multiplying both sides by w and integrating over M gives

1

2
∂t‖w‖2 + ν‖w‖2

1 = ν

∫

M

w∆φs dx �
ν

2
‖w‖2

1 +
ν

2
‖φs‖

2
1,

and hence

∂t‖w‖2
� ν‖φs‖

2
1. (5.6)

Since φs(t) = θs,0 ◦ ϕs,t we know

‖φs(t)‖1 � exp
(

‖∇u‖L∞(t − s)
)

‖θs,0‖1.

Substituting this into (5.6) and integrating in time yields (5.5) as claimed. □ 

We can now prove lemma 5.1.

Proof of lemma 5.1. Integrating the energy equality (2.19) gives

‖θs(t0)‖
2 = ‖θs,0‖

2 − 2ν

∫ t0

s

‖θs(r)‖
2
1 dr. (5.7)

We claim that our choice of λN and t0 will guarantee
∫ t0

s

‖θs(r)‖
2
1 dr �

λN(t0 − s)‖θs,0‖
2

8
. (5.8)

This immediately yields (5.3) since when ν  is small enough, we have 1
2
H3(ν) � λN � H3(ν). 

And so to finish the proof we only have to prove (5.8).

Note first

∫ t0

s

‖θs(r)‖
2
1 dr � λN

∫ t0

t0+s

2

‖(I − PN)θs(r)‖
2 dr

�
λN

2

∫ t0

t0+s

2

‖(I − PN)φs(r)‖
2 dr

− λN

∫ t0

t0+s

2

‖(I − PN)
(

θs(r)− φs(r)
)

‖2 dr

�
λN(t0 − s)

4
‖θs,0‖

2 −
λN

2

∫ t0

t0+s

2

‖PNφs(r)‖
2 dr

− λN

∫ t0

t0+s

2

‖θs(r)− φs(r)‖
2 dr.

 (5.9)
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We will now bound the last two terms in (5.9). For the second term, note the strong mixing 

assumption (2.21) gives

∫ t0

t0+s

2

‖PNφs(r)‖
2 dr � λ

β
N

∫ t0

t0+s

2

‖φs(r)‖
2
−β dr � λ

β
N

∫ t0

t0+s

2

h(r − s)2‖θs,0‖
2
α dr

�
t0 − s

2
λ
β
Nh

( t0 − s

2

)2

‖θs,0‖
2
α �

t0 − s

2
λ
β
Nh

( t0 − s

2

)2

‖θs,0‖
2−2α‖θs,0‖

2α
1 .

 (5.10)

Using the assumption (5.2), we obtain

∫ t0

t0+s

2

‖PNφs(r)‖
2 dr �

t0 − s

2
λ
α+β
N h

( t0 − s

2

)2

‖θs,0‖
2. (5.11)

Now we bound the last term in (5.9). Using lemma 5.2 we obtain

∫ t0

t0+s

2

‖θs(r)− φs(r)‖
2 dr �

ν

4‖∇u‖2
L∞

e2‖∇u‖L∞ (t0−s)‖θs,0‖
2
1

�
νλN

4‖∇u‖2
L∞

e2‖∇u‖L∞ (t0−s)‖θs,0‖
2.

 (5.12)

Substituting (5.11) and (5.12) into (5.9) gives

∫ t0

s

‖θs(r)‖
2
1 dr � λN(t0 − s)‖θs,0‖

2
(1

4
−

λ
α+β
N

4
h
( t0 − s

2

)2

−
νλNe2‖∇u‖L∞ (t0−s)

4‖∇u‖2
L∞(t0 − s)

)

.

By our choice of λN and t0, we have

λ
α+β
N

4
h
( t0 − s

2

)2

�
1

16
, and

νλNe2‖∇u‖L∞ (t0−s)

4‖∇u‖2
L∞(t0 − s)

�
1

16
,

from which (5.8) follows. This finishes the proof of lemma 5.1. □ 

5.2. The weakly mixing case

We now turn our attention to theorem 2.19. The proof is similar to the proof of theorem 2.16. 

The main difference is that the analog of lemma 5.1 is weaker.

Lemma 5.3. Let λN to be the largest eigenvalue of −∆ such that λN � H4(ν), where we 

recall that the function H4 is defined in (2.28). If

‖θs,0‖
2
1 < λN‖θs,0‖

2, (5.13)

then we have

‖θs(t0)‖
2
� exp

(

−
νH4(ν)(t0 − s)

8

)

‖θs,0‖
2, (5.14)

at a time t0 given by

t0 = s + 2h−1
( 1

2
√

c̃
λ
−(d+2α+2β)/4

N

)

.
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Proof of theorem 2.19. Given lemma 5.3, the proof of theorem 2.19 is identical to that of 

theorem 2.16. □ 

As before, the proof of corollary 2.20 only involves computing H4 explicitly when the mix-

ing rate function decays polynomially.

Proof of corollary 2.20. When the mixing rate function h is given by the power law (2.7), 

we compute h−1(t) = (c/t)1/p. By the definition of H4 (equation (2.28)), we have

exp
(

2(2p+1)/p‖∇u‖L∞(c
√

c̃)1/pH4(ν)
2α+2β+d

4p

)

=
‖∇u‖2

L∞(2c
√

c̃)1/p

2ν
H4(ν)

2α+2β+d−4p

4p .

Taking the logarithm shows

H4(ν) = O
(

H4(ν) ∼ C |ln ν|
4p

2α+2β+d

)

asymptotically as ν → 0. Substituting this in (2.27) yields (2.29) as desired. □ 

Proof of lemma 5.3. Following the proof of lemma 5.1, we claim that (5.8) still holds in 

our case, provided λN and t0 are chosen correctly. Indeed, note that (5.9) and (5.12) still hold, 

and the only difference here is that we need to bound the second term in (5.9) using the weak 

mixing assumption. Explicitly, (2.22) gives

∫ t0

t0+s

2

‖PNφs(r)‖
2 dr �

∫ t0

t0+s

2

N
∑

l=1

|〈φs(r), el〉|
2

dr

�

N
∑

l=1

t0 − s

2
h
( t0 − s

2

)2

‖φs(0)‖
2
αλ

β
l

�
N(t0 − s)

2
h
( t0 − s

2

)2

λ
β
N‖φs,0‖

2
α

�
N(t0 − s)

2
h
( t0 − s

2

)2

λ
α+β
N ‖θs,0‖

2

�
c̃(t0 − s)

2
h
( t0 − s

2

)2

λ
(d+2α+2β)/2

N ‖θs,0‖
2.

 

(5.15)

Here the last inequality follows from the fact that our choice of c̃ (in remark 2.8) guarantees

c̃λ
d/2

N

2
� N � c̃λ

d/2

N ,

for all N sufficiently large.

Substituting (5.12) and (5.15) into (5.9), we obtain

∫ t0

s

‖θs(r)‖
2
1 dr

�
λN(t0 − s)‖θs,0‖

2

4

(

1 − c̃λ
(d+2α+2β)/2

N h
( t0 − s

2

)2

−
νλNe2‖∇u‖L∞ (t0−s)

‖∇u‖2
L∞(t0 − s)

)

.

By our choice of λN and t0, we have
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c̃λ
(d+2α+2β)/2

N h
( t0 − s

2

)2

�
1

4
, and

νλNe2‖∇u‖L∞ (t0−s)

‖∇u‖2
L∞(t0 − s)

�
1

4
,

from which equation (5.8) follows. This finishes the proof. □ 

5.3. The principal eigenvalue with Dirichlet boundary conditions

We now prove proposition 2.24 estimating the principal eigenvalue of −ν∆+ (u · ∇) in a 

bounded domain with Dirichlet boundary conditions.

Proof of proposition 2.24. For notational convenience we will write µ0 to denote 

µ0(ν, u). Let φ0 = φ0(ν, u) be the principal eigenfunction of the operator −ν∆+ (u · ∇). 
Then we know

ψ(x, t)
def
= φ0(x)e

−µ0t

satisfies the advection diffusion equation

∂tψ + u · ∇ψ − ν∆ψ = 0,

with initial data φ0. Consequently ‖ψ(t)‖ = e−µ0t‖ψ(0)‖. This forces τd � 1/µ0 proving 

(2.32) as claimed. □ 
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Appendix A. Weak and strong mixing rates

In this appendix we provide a brief introduction to mixing and, in particular, analyze the 

notions of weak and strong weak mixing rates as in definition 2.3. Recall that M is a d-dimen-

sional Riemannian manifold with volume form normalized so that the total volume of M is 1. 

A volume preserving diffeomorphism ϕ : M → M  is said to be mixing (or strongly mixing) if 

for every pair of Borel sets A, B ⊆ M , we have

lim
n→∞

vol(ϕ−n(A) ∩ B) = vol(A)vol(B). (A.1)

Roughly speaking, this says that for every Borel set A, successive iterations of the map ϕ will 

stretch and fold it over M so that it eventually the fraction of every fixed region B ⊆ M  occu-

pied by A will approach vol(A). For a comprehensive review of mixing we refer the reader to 

[KH95, SOW06].

Approximating by simple functions we see that (A.1) immediately implies that for any 

f , g ∈ L2
0, we have4

lim
n→∞

〈Unf , g〉 = 0.

4 Recall L2
0 is the set of all mean zero square integrable functions, and U : L2

0 → L2
0 is the Koopman operator defined 

by Uf = f ◦ ϕ.
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Thus, one can quantify the mixing rate by requiring the correlations 〈Unf , g〉 to decay at a 

particular rate. Since these are linear in f , g, a natural first attempt is to require
∣

∣〈Unf , g〉
∣

∣ � h(n)‖f‖ ‖g‖, (A.2)

for some decreasing sequence h(n) that vanishes at infinity. This, however, is impossible. 

Indeed using duality, equation (A.2) immediately implies

‖Unf‖ � h(n)
n→∞

−−−→ 0. (A.3)

Of course, U is a unitary operator and hence we must also have ‖Unf‖ = ‖f‖, which is in direct 

contradiction to (A.3).

To circumvent this difficulty, one uses stronger norms of f  and g on the right of (A.2). 

The traditional choice in the dynamical systems literature is to use Hölder norms. However, 

following Fannjiang et al [FW03, FNW04, FNW06], we use Sobolev norms instead, as it is 

more convenient for our purposes. This is the content of the first part of definition 2.3, and is 

repeated here for convenience.

Definition A.1. Let h : N → (0,∞) be a decreasing function that vanishes at infinity, and 

α,β > 0. We say that ϕ is strongly α, β mixing with rate function h if for all f ∈ Ḣα, g ∈ Ḣβ 

the associated Koopman operator U satisfies
∣

∣〈Unf , g〉
∣

∣ � h(n)‖f‖α‖g‖β . (A.4)

Remark A.2. We saw above that there are no strongly α, β mixing diffeomorphisms when 

both α = 0 and β = 0. The same argument shows that there are no strongly α, β mixing dif-

feomorphisms when either α = 0 and β = 0, as long as the rate function h vanishes at ∞. 

Thus, in definition A.1, we need to ensure that both α and β are strictly positive.

Remark A.3. If U is simply a unitary operator, then the rate function h can decay arbi-

trarily fast. However, when U is the Koopman operator associated with a smooth map ϕ, 

the rate function can decay at most exponentially. To see this, note that for k ∈ N we have 

‖Uf‖k � ck‖f‖k for some finite constant ck = ck(‖ϕ‖Ck) > 1. Iterating this n times, choosing 

k = ⌈β⌉, and g  =  Unf  in (A.4) gives

‖f‖2 = ‖Unf‖2
� h(n)‖f‖α‖f‖kcn

k ,

forcing

h(n) �
‖f‖2c−n

k

‖f‖α‖f‖k

.

Remark A.4. By duality equation (A.4) implies that if ϕ is α, β mixing with rate function 

h, then

‖Unf‖−β � h(n)‖f‖α. (A.5)

In particular, this implies ‖Unf‖−β → 0 as n → ∞, and this has been used by many authors 

[MMP05, LTD11, Thi12, IKX14] to quantify (strong) mixing.

We now address the role of α, β in definition A.1. It turns out that if ϕ is strongly α, β mix-

ing with rate function h, then it must be strongly α′, β′ mixing (at a particular rate) for every 

α′, β′
> 0. This is stated precisely in the following proposition.
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Proposition A.5. Suppose for some α,β > 0, the map ϕ is strongly α, β mixing with rate 

function h. Then, for any α′, β′
> 0, the map ϕ is strongly α′, β′ mixing with rate function

h′(t)
def
= λ

−γ
1 h(t)δ ,

where

γ
def
=

1

2

(

(α′ − α)+ + (β′ − β)+ + (β′
∧ β)

(

1 −
α′

α

)+

+ (α′
∧ α)

(

1 −
β′

β

)+)

,

and δ
def
=

(α′
∧ α)(β′

∧ β)

αβ
.

In particular, if for some α, β > 0, ϕ is strongly α, β exponentially mixing, then it is 

strongly α′, β′ exponentially mixing for all α′, β′
> 0.

Proof. If β � β′, then we note

‖Unf‖−β′ � λ
(β−β′)/2

1 ‖Unf‖−β

� λ
(β−β′)/2

1 h(n)‖f‖α.

On the other hand, if β > β′ then by Sobolev interpolation we have

‖Unf‖−β′ � ‖Unf‖
β′/β
−β ‖Unf‖1−β′/β

� h(n)β
′/β‖f‖β

′/β
α ‖f‖1−β′/β

� λ
−α(1−β′/β)/2

1 h(n)β
′/β‖f‖α.

This shows that ϕ is strongly α, β′ mixing with rate function

h1(t)
def
= λ

−(β′
−β)+/2−α(1−β′/β)+/2

1 h(t)(β
′/β)∧1.

By dualizing, we see ϕ−1 is strongly β′, α mixing with rate function h1. Thus, using the 

above argument, ϕ−1 must be β′, α′ mixing with rate function

h′(t)
def
= λ

−(α′
−α)+/2−β′(1−α

′/α)+/2

1 h1(t)
(α′/α)∧1

= λ
−γ
1 h(t)δ ,

as desired. □ 

We now turn our attention to weak mixing. Recall that the dynamical system generated by 

ϕ is said to be weakly mixing if for every pair of Borel sets A, B ⊆ M , we have

lim
n→∞

1

n

n−1
∑

k=0

∣

∣vol(ϕ−k(A) ∩ B)− vol(A)vol(B)
∣

∣ = 0. (A.6)

Clearly strongly mixing implies weakly mixing, but the converse is false (see for instance 

[AK70]). Approximating by simple functions, and using the fact that U is L2 bounded, one can 

show that (A.6) holds if and only if

lim
n→∞

1

n

n−1
∑

k=0

∣

∣〈Unf , g〉
∣

∣

2
= 0, (A.7)
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for all f , g ∈ L2
0 (see for instance [EFHN15, theorem 9.19 (iv)]). We can now quantify the 

weak mixing rate by by imposing a rate of convergence in (A.7). This is the content of the 

second part of definition 2.3, and is repeated here for convenience.

Definition A.6. Let h : N → (0,∞) be a decreasing function that vanishes at infinity. Given 

α,β � 0, we say that ϕ is weakly α, β mixing with rate function h if for all f ∈ Ḣα, g ∈ Ḣβ 

and n ∈ N the associated Koopman operator U satisfies

(1

n

n−1
∑

k=0

∣

∣〈Ukf , g〉
∣

∣

2
)1/2

� h(n)‖f‖α‖g‖β . (A.8)

As mentioned in remark A.2, when defining strong mixing rates, we need to consider 

stronger norms of both the test functions f  and g (i.e. we needed both α > 0 and β > 0). For 

weak mixing rates, however, one need not use stronger norms of both both the test functions f  

and g. Indeed proposition 4.3 shows that for toral automorphisms, either α or β (but not both) 

may be chosen to be 0. We now show that it is impossible to choose both α = 0 and β = 0, 

and thus (A.8) must involve a stronger norm of either f , or of g.

Proposition A.7. Let h be any function that decreases to 0. Then there does not exist any 

diffeomorphism ϕ which is weakly 0, 0 mixing with rate function h.

Proof. Suppose for contradiction there exists a diffeomorphism ϕ which is weakly 0, 0 mix-

ing with some rate function h. Recall, by definition, the rate function h must vanish at infinity. 

We will show that for any fixed N ∈ N,

sup
‖f‖=‖g‖=1

( 1

N

N−1
∑

k=0

∣

∣〈Ukf , g〉
∣

∣

2
)

�
1

2
. (A.9)

This immediately implies h(N) � 1/2, contradicting the fact that h vanishes at ∞.

Thus to finish the proof we only need to prove (A.6). For this, note that ϕ must be weakly 

mixing (as h vanishes at infinity). Since weakly mixing maps are ergodic, we know (see for 

instance [Wal82]) that almost every point has a dense orbit. Let x0 be one such point, and note 

that ϕn(x0) �= x0 for all n �= 0. By continuity of ϕ we can now find a δ = δ(N) > 0 such that

B(x0, δ) ∩ ϕ
k
(

B(x0, δ)
)

= ∅, whenever 0 < |k| < 2N.

Now let ρ ∈ Cc(B(x0, δ)) ∩ L2
0(M) be such that ‖ρ‖ = 1, and define the test functions f , g 

by

f =
1√
N

N−1
∑

i=0

U−iρ, and g =
1√
N

N−1
∑

i=0

Uiρ.

Note by definition of ρ  we have 〈Uiρ, U jρ〉 = 0 whenever 0 < |i − j| < 2N . This implies 

‖f‖ = ‖g‖ = 1, and

1

N

∣

∣

∣

N−1
∑

k=0

〈Ukf , g〉
∣

∣

∣
=

1

N2

N−1
∑

i,j,k=0

〈Uk−iρ, U jρ〉 =
1

N2

N−1
∑

k=0

k
∑

i=0

1 =
N + 1

2N
�

1

2
.

This proves (A.9) as desired, finishing the proof. □ 
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Appendix B. A characterization of relaxation enhancing maps on the torus

We devote this appendix to proving proposition 2.2 characterizing maps ϕ for which ντd → 0. 

The main idea behind the proof is the same as that used in [CKRZ08, KSZ08]. The backward 

implication is simpler, and we present the proof of it first.

Proof of the backward implication in proposition 2.2. For the backward implica-

tion, we need to assume ντd → 0, and show that the associated Koopman operator U has no 

non-constant eigenfunctions in Ḣ1. Suppose, for sake of contradiction, that f ∈ Ḣ1 is an ei-

genfunction, normalized so that ‖f‖ = 1, and let λ be the corresponding eigenvalue. Choosing 

θ0 = f , and defining θn  by (2.1) we observe

|〈θn+1, f 〉 − 〈Uθn, f 〉| =
∣

∣

∣

∑

k

(1 − e−νλk)(Uθn)
∧(k)f̂ (k)

∣

∣

∣

� ν
(

∑

k

1 − e−νλk

ν
|(Uθn)

∧(k)|
2
)1/2(∑

k

1 − e−νλk

ν

∣

∣

∣
f̂ (k)

∣

∣

∣

2 )1/2

� ν
(

∑

k

1 − e−νλk

ν
|(Uθn)

∧(k)|
2
)1/2(∑

k

1 − e−νλk

ν

∣

∣

∣
f̂ (k)

∣

∣

∣

2 )1/2

� ν(Eνθn)
1/2‖f‖1 �

ν

2
Eνθn +

ν

2
‖f‖2

1.

Using equation (3.11), this gives

|〈θn+1, f 〉 − 〈Uθn, f 〉| �
1

2
(‖θn‖

2 − ‖θn+1‖
2) +

ν

2
‖f‖2

1,

which implies

|〈θn+1, f 〉| − |〈Uθn, f 〉| � −
1

2
(‖θn‖

2 − ‖θn+1‖
2)−

ν

2
‖f‖2

1.

Since 〈Uθn, f 〉 = 〈θn, U∗f 〉 = λ〈θn, f 〉, and |λ| = 1, the above implies

|〈θn+1, f 〉| − |〈θn, f 〉| � −
1

2
(‖θn‖

2 − ‖θn+1‖
2)−

ν

2
‖f‖2

1.

Iterating this gives

|〈θn, f 〉| − |〈f , f 〉| � −
1

2
(‖f‖2 − ‖θn‖

2)−
nν

2
‖f‖2

1,

since θ0 = f . Thus

|〈θn, f 〉| �
1

2
‖f‖2 +

1

2
‖θn‖

2 −
nν

2
‖f‖2

1 �
1

2
−

nν

2
‖f‖2

1.

Now choosing n to be the dissipation time τd  gives

1

e
� |〈θτd

, f 〉| �
1

2
−

τdν

2
‖f‖2

1,
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and hence

ντd �
e − 2

e‖f‖2
1

.

This contradicts the assumption ντd → 0 as ν → 0, finishing the prof. □ 

For the other direction, we need two lemmas. The first is an application of the discrete 

RAGE theorem.

Lemma B.1. Let K ⊂ S = {φ ∈ L2
0 | ‖φ‖ = 1} be a compact set. Let Pc be the spectral 

projection on the continuous spectral subspace in the spectral decomposition of U. For any 

N, δ > 0, there exists nc(N, δ, K) such that for all n � nc and any φ ∈ K , we have

1

n − 1

n−1
∑

i=1

‖PNUiPcφ‖
2
� δ. (B.1)

Proof. Define

f (n,φ)
def
=

1

n − 1

n−1
∑

i=1

‖PNUiPcφ‖
2.

Recall that by the RAGE theorem [CFKS87] we have

lim
n→∞

1

n

n−1
∑

i=0

‖AUiPcφ‖
2
= 0, for any compact operator A,

and hence for all φ, f (n,φ) → 0 as n → ∞. Thus, to finish the proof, we only need to show 

that this convergence is uniform on compact sets.

To prove this, it is enough to prove the functions f (n, ·) are equicontinuous. For this ob-

serve that for any φ1,φ2 ∈ S  we have

|f (n,φ1)− f (n,φ2)|

�
1

n − 1

n−1
∑

i=1

∣

∣‖PNUiPcφ1‖ − ‖PNUiPcφ2‖
∣

∣

(

‖PNUiPcφ1‖+ ‖PNUiPcφ2‖
)

�
1

n − 1

n−1
∑

i=1

‖φ1 − φ2‖
(

‖φ1‖+ ‖φ2‖
)

� 2‖φ1 − φ2‖.

This shows equicontinuity, finishing the proof. □ 

Lemma B.2. Assume that the Koopman operator U has no eigenfunctions in Ḣ1. Let Pp  be 

the spectral projection on its point spectral subspace. Let K be a compact subset of S. Define 

the set K1 = {φ ∈ K | ‖Ppφ‖ �
1
2
}. Then for any C  >  0, there exist Np (C,K) and np (C,K) such 

that for any N � Np(C, K), any n � np(C, K), and any φ ∈ K1,
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1

n − 1

n−1
∑

i=1

‖PNUiPpφ‖
2
1 � C. (B.2)

The proof of this is the same as lemma 3.3 in [CKRZ08] and we do not present it here. We 

can now finish the proof of proposition 2.2.

Proof of the forward implication in proposition 2.2. For this direction we are given 

that U has no eigenfunctions in Ḣ1, and need to show ντd → 0 as ν → 0. We will show that 

for any η > 0,

‖θ
(⌈

η

ν

⌉)

‖ → 0 as ν → 0, (B.3)

which immediately implies ντd → 0 as ν → 0.

To prove (B.3), we need to show for any given η, ε, there exists ν0, such that for any ν � ν0, 

we have ‖θ(
⌈

η

ν

⌉

)‖2 � ε for any initial θ0 ∈ H  with ‖θ0‖ = 1. We choose N large enough sat-

isfying e−λNη/80 � ε. Denote K = {φ ∈ S | ‖φ‖2 � λN}, and K1 = {φ ∈ K | ‖Ppφ‖ �
1
2
}. Let 

n1 be

n1 = max
{

2, np(5λN , K), nc

(

N,
1

20
, K

)}

,

and choose ν0 small enough so that

n1 �
η

2ν0

, ν0n2
1 �

1

λN

and
n2

1ν0λN‖∇ϕ‖2n1+2
L∞

(n1 − 1)(‖∇ϕ‖2
L∞ − 1)

�
1

4
.

Note that if Eνθn � λN‖θn‖
2 for all n ∈ [0, ⌈η/ν⌉], then we have

‖θ
(⌈

η

ν

⌉)

‖2
� e−νλN⌈η/ν⌉ � e−λNη � ε.

If not, let n0 ∈ [0, ⌈η/ν⌉] be the first time satisfying Eνθn0
< λN‖θn0

‖2. Similar to (3.16) we 

have ‖θn0+1‖
2
1 < λN‖θn0+1‖

2. We claim that our choice of n1 will guarantee

‖θn0+n1
‖2

� e−λNνn1/40‖θn0
‖2. (B.4)

Given (B.4), we can find ñ ∈ [η/(2ν), η/ν] such that ‖θ(⌈η/ν⌉)‖2 � ‖θñ‖
2 � e−λNνñ/40 �  

e−λNη/80 � ε, proving (B.3) as desired.

Thus it only remains to prove (B.4). For this, define φm = Um−1θn0+1, and observe

φ1

‖φ1‖
=

θn0+1

‖θn0+1‖
∈ K, Pcφm = Um−1Pcθn0+1, and Ppφm = Um−1Ppθn0+1.

We now consider two cases.

 Case I:  ‖Pcθn0+1‖
2 �

3
4
‖θn0+1‖

2 (or equivalently ‖Ppθn0+1‖
2 �

1
4
‖θn0+1‖

2) In this case, we 

have
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n1−1
∑

m=1

Eνθn0+m � 2

n1−1
∑

m=1

‖θn0+1+m‖
2
1

� 2λN

n1−1
∑

m=1

‖(I − PN)θn0+1+m‖
2

� λN

n1−1
∑

m=1

‖(I − PN)φm+1‖
2 − 2λN

n1−1
∑

m=1

‖(I − PN)(θn0+1+m − φm+1)‖.

 (B.5)

By direct calculation, we also have

‖(I − PN)φm+1‖
2
�

1

2
‖(I − PN)Pcφm+1‖

2 − ‖(I − PN)Ppφm+1‖
2

�
1

2
‖UmPcθn0+1‖

2 −
1

2
‖PNUmPcθn0+1‖

2 − ‖UmPpθn0+1‖
2

=
1

2
‖Pcθn0+1‖

2 −
1

2
‖PNUmPcθn0+1‖

2 − ‖Ppθn0+1‖
2.

By lemmas B.1, B.2, and the choice of n1, we have

1

n1 − 1

n1−1
∑

m=1

‖(I − PN)φm+1‖
2
�

1

10
‖θn0+1‖

2. (B.6)

Substituting (3.20) and (B.6) in (B.5) gives

n1−1
∑

m=1

Eνθn0+m �
λN(n1 − 1)

20
‖θn0+1‖

2.

Since ‖θn0+n1
‖2 = ‖θn0+1‖

2 − ν
∑n1−1

m=1 Eνθn0+m, we further have

‖θn0+n1
‖2

�

(

1 −
νλN(n1 − 1)

20

)

‖θn0+1‖
2

�

(

1 −
νλNn1

40

)

‖θn0
‖2

� e−
νλN n1

40 ‖θn0
‖2.

 Case II:  ‖Ppθn0+1‖
2 �

1
4
‖θn0+1‖

2 (or equivalently ‖Pcθn0+1‖
2 �

3
4
‖θn0+1‖

2) By lemma B.2, 

we have

1

n1 − 1

n1−1
∑

m=1

‖PNUmPpθn0+1‖
2
1 � 5λN‖θn0+1‖

2, (B.7)

  and lemma B.1 yields

1

n1 − 1

n1−1
∑

m=1

‖PNUmPcθn0+1‖
2
1 �

λN

20
‖θn0+1‖

2. (B.8)

Combining (B.7) and (B.8), we get

1

n1 − 1

n1−1
∑

m=1

‖PNUm
θn0+1‖

2
1 � 2λN‖θn0+1‖

2. (B.9)
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By (3.20) and (3.15), we have

1

n1 − 1

n1−1
∑

m=1

‖θn0+1+m − φm+1‖
2
�

n2
1ν

n1 − 1

n1−1
∑

m=1

‖Uθn0+1+m‖
2
1

�
n2

1ν

n1 − 1

n1−1
∑

m=1

‖∇ϕ‖2m+2
L∞ ‖θn0+1‖

2
1

�
n2

1ν‖∇ϕ‖2n1+2
L∞

(n1 − 1)(‖∇ϕ‖2
L∞ − 1)

‖θn0+1‖
2
1

�
1

4
‖θn0+1‖

2,

  which implies

1

n1 − 1

n1−1
∑

m=1

‖PN(θn0+1+m − φm+1)‖
2
1 �

λN

4
‖θn0+1‖

2. (B.10)

Equation (B.9) together with (B.10) gives

n1−1
∑

m=1

‖θn0+1+m‖
2
1 �

n1−1
∑

m=1

‖PNθn0+1+m‖
2
1 �

λN

2
(n1 − 1)‖θn0+1‖

2. (B.11)

We now use (3.15) again to get

n1−1
∑

m=1

Eνθn0+m � λN(n1 − 1)‖θn0+1‖
2,

  which, as before, yields

‖θn0+n1
‖2

� e−
νλN n1

2 ‖θn0
‖2.

This proves (B.4) as desired, finishing the proof. □
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