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Abstract—The rapid growth of cloud computing and data
centers with skyrocketing energy consumption, together with the
accelerating penetration of renewable energy sources, is creat-
ing both severe challenges and tremendous opportunities. Data
centers offering large flexible loads in the grid, opens up a
unique opportunity to smooth out the significant fluctuation and
uncertainty of renewable generation and hence enable seamless
integration. To take the market power of data centers into
consideration, this paper proposes a bargaining solution to the
market program for data center demand response when the load
serving entity (LSE) has power supply deficiency. Specifically,
due to the uncertainty of load flexibility of data centers incurred
by the intermittent on-site renewable generation and dynamic
service requests, there exists information asymmetry between
the LSE and the data center, which complicates the design of
the bargaining solution. Making use of the log-concavity of the
(expected) utility functions, a computationally efficient method to
implement the best response updates in the bargaining procedure
is presented. Furthermore, it is shown analytically that the bid
sequences of the LSE and the data center are guaranteed to
converge and the final price clinched by the bargaining algorithm
is indeed the Nash bargaining solution, which is proportionally
fair. In addition, the proposed bargaining solution is compared
with two other schemes, namely the Stackelberg game and the
social welfare maximization schemes. Finally, extensive numerical
experiments are conducted to validate the theoretical guarantees
of the bargaining and to examine the impact of various model
parameters. Empirical comparison indicates the fairness advan-
tage of the bargaining approach over the other two schemes,
especially when the load of the data center is not very flexible,
highlighting the importance of information feedback embodied
by the bargaining procedure.

Index Terms—Data center, load serving entity, demand
response, renewable energy, bargaining, Nash bargaining
solution.

I. INTRODUCTION
HE confluence of two powerful global trends — the
rapid growth of cloud computing and data centers
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with skyrocketing energy consumption, and the accelerating
penetration of renewable energy sources — is creating both
severe challenges and tremendous opportunities. Notably,
the US Department of Energy has set a goal to procure
20% of the total generation from wind/solar power by 2030,
and the state of California has set a Renewable Portfolio
Standard of 33% of renewable generation by 2020. Today,
the uncertainty associated with renewable resources is handled
by using operating reserves. The high penetration of renew-
able resources, however, will cause significant and random
fluctuations in supply and hence introduce difficult-to-control
dynamics and challenges for power system operation. There
is an urgent need to develop decision support tools that can
efficiently utilize renewable resources and distributed demand
response products in concert with traditional grid resources.
It is envisaged that smart demand response programs can
potentially have very significant cost advantages over either
spinning or non-spinning ramping reserve.

Data centers are especially suitable for demand response.
The reasons are twofold. First, the loads of data centers
are large (accounting for 1.5% of electricity consumption
worldwide) [1] and are still increasing dramatically (by
some ten percent each year) in recent years [2]. The total
energy consumed by data centers in the United States was
around 91 billion kilowatt-hours in 2013, and has been pre-
dicted to reach 140 billion kilowatt-hours by 2020. Second,
part of the loads of data centers are flexible. It has been
observed that 5% of the loads of data centers can be cur-
tailed in 5 minutes and 10% of the loads can be shed in
15 minutes [1]. In fact, various workload shifting methods
have been proposed to demonstrate the capability of demand
response for data centers [3], [4]. Liu ef al. [5] used workload
shifting and local power generation to reduce peak loads,
and Lin et al. [6] proposed online algorithms to turn off
temporarily unused servers so that the power consumption of
data centers is reduced. In addition, stochastic optimization
based job scheduling and server management schemes were
presented in [7] to reduce power consumption of data centers.
All these works indicate the opportunities of demand response
in data centers and great load curtailment can be realized by
demand response programs when load service entities (LSEs)
experience temporary shortage of power supply.

Since data centers are large loads, participating in demand
response programs provides them with the opportunity to
dramatically reduce energy costs and contribute to improv-
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ing the sustainability via seamless integration with increased
renewable energy. Nevertheless, the participation of data cen-
ters in demand response would need appropriate market pro-
grams that are designed to allow for strategic participation of
data centers, instead of passive price faking. Indeed, the fact
that data centers represent large loads in a utility company
(data centers can consume more than half of the loads in a
distribution network, e.g., the Facebook data center in Oregon),
makes them capable of participating actively in the markets
and affecting the market prices. This fundamental differ-
ence between data centers and other consumers requires new
demand response solutions tailored towards strategic players
with significant market power. Furthermore, it is nontrivial to
determine a data center’s supply function since its workload
is time-varying and it would try to maximize its cost savings
without risking its performance quality.

In this paper, we advocate a bargaining approach for data
center demand response, which points to a paradigm shift
for data center from a passive price taker to an active price
negotiator.

A. Summary of Main Results
The main contributions of this paper are summarized as

follows.
» A bargaining procedure for demand response is put forth,

in which an LSE and a data center settle an appropriate
price for load reduction acceptable to both parties through
iterative negotiations. One significant challenge lies in the
information asymmetry between the LSE and the data
center, which arises due to the uncertainty of the load
flexibility of the data center incurred by the intermittent
on-site renewable generation [8] and time-varying service
loads.

« Exploiting the log-concavity of the (expected) utility
functions of the LSE and the data center, we present a
computationally efficient method to implement the best
response updates in the bargaining. Further, we show that,
under mild technical conditions, the bid sequences of the
LSE and the data center converge and the final price
clinched by the bargaining algorithm converges to the
Nash bargaining solution (NBS), which is proportionally
fair. In particular, the breakdown probability of the bar-
gaining can be made arbitrarily small by tuning a para-
meter in the bargaining procedure. Moreover, the impact
of various model parameters is examined numerically.

» We present a comparative study of the devised bargaining
solution for data center demand response, against two
other schemes based on Stackelberg game and social
welfare maximization (SWM). Numerical comparison
corroborates the fairness advantage of the proposed bar-
gaining approach over these two schemes, especially
when the load of the data center is not very flexible.
This highlights the importance of iterative negotiation and
information feedback embodied by the bargaining proce-
dure in achieving fair outcomes. Moreover, we observe
that the social welfare of the bargaining solution can be
even higher than that of the SWM scheme, because the
SWM designer has no knowledge of the on-site renewable
generation as a third party arbitrator.
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B. Related Work

Given the importance and prospect of demand response in
data centers, the past few years have witnessed a surge of
interest in this area. One promising approach is to use pricing
for load control. Specifically, Conejo ef al. [9] proposed
algorithms to adjust the load level by responding to real-time
prices. Price prediction is leveraged to minimize payment and
waiting time of the operation of appliances in [10]. Since
many data centers were partially driven by on-site renew-
able energy sources (RESs) [8], geographical load balancing
was proposed to promote the usage of renewable energy in
data centers by means of dynamic pricing in [11]. A more
closely related work [12] studied prediction based pricing to
tackle the uncertainty of the load flexibility of data centers
and a social welfare maximization problem was investigated.
Another interesting line of work on demand response is supply
function bidding [13]. In this category, linear function bidding
and supply function with capacity constraints was proposed
in [14] and [15], respectively. Further, the application of supply
function bidding to data centers and smart grids was consid-
ered in [16] and [17], respectively. A common requirement of
supply function bidding is that the LSE and the data centers
have to curtail a fixed amount of loads pre-determined in
advance, in contrast to the flexible load reduction quantity
in response to difference prices. Furthermore, several works
examined the interaction between LSEs (utility companies)
and data centers using Stackelberg game [18] or two-stage
optimization [19], in which the LSEs set the prices and the
data centers responded to them. In particular, for colocation
data centers, the interactions between the demand response
provider, the colocation operator, and data centers (tenants)
were modeled by Stackelberg game in [20], and online auc-
tions in [21]. More recently, a model predictive control based
approach was proposed for reliable operation of data center
activities in demand response programs [22]. A system of
contracts between data centers, energy suppliers, and cus-
tomers was developed in [23] to promote collaboration and
economic incentives in demand response. Further, joint elec-
tricity procurement from wholesale market and geographical
load balancing for data centers were optimized under uncer-
tainty of workloads and market prices in [24]. An incentive
mechanism was proposed in [25] for tenants of cloud data cen-
ters to cooperate with demand response programs. Moreover,
a matching game was formulated and studied for data centers
to jointly choose utility companies and schedule workloads
in [26].

In the Iliterature, the bargaining approach has been
applied to various communication and networking problems,
e.g., channel allocation in OFDMA networks [27], data
offloading [28], Wi-Fi deployment [29], network coding [30],
and routing over networks [31]. Most of them directly adopt
NBS as the solution and follow an axiomatic approach for bar-
gaining, which differs from the iterative bargaining procedure
in this paper significantly. Besides, the proposed bargaining
procedure is related to the strategic iterative bargaining game
in the seminal works [32], [33], although the problem setups
are very different, e.g., the presence of information asymmetry
in the proposed bargaining approach.
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The rest of this paper is organized as follows. In Section II,
we elaborate on the system model for load reduction and
present the bargaining procedure. In Section III, we analyze
the proposed bargaining approach. In Section IV, we discuss
two other schemes for data center demand response. We con-
clude this paper in Section V.

II. SYSTEM MODEL AND BARGAINING FORMULATION

In this section, we present the model of data center demand
response for load reduction by taking into account the informa-
tion asymmetry between the LSE and the data center. Further,
we propose an iterative bargaining procedure for the LSE
and the data center to negotiate an appropriate price for load
curtailment acceptable to both parties.

A. System Model

We consider a basic model in which two monopolists,
namely an LSE and a data center, constitute the majority of the
market share. With the increasing penetration of intermittent
renewable energy, the power supply from the LSE can be
highly fluctuant, making it difficult to meet the demand in
peak periods. In particular, when the LSE experiences a supply
deficit, data centers can provide demand response through
workload management via dynamic server provisioning and
adaptive load balancing. Suppose the LSE requests a load
reduction of D > 0. To incentivize load shedding, the LSE
compensates the data center p dollars per unit load reduction.
If the realized load curtailment is g € [0, D], the LSE incurs
a quadratic penalty of §(D — ¢), where C' > 0 is the
penalty coefficient. Hence, the reduction of penalty relative
to the case of no load curtailment is $D? — §(D — ¢)2.
In particular, this reduction of penalty is zero if the load
curtailment g is zero. We remark that quadratic penalty/cost
functions are prevalent and standard in the literature of
electricity market [12], [34]-[36] to simplify analysis and to
obtain engineering insights. Thus, the net utility of the LSE
for unit price p > 0 and load curtailment g € [0, D] is:

C C
Sp,q) = 3D -5 (D-a)’ —pa M
C
= (CD - p)g— 5¢". @

Given the unit price p > 0, the LSE will demand an amount
of load reduction that maximizes its net utility. In other words,
given p > 0, the demand function of the LSE is

d(p) = argmax Sy (p, q) = (D - B)J'
0<q<D c

3
where (z)* £ max{z,0}.

On the data center side, when it reduces the power load
received from the LSE, it may have to degrade the QoS of
its customers. Thus, when reducing loads, the data center
suffers some cost, which depends on the on-site renewable
generation and the customers’ service request level at the data
center. Specifically, if the data center collects little renewable
energy or customers’ service requests surge, the cost of
load reduction would be high. In contrast, if the data center
harvests plenty of renewables or service request level is low,
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the cost of load reduction becomes small. Owing to the random
fluctuations of the renewable generation and service request
level, the load reduction cost at the data center is also random.
In this paper, following [12], the cost of reducing g amount
of lo;ads at the data center is assumed to be quadratic, given
as 5, where X is a random variable uniformly distributed
over the interval (0,2X) and X > 0 is the expectation of X.
The random variable X models the randomness of the on-site
renewable generation and customers’ service request level.
Larger X means larger renewable generation or smaller service
request level. Though seemingly restrictive, this quadratic
form of cost function is standard in the electricity market
literature [34]-[36]. Further, since the on-site renewable gen-
eration and service request level are private information of the
data center, the realization of X is only known to the data
center and is unknown to the LSE, who is only aware of the
distribution of X based on the statistical information of the
renewable generation and service request. This naturally gives
rise to the information asymmtry between the LSE and the data
center: the LSE has little knowledge about the data center’s
load flexibility, which is private information of the data center.

For the unit price p > 0, load reduction ¢ > 0 and the
realization of the random variable X € (0,2X), the net utility
of the data center is:

2

So(p,2.X) =p1 — 55 “

Given the realization of X, the data center supplies an amount
of load reduction that maximizes its net utility, i.e., the supply
function of the data center is:

s(p, X) ZM%:{ISax5DLp,q,X) =pX. ©)

Combining the models for the LSE and the data center,
given the unit price p > 0 and the realization of X (known
privately to the data center), the amount of load reduction that
both parties will agree on is the minimimum of the supply and
demand functions at p, i.e., the realized load reduction will be:

q(p, X) = min{s(p, X), d(p)} (6)

B. A Bargaining Approach to Data Center Demand Response

It is clear that a key step is for both parties to reach
an agreement on the unit price p of the load reduction.
Nonetheless, the interests of the two parties conflict with each
other: the LSE prefers a low p to pay less while the data center
wants a high p to earn more. In order to settle these conflicting
interests, we advocate a bargaining approach. A well-known
axiomatic solution concept for bargaining games is the Nash
bargaining solution (NBS) [37]. In our model, the NBS is the
optimal price given by the following optimization problem:

Max Ex [SL(p,a(p.X))|So(p.a(p. ). X), (D
P

in which the LSE’s utility is averaged over all possible
realizations of X since the true X is unknown to him. It is
infeasible to solve (7) directly and prescribe this price to the
LSE and the data center, because (i) the realization of X is
private information of the data center; (ii) the LSE and the
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knows the ) realization
distribution of X
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Data Center
Fig. 1. An illustration of the bargaining between the LSE and the data center.

data center may not obey the prescribed solution since they
aim to maximize their own (expected) utilities. This motivates
us to design a bargaining procedure that respects the players’
private information and selfishness. Moreover, it is possible
to take the logarithm of the objective function of problem (7)
and transform it to an SWM with the utility functions replaced
by the logarithms of the original ones. The resulting SWM of
log-utility is a convex problem due to the log-concavity of the
(expected) utility functions of the LSE and the data center (to
be shown in Section III). Thus, the SWM of log-utility can
be solved efficiently via off-the-shelf optimization packages if
the realization of X is known to the coordinator. Nevertheless,
in practice, the data center may not be willing to reveal her
private information about X. In addition, the LSE and the
data center, both having significant market leverage, may not
conform to the price prescribed by a third-party coordinator.
Instead, they may want to bargain for a mutually agreeable
price by themselves.

As is standard, there are three entities involved in the
bargaining procedure, namely the LSE, the data center, and
an independent arbitrator (see Fig. 1). The arbitrator can be
an independent system operator (ISO), which coordinates the
operation of the electrical power system in a local region,
e.g., one or multiple US states. The unit price p is negoti-
ated through an iterative bidding process, in which each of
the LSE and the data center takes turns to propose a bid,
i.e., p. and pp respectively, on the unit price to the arbitrator.
At each iteration, the arbitrator sets the unit price as the
average of the current bids of the LSE and the data center,
i, p = 3(pL + pp). The LSE and the data center take
turns to revise their respective bids as the best responses of
the opponent’s bid, and the price is updated by the arbitrator
accordingly. This bargaining process continues until the bids
of both the LSE and the data center converge.

The arbitrator will determine the success or failure (break-
down) of the bargaining based on the stablized bids p; and pp.
When updating their bids, the LSE and the data center will
take into consideration the possibility of breakdown of the bar-
gaining. Intuitively, the breakdown probability should depend
on the spread of the final bids p| — pp. Formally, the arbitrator
can generate a positive value e from an exponential distribution
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with parameter A, i.e., the probability density function (PDF)
is f(¢) = Ae ¢ and the cumulative distribution function
(CDF) is F(e) = 1 — e~?¢ for € > 0. Here, A > 0 is some
predefined positive parameter announced to the LSE and the
data center prior to the start of the bargaining. If the spread of
the bids p. — pp exceeds e, the arbitrator declares success of
the bargaining and the LSE and the data center finalizes the
load reduction with the final price p = 3(pL +pp). Otherwise,
if the spread pp — pp is less than e, the arbitrator declares
failure of the bargaining and no load curtailment takes place.
In such a mechanism, if py < pp, the bargaining will fail
deterministically. This is reasonable since it is impossible to
set a price satisfying both parties in such a case. If p. > pp,
the bargaining succeeds with positive probability and the
probability of success increases with the spread pp — pp.
In particular, as the distribution parameter A goes to infinity,
the cumulative probability distribution (CDF) of e approaches
a unit step function and the probability of success approaches 1
for any fixed positive spread p. — pp. In such a limiting case,
the declaration of the arbitrator degenerates to a deterministic
sign discrimination: the bargaining succeeds if and only if
pL > pp. Later analysis manifests that a finite value of A
is crucial in establishing the convergence of the bargaining
process and the bargaining converges more slowly for larger
values of A empirically. Thus, we consider finite A in the
proposed bargaining mechanism in this paper. Additionally,
we note that exponential distribution has been used to model
exogenous risk of breakdown in each stage of the bargaining
in [33], which is very different from the breakdown mechanism
used in this paper.

In a nutshell, the bargaining procedure for load curtailment
can be summarized in Algorithm 1. A few remarks on the pro-
posed bargaining procedure are in order. First, when updating
their bids, the LSE and the data center aim at maximizing their
own utilities by taking the possibility of the breakdown of the
bargaining into consideration. This conforms to the rationality
and selfishness of both parties and contrasts with the social
welfare maximization formulation in [12]. Second, owing to
information asymmetry, the LSE does not know the realization
of X, which is private information of the data center. Thus,
when updating bids, the LSE maximizes its expected utility
averaged over all possible realizations of X (c.f. (8)) while
the data center maximizes its utility at the true value of X
(c.f. (9)). Third, when implementing the bargaining, there
are various possible conditions for convergence [iudgement,

e.g., !p(Lk) Ek_z) < B and L(k 2 pg_a) < B for
odd k£ and some predefined threshold /3. Fourth, in practice,
the local independent system operator (ISO) can serve as
the arbitrator. When the LSE has sufficient power supply,
she operates normally according to existing market schemes.
Whenever the LSE encounters an energy deficit and cannot
sustain the current load, she can request the ISO to set up
a load curtailment bargaining procedure with a data center
with large load. The LSE may request multiple bargainings
with multiple data centers if the load reduction from one
single data center is not enough to compensate for the energy
deficit. With the proposed bargaining approach, the LSE
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TABLE 1
NOTATIONS
Notations Definitions
C The coefficient of the penalty function of the LSE
D The amount of load that the LSE aims to curtail
X The reciprocal of the random coefficient of the cost
function of the data center
Si(p, q) The utility function of the LSE
Sp(p, q, X) The utility function of the data center
q(p, X) The realized load reduction
- A random variable with exponential distribution of
parameter A
f(-), F(+), G(+) | The PDF, CDF, and log-CDF of ¢
The logarithm of the expected utility function of
¢(p) the LSE
The logarithm of the utility function of the
7x(P) data center

becomes much more robust to a temporary energy deficit by
exploiting the load flexibility of data centers in an intelligent
manner. Fifth, we note that the proposed bargaining approach
differs significantly from the traditional supply function bid-
ding method [13]-[15]. In supply function bidding, a fixed
amount of load reduction needs to be fulfilled, in contrast to
the flexible load reduction quantity negotiated by the LSE
and the data center in advocated bargaining. Additionally,
in supply function bidding, the data centers may be either
price-taking or price-anticipating, i.e., taking the impact of
their bids on prices into consideration. Nevertheless, unlike the
bargaining approach, the data centers cannot directly negotiate
the prices with the LSE and the prices are set by the LSE
unilaterally based on submitted bids. Overall, the bargaining
framework endows the data centers with more market power
than the supply function bidding does. This is in accordance
with the large loads contributed by the data centers. The
notations of this paper are summarized in Table L.

Given the proposed bargaining procedure in Algorithm 1,
we seek to answer the following questions. Firstly, are the
best responses of the LSE and the data center unique, i.e., do
the optimal solutions to problems (8) and (9) exist and if yes
are they unique? If so, how to compute them efficiently so
that the bargaining can be implemented readily? Secondly,
can the bidding sequences of the LSE and the data center
converge so that the bargaining procedure will be terminated
after finite number of iterations? Thirdly, if the bidding
sequences are convergent, how can we characterize the final
unit price clinched by the bargaining? In the next section,
we will study the bargaining procedure thoroughly. A major
technical novelty lies on how to tackle the challenge due to the
information asymmetry between the LSE and the data center.
Since the LSE does not know the value of X, she has to take
expectations over all possible realizations of X in order to
make optimal decisions. This complicates the analytical form
of the expected utility of the LSE and makes the properties
(e.g., contraction mapping) of the best response of the LSE
difficult to analyze. Nevertheless, as will be elaborated in the
next section, we manage to show that the expected utility of
the LSE is strictly log-concave and the best response of the
LSE is a contraction mapping, which leads to the convergence
of the proposed bargaining procedure.

2711

Algorithm 1 The Bargaining Procedure of Load Curtailment
Initialization: The arbitrator announces a positive number
A to the LSE and the data center. Then, the data center
initializes its bid py’ € [0, CD) arbitrarily. Set k = 1.
while convergence is not reached do

if k is odd then
The LSE updates its bid as the best response of the
current bid of the data center, i.e.,

k k—1
p(l_ - arg max, > {F (pL - pé )) .

(k—1) (k—1)
E[SL(M; ,q(wg.) Xm} ®
else

The data center updates its bid as the best response of
the current bid of the LSE, i.e.,

k E—1
pE)) — a,rgmaxpnzo {F (pl(_ ) _ pD) "

(k—1) (k—1)
SD (pL 2+pD’q(p|_ 2+PD3x))x) }‘ (9)
end if

ko= k=1,
end while
Once the bids of the LSE and the data center converge to p;
and pp,, respectively, the arbitrator generates a value € from
exponential distribution with parameter A. If p|' — pj > e,
the arbitrator declares success of the bargaining. Otherwise,
it declares failure of the bargaining.

III. ANALYSIS OF THE BARGAINING GAME

In this section, we analyze the bargaining procedure in
Algorithm 1. Specifically, we first prove the strict log-
concavity of the utility function of the data center and the
(expected) utility function of the LSE. Based on this, we show
the existence and the uniqueness of the best responses in
problems (8) and (9) and derive an efficient method to compute
them. Further, we prove the convergence of the bid sequences
in the bargaining under the assumption that the distribution
parameter A is sufficiently large. In addition, we show that
the final unit price clinched by the bargaining procedure
converges to the Nash bargaining solution (NBS), i.e., the
price maximizes the product of the utility of the data center
and the expected utility of the LSE. Moreover, we show that
the breakdown probability of the bargaining can be made
arbitrarily small by choosing A sufficiently large. Finally,
numerical results are presented to corroborate the proposed
bargaining approach. For clarity of presentation, all proofs are
presented in the supplementary material.

A. Strict Log-Concavity of (Expected) Utility Functions

We first study the properties of the utility function of the
data center Sp(p, q(p, X ), X ) defined over p € [0, +00). It can
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be shown that Sp(p,q(p, X), X) is positive for p € (0,CD)
and is zero for p = 0 or p > CD. Thus, we can define
7x(p) £ InSp(p,q(p, X), X) for p € (0,CD). Its derivative
can be computed as:

2 ifo<p< <25
!l i _j’_cxa
’Yx(P) { 2EX 1

cD
(2CX +1)p—DC — if

1+CX

<p< CD,
(10)

DC—p?

which has the following property. o
Lemma 1: For any realization of X in (0,2X), % (p) is
continuous and strictly decreasing over the interval (0,CD).
% (p) < 0 for any p € (0,CD)\ { T1CX

Next, we examine the properties of the expected utility
function of the LSE. It can be shown that, for p € [0, +oc):

E[St(p,q(p, X))]
(CD — p)pX — Cp2X2 if0<p< _=2—
2 3 2
(o) D 1 C D 1
::‘1%(?_6)+'§(5‘6)1

if <p<CD,

ZC‘X—i-l 4

QCX—i-l

0, if p > CD.

(11)
We have the following lemma.

Lemma 2: E[S| (p,q(p, X))] is positive for p € (0,CD)
and is zero for p =0 or p > CD. Further, E[S| (p,q(p, X))]
is continuous on p € [0, +00).

Based on Lemma 2, we define ¢(p) 2 InE[S, (p, q(p, X))]
for p € (0,CD). The derivative of ¢(p) can be computed as:

1 1+2cX : cD
P CD— p(i+203_c) if0<p< 20X +1°
d)!(p) == % — % ;_ T + : 6X — (1}3 1) (12)
if 2cx+1 < p << ECD,

Then, we have the following property for ¢(p).

Lemma 3: ¢'(p) is continuous and strictly decreasing over
the interval (0,CD). ¢"(p) is negative and continuous over
the interval (0,CD).

Lemmas 1 and 3 demonstrate the strict log-concavity of the
utility function of the data center Sp(p,q(p, X ), X) and the
expected utility function of the LSE E[S| (p,q(p, X))], both
over the interval p € (0,C'D). These properties play critical
roles in computing the best responses in (8) and (9) efficiently.

B. Best Response Updates

In this subsection, we investigate the existence and unique-
ness of the best responses in the updates (8) and (9) and
characterize the optimality conditions, based on which an
efficient method of finding the best responses is presented.
We first study the LSE’s best response update. Denote G(y) =
In F(y) for any positive y.

Lemma 4:

1) For any given pp € [0,CD), the following optimization

problem with respect fo py:

M. Bl — p)E [SL (PL +m (PL +pD,X))]
pL=0

2 2
(13)
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has a unique optimal point, which is denoted as
By (pp).

2) For any pp € [0,CD), we have B (pp) € (pp,2CD —
pp) C (0,2CD). Thus, the mapping By satisfies B :
[0,CD) + (0,2CD).

3) For any pp € [0,CD), we have:

G'(Blrm) —po) + 36 (PRI o q1g

Next, we examine the best response update of the data center

as follows.

Lemma 5: For any realization of X in (0,2X), the follow-

ing statements hold.

1) For any given p. € (0,2CD), the following optimization
problem with respect fo pp:

B +
i Flgn, ~ 950 (PL m (pL D X) ,X)
po=0

2 2
(15)

has a unique optimal point, which is denoted as
Bo(pu; X).

2) For any pp € (0,2CD), we have Bp(p;X) €
[0, min{p,2CD — p_ }) C [0,CD). Thus, the mapping
Bp(+; X) satisfies Bp( X) : (0,2CD) — [0,CD).

3) For any p € (0, QCD) we have:

o If —G'(p) + nyx ) <0, then Bp(p; X) = 0.
o If —G'(pL) + 27)( (2& > 0, then Bp(p; X) €
(0, min{p,,2CD — p }) satisfies:

m+ BD(pL;X))
2
= (16)
The strict log-concavity of the (expected) utility functions of
the LSE and the data center plays crucial role in the proofs of
Lemmas 4 and 5. For example, the uniqueness of the optimal
solution to problems (13) and (15) follows directly from the
strict concavity of the log-utility functions, or equivalently the
strict monotonicity of their derivatives. Additionally, thanks
to the strict monotonicity of the derivatives of the log-utility,
we can readily analyze the signs of the derivatives of the
log-objective functions in problems (13) and (15). This leads
to the simple characterization of the optimal solutions in
Lemmas 4-(3) and 5-(3). Without the log-concavity of the
utility functions, problems (13) and (15) are still nonconvex
after taking logarithms and there may exist multiple local min-
ima so that simple characterizations of the optimal solutions
are not available.
Combining Lemmas 4 and 5, together with the initial

condition pgj) € [0,CD), we know by induction that:

1
—G'(p — Bp(p1; X)) + 57& (

P o () € 0200), vi=125,,
(18)

Computationally, owing to the monotonicity of the L.H.S.
of the optimality conditions (14) and (16) with respect to
the unknowns (B (pp) and Bp(p; X)), respectively), the best
responses can be found via a simple bisection method effi-
ciently. Therefore, the bargaining procedure presented in

Py’ = Bo (p{* 5 X) € [0,CD), Vk=2,4,6,---.
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Algorithm 2 Implementation of the Bargaining Procedure

Initialization: The same as in Algorithm 1.
while convergence is not reached do
if k is odd then
The LSE solves the following equation:

(k) (k—1)
3 1 +
Vel (pl(_k) o p([-;" 1)) 4. 5(‘?5! (pL 2pD ) =0

by using bisection method to update its bid p(l_k).

else S~
if —G' (p(L"‘”) + 3% (”2 ) < 0 then
The data center updates its bid as pgc) =0.
else

The data center solves the following equation:

(k—1) (k)
k—1 k 1 D +p
o () + e (A5 -

by using bisection method to update its bid pgﬂ.

end if
end if
k—k4+1.
end while
The arbitrator determines the success or failure of the
bargaining in a way detailed in Algorithm 1.

Algorithm 1 is amenable to easy implementation, which is
summarized in Algorithm 2.

C. Convergence Analysis

In this subsection, we analyze the convergence of the
proposed bargaining procedure under the assumption that A
is sufficiently large, which indicates that the breakdown prob-
ability of the bargaining for any fixed positive spread p. — pp
is sufficiently small. This is reasonable in practice since the
arbitrator is able to set a unit price satisfying both parties (LSE
and data center) whenever p. > pp.

We first define several key quantities as follows. Define
&oH(X) = 7(02)8;11{?6 and & £ H(2X) = 7(2i§%2;30. One
can easily check that 7% (£p(X)) = 0 and £p (X)) is indeed the
unique root of ~%, which is strictly decreasing. Further, since
¢’ is strictly decreasing over the interval (0, CD), we can
denote its unique root as § € (0,CD), ie., ¢'(§) = 0.
We note that { and £p are constants in (0, C'D) while {p(X)
is a function of the random variable X. Then, we have the
following relationship between these quantities.

Lemma 6: For any realization of X € (0,2X), we have:

= DC
o) > & > max{e, 57 |
For large enough A, we can restrict the range space of B
to a smaller set as in the following lemma.
Lemma 7: For sufficiently large A, we have,

[0,CD):

&L <Bi(pp) < gD+maX{£L,C;—D},

(19)

I}

Ypp €

(20)
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i.e., the mapping By satisfies

BL:[0,CD) — (&fn +maX{EL, %H .@

When p,_is in the range described in (20), the corresponding
best response for the data center pp must be an interior optima,
i.e., it fits the second senario of part 3 of Lemma 5, so that
the optimality condition (16) holds. This is formally shown in
the following lemma.

Lemma 8: For sufficiently large A, we have that, for
any realization of X € (0,2X) and any p. €

Bo(pi; X) € (0,min{p,2CD —p }),

(22)
1 L + Bo(p; X
~G'(p. ~ Bo(pLs X)) + 37 (pf(p) =0. (23)
From Lemmas 7 and 8 together with the initial condition
pgj Ve [0,CD), by induction, we observe that:

~ CD
pl(_k)e (gLsgD‘l'm&X {g[_:?}:l 1 Vk = 1:31 5- 1 (24)

pd) € (0,CD), Vk=2,4,6,---, (25)

as long as A is sufficiently large. Thus, Lemma 8 excludes
the possibility of a boundary best response for the data center
in the bargaining procedure and ensures that the optimality
condition (23) must hold. This will be used in later con-
vergence analysis. Next, we show that By (+) is a contraction
mapping.

Lemma 9: There exists a positive constant 8 < 1 such that,
for any pp, pp € [0,CD), we have:

[BL(pp) — BL(Pp)| < @|pp — PDI- (26)

Furthermore, we can provide an analogous but weaker result
for Bp(+; X) as follows.

Lemma 10: For sufficiently large A, we have that,
for any realization of X € (0,2X) and p.,pp €

(EL, £p + max {&, <2 }} 2

|Bo(pL; X)) — Bp(pL; X)| < |pL — B 27)

Now, we are ready to present a main result for the proposed
bargaining algorithm as follows.
Theorem 1: For sufficiently large A, there exist pf €

(&, ép + max {§, S2 }} and p}y € [0,CD) such that the
bid sequence of the LSE converges to p{" and the bid sequence
of the data center converges to py, i.e.,

- (2t+1) (2t)

=p{, and lim py~ = pp. (28)
The convergence result in Theorem 1 ensures the feasibility
of Algorithm 1: the bargaining will indeed terminate within
finite number of iterations. Further, when the bids of the LSE
and the data center both reach convergence, the final unit price
set by the arbitrator converges to p* £ 1(p{ + pp), which has
the following interesting characterization.

Theorem 2: For sufficiently large A, the final unit price
p* £ L(p{ + pp) coincides with the Nash bargaining solu-
tion (NBS) of the bargaining between the LSE and the data
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Fig. 2. Convergence of the proposed bargaining procedure. (a) One

realization when A = 1. (b) One realization when A = 10.

center, i.e.,

p'= arg;%axfE[SL(p,qmX))]So(p,q(p, X)Xy, @9)
p-

for any realization of X € (0,2X).

Remark 1: Theorem 2 manifests an inferesting relation
between the outcome of the proposed bargaining procedure
and that of the NBS. While the former is the ramification
of an iterative bargaining process, the latter is based on an
axiomatic framework (NBS is the unique solution satisfying
the four reasonable axioms postulated by Nash in [37]). It is
interesting that the bargaining solutions based on iterative
methods and axiomatic frameworks coincide in the data center
demand response problem under study. Related results have
been obtained in [33], which justifies the axiomatic NBS
as perfect equilibrium of some strategic bargaining game.
Nevertheless, the problem setup in [33] is very different from
that of the this paper, particularly due to the presence of
information asymmetry. Moreover, we note that the final unit
price clinched by the proposed bargaining is a proportionally
fair outcome for load curtailment. This is desirable since one
of the main goals of bargaining is to realize fair resource
allocation.

Both Theorems 1 and 2 presume that A is sufficiently
large. In fact, this means A needs to satisfy the following
two conditions (c.f. the proofs of Lemmas 7 and 8 in the
supplementary file):

Gr(g _%) <_%¢r(£D;—&_)’

£o+max €D
G’(§L)<min{%1%,}é)_€ (‘ED‘i‘ 2{&, 3 })}

(€Y

where G'(y) = -3 for A,y > 0. It can be shown that
limy_, 1 o G'(y) = 0 and the right hand sides of (30) and (31)
are both positive constants independent of A. So, (30) and (31)
must hold for sufficiently large A. These conditions on A
are cumbersome and are only sufficient conditions for the
convergence results in Theorems 1 and 2. Empirically, A need
not be too large at all and A = 1 is more than enough for the
convergence of the bargaining, c.f. Fig. 2-(a).

According to the arbitrator’s mechanism, when the bids of
the LSE and the data center reach convergence, the probability
of success of the bargaining is F'(p{ — pp), in which both

(30)
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the CDF F(-) and the final spread p| — pf, depends on A.
An interesting question is how the probability of success
behaves when A is large. This is answered by the following
proposition.

Proposition 1: The probability of success of the bargaining
F(p; — pp) converges to 1 as A — oc.

Proposition 1 asserts that the breakdown probability of
the bargaining can be made arbitrarily small if A is suf-
ficiently large. Nevertheless, A still needs to be finite so
that the bargaining procedure will converge. In particular,
the larger the value of A, the slower the bargaining procedure
converges, as will be confirmed by numerical experiments.
Thus, in practice, the value of A should be set to balance the
breakdown probability and the convergence speed.

The analysis in this paper mainly relies on two assumptions:
(i) the penalty/cost functions of load reduction for the LSE and
the data center take quadratic forms; and (ii) X is uniformly
distributed. We believe that the analysis can be extended to
more general bargaining settings with incomplete informa-
tion or information asymmetry. As long as the (expected)
utility functions of the bargaining parties are strictly log-
concave, the uniquess and analogous first-order characteriza-
tions of the best responses (c.f. Lemmas 4 and 5) should still
hold. Under certain technical conditions, the best responses
may still be contraction mappings and the convergence of the
bargaining procedure can still follow from the Banach fixed-
point theorem. Details of the general bargaining model are
worth studying thoroughly in future work.

To implement the bargaining procedure in Algorithm 1,
at each iteration, the LSE or the data center needs to solve
a maximization problem by using simple bisection method
(c.f. Algorithm 2). In practice, if the LSE or the data cen-
ter cannot even afford the low-complexity bisection method,
the best response updates in (8) and (9) can be replaced
with projected gradient ascent steps of the corresponding
maximization problems after taking logarithms of the objective
functions. In such a case, for odd k, the LSE updates its
bid as

pl(_k) - lp(Lk_z) +a® (G’ (p{k—z) _ pg:—l))
(k—2

+
1, (o GV
+2¢>( 5 . (2)

where 7 = max{z,0} and o*¥) > 0 is the stepsize at
iteration k. For even k, the data center updates its bid as

k2 i k—2
lpf) )+a(k)(—G’(pE "=y )

(k—1) | _(k—2) F
1 +
+ 57 (p—L e ) )] . (33)

We conjecture that, under appropriate technical conditions,
the simplified bargaining iterations in (32) and (33) still
converge and the final price clinched is still the NBS. The
essential idea of the bargaining framework is that the mutual
best responses can be gradually achieved by the gradient ascent
updates.

k
W =
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With appropriate adaptations, the proposed bargaining
framework may be adopted by other distributed energy
resources such as electric vehicles (EVs) and distributed
storage. Some important changes are discussed as follows.
For instance, in EV charging, the LSE faces many distributed
EVs (each contributing a small load) with heterogeneous load
reduction/shifting costs and requirements, instead of one single
data center with large load in the setup of this paper. To bargain
with the heterogeneous EVs, the LSE needs to aggregate
the heterogeneous bids submitted by the EVs and respond
optimally. The bargaining procedure should be decentralized
so that an EV does not need to know other EVs’ private
information, e.g., charging requirements. Additionally, since
the EV charging often lasts for a relatively long period,
the energy deficit or surplus at the LSE may vary and may not
be predicted accurately by the LSE. This uncertainty of energy
conditions further complicates the bargaining design. In the
literature, decentralized EV charging has been studied in the
seminal work [38], where the EVs fully collaborate and update
their charging profiles according to an algorithm designed
by the utility. EVs’ economic incentives have also been
considered under a game-theoretic framework. A contract-
theoretic approach is proposed in [39], where each EV selects
a payment-charging rate combination from a list of contracts
designed by the utility. Moreover, an auction method is devel-
oped in [40], where the EVs submit bids to compete for the
energy resources. Neither approach allows the EVs to directly
negotiate prices with the LSE, which is the most prominent
feature of the bargaining procedure in this paper. Overall,
the bargaining approach can endow the EVs with greater
market leverage, in concert with the increasing penetration of
EVs in power grids.

D. Numerical Evaluation

In this subsection, extensive numerical experiments
are implemented to validate the proposed bargaining
approach. Specifically, numerical results corroborating the
theoretical findings (Theorems 1 and 2 and Proposition 1) are
presented. Furthermore, we demonstrate the impact of various
system parameters on the performance of the bargaining
procedure to shed engineering insights on the design of data
center demand response programs.

Consider an LSE and a data center bargaining for load
curtailment as specified in Algorithm 1. We set the model
parameters as C = 1, D = 10, X = 2. The initial bid pg]) of
the data center is randomly generated within [0, CD). First,
we study the convergence behaviors of the bargaining in Fig. 2.
We consider two values of the distribution parameter A,
namely A = 1 in Fig. 2-(a) and A = 10 in Fig. 2-(b). For each
value of ), the evolution of the bids p, , pp for one realization
of X is shown. We observe that, for both scenarios of A,
the bids pi,pp converge to some p[,pp, respectively, after
some iterations of bargaining, as guaranteed in Theorem 1.
We further plot the NBS, i.e., the optimal point of problem (7),
in Fig. 2. We remark that, as promised by Theorem 2,
the final unit price p* = 3 (p{ + pp) coincides with the NBS.
Thus, the two main theoretical results, i.e., Theorems 1 and 2,
are verified numerically. Moreover, comparing Fig. 2-(a) with
Fig. 2-(b), we observe that the bargaining procedure converges
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slower for larger values of A. Therefore, the choice of A should
balance the tradeoff between the convergence speed of the
bargaining and the breakdown probability (c.f. Proposition 1).

Next, we investigate the impact of the realization of the
random variable X on the steady-state (i.e., after convergence
of the bids) performance of the bargaining in Fig. 3. We set
A = 10 and let the realization of X vary between 0 and
2X = 4. We observe that the steady-state bids remain the same
for small values of X and then decreases with X. This can
be explained as follows. Note that, in the proof of Theorem 2,
the steady-state bids p; and pf, depend on X only through
the term ~/% (p*). Recall the expression of ~% () in (10).
For a given p, if X is small, % (p) = f—,, which does not
depend on X. In this regime, p/ and pf, does not depend
on X. For this regime to hold, according to (10), we need
p* < 1i&x. Where p* = 5.2075 since pf = 5.406 and
pp = 5.009 as shown in Fig. 3. Equivalently, the condition
for X is X < 0.9203, which matches the turning point of
the bids in Fig. 3. After this turning point, as X increases
further, the cost of the data center decreases (recall that X is
the reciprocal cost coefficient of the data center). Therefore,
the data center needs less compensation for load curtailment
and the price (thus bids) decreases. Furthermore, from Fig. 3,
we see that the realized load reduction increases with X . This
is reasonable because, as the cost for load reduction decreases,
the data center is willing to curtail more loads. In addition,
from Fig. 3, we observe that the utilities of both the LSE and
the data center increases with X . This is also unsurprising
since the decrease of the cost of the data center will benefit the
data center directly and the LSE indirectly (through increasing
load reduction and decreasing prices).

We further examine the impact of the distribution
parameter A on the expected (expectation over X) steady-state
performance of the bargaining solution. All results are the
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average of 10000 Monte Carlo trials. In Fig. 4-(a), we see that
the probability of success of the bargaining converges to 1 as A
increases, corroborating the theoretical result in Proposition 1.
In Fig. 4-(b), we observe that, as A increases, the steady-state
bid of the LSE p{ decreases while the steady-state bid of the
data center pfy increases. In other words, the gap between p;
and pf, decreases while the average of them, i.e., the finalized
unit price p*, remains unchanged. This can be explained
as follows. We first note that, according to Theorem 2,
p* is indeed the NBS, which does not depend on A. In addition,
when A is small, to obtain a relatively large probability of
success F(p{ — pp), the spread p{ — pp needs to be large.
As A increases, a small spread is enough to guarantee a large
probability of success. Thus p{ decreases and pf, increases
while their average p* remains the same. From Fig. 4-(b),
we further see that the load reduction remains the same as
A increases. This is because the load reduction depends only
on the final price p*, which does not depend on A. Moreover,
as A increases, the probability of success of the bargaining
increases and thus so do the expected utilities of the LSE and
the data center, which gradually saturate as the probability of
success is approaching 1.

Next, we study the impact of the desired load curtailment by
the LSE D on the steady-state performance of the bargaining
solution in Fig. 5. As D increases, the LSE desires more
load reduction. Hence, the realized load reduction increases,
as can be seen in Fig. 5. Additionally, for the data center
to supply more load reduction, the unit price (thus the bids
p and pfy) must also increase, as observed in Fig. 5. Moreover,
the increase in unit price facilitates the increase of the utility
of the data center. Besides, according to (1), increasing D can
also potentially boost the utility of the LSE as long as the unit
price is not too high. The increase of the utilities of the LSE
and the data center are confirmed in Fig. 5.

In addition, we investigate the impact of the penalty coeffi-
cient of the LSE C' on the steady-state performance in Fig. 6.
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According to (1), as C increases, the utility of the LSE
increases, as shown in Fig. 6. Thus, the LSE is willing to
compensate the data center with higher unit prices so that the
bids p{ and pfj increase, as can be seen in Fig. 6. The increase
of unit price further boosts the utility of the data center and
elicits more load reduction supply from it, as shown in Fig. 6.

Finally, we examine the impact of the expected reciprocal
cost coefficient X on the steady-state performance in Fig. 7.
As X increases, the cost of the data center decreases so that
it is willing to shed more loads at a lower unit price (thus
lower p{', pp), as can be observed in Fig. 7. With lower cost,
the utility of the data center also increases. The lower unit
price also enhances the utility of the LSE, as can be seen
in Fig. 7.

IV. COMPARISON WITH STACKELBERG GAME AND
SOCIAL WELFARE MAXIMIZATION SCHEMES
In this section, we discuss two other popular schemes,
namely Stackelberg game and social welfare maximization
(SWM), for load reduction in data center demand response.
Further, these two schemes are compared with the proposed
bargaining approach numerically.

A. Stackelberg Game Scheme

In what follows, we consider a model where the LSE
proposes a one-shot (i.e., no opportunity to revise) tentative
unit price p to the data center. After observing p;, the data
center also proposes a tentative unit price pp in response.
Finally, an independent arbitrator sets a finalized unit price to
be p = %(pL + pp) and declares success of the load reduction
if and only if the spread p — pp is greater than e, which is an
exponentially distributed random number (with parameter A)
generated after pp and pp are determined. This two-stage
scheme (one for the LSE and one for the data center) is indeed
a Stackelberg game formulation [41] with the LSE being the
leader and the data center being the follower.

The main difference between the proposed iterative bar-
gaining procedure and the Stackelberg game scheme is that
the latter scheme is bound to terminate after two iterations
(one for the LSE to propose p; and the other for the data
center to propose pp) and there is no opportunity to revise
the proposed tentative prices. This renders Stackelberg game
more efficient in terms of execution time than the bargaining
procedure, which has to iterate until convergence. This execu-
tion efficiency of Stackelberg game comes at the expense of
fairness loss due to the leader’s (LSE’s in this case) advantage,
which will be confirmed numerically later (c.f. Fig. 8-(d)(f)).
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Now, we detail the implementation of the Stackelberg game
scheme in the following. We first note that the LSE will not
propose a pi_ greater than 2C'D, otherwise the finalized price p
will be greater than C'D for any pp > 0, which implies that
the realized load reduction q(p, X') (and thus the utility of the
LSE) will be identically zero. Given p| € (0,2CD), the data
center (the follower in the Stackelberg game), being aware of
its private information X, will choose pp to be:

Bo(p; X)
—argmax Fon — )50 (25,0 (252, X) X))
pp=20

which is the same best response used in the bargaining
procedure and thus can be solved in the same way as in
Algorithm 2. The LSE (the leader), anticipating the response
of the data center, will choose a p; to maximize its expected
utility (since it does not know X)), i.e., p will be chosen as
the optimal solution of the following probelm:

pL + Bp(p; X)
2 ?

X))] (34)

We observe that (34) is different from the LSE’s update (8)
in the bargaining procedure because the LSE knows that the
Stackelberg game is bound to terminate after two iterations
and thus takes the best response of the data center into
consideration. Different from (8), the objective function in (34)
is no longer log-concave in p; due to the presence of the data
center’s response function Bp(py;X). In fact, it is hard to
even evaluate the expectation in the objective function of (34)
in closed-form for a given p, not to mention solving (34)
analytically. Therefore, to implement the Stackelberg game
scheme, we will use the average of Monte Carlo trials to
approximate the expectation in (34) and conduct exhaustive

Max.
0<p <2CD

E(F(p — BD(pL;X))SL(

(PL + Bp(pL; X)
9 2

search to solve (34). The exhaustive search method is fea-
sible in this case since the optimization is over one single
variable p| located in the bounded interval (0,2CD).

B. Social Welfare Maximization Scheme

Next, we presume the existence of a SWM designer whose
decision the LSE and the data center must obey. In such a
case, to reduce loads, the designer sets a unit price p, which
the LSE and the data center have to accept. What the LSE
and the data center can decide is only the demand response
d(p) and s(p, X') given the unit price p. The designer, being
unaware of the data center’s on-site renewable generation X,
aims to maximize the expected social welfare, i.e., it chooses
a unit price p by solving the following problem:

Max. E[SL(p,q(p, X)) + E[Sp(p,a(p, X), X)l, (35

in which E[S|(p,q(p,X))] is evaluated in Lemma 2 and
E[Sp(p,q(p, X ), X)] can be evaluated as follows:

E[Sn(p,q(P,X) X)]

2X lf'[}<1c;v<1_|_20X1
_3(p- D
| o) - (),
cD
if i <p<Gh,
0, if p > CD.

We remark that the social welfare maximization (SWM)
problem in (35) is different from the one considered in [12].
In [12], given an announced price, the realized load reduction
depends only on the data centers’ supply functions. The LSE
does not have a demand function to affect the realized load
curtailment. In contrast, in the SWM (35) of this paper,
the LSE and the data center possess demand function and
supply function, respectively, and the minimum of the two,
ie., q(p,X) min{s(p, X ),d(p)}, is the finalized load
curtailment. Furthermore, since problem (35) is non-convex,
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we will use exhaustive search to solve it. We note that when
p = CD, both terms in the objective function of (35), i.e., both
expected utilities of the LSE and the data center, are zero. So,
we can focus on the bounded interval p € [0, C'D] only, which
makes the exhaustive search method feasible.

C. Performance Comparison via Numerical Study

In this subsection, extensive numerical comparisons
between different data center demand response schemes are
carried out. In Fig. 8, for different realization of X, we com-
pare various expected steady-state performance of the pro-
posed bargaining approach, the Stackelberg game scheme, and
the social welfare maximization (SWM) scheme. We change D
to be 0.5 to see the impact of X more conspicuously while
other parameters are the same as in Subsection III-D. We first
compare the (steady-state) bids in the bargaining with the
tentative prices in the Stackelberg game in Fig. 8-(a). As X
increases, the bids of the bargaining first remain unaltered and
then decreases, as have been observed and explained in Fig. 3.
The tentative price of the LSE in the Stackelberg game does
not depend on X since the LSE has no knowledge of it. The
tentative price of the data center in the Stackelberg game first
remains unchanged and then decreases due to similar reasons
for the bids of the bargaining. We observe that the tentative
prices of the Stackelberg game are lower than the bids of the
bargaining. Thus, the finalized unit prices of the Stackelberg
game are also lower than those of the bargaining. This high-
lights a leader’s advantage of the Stackelberg game [41]: low
prices benefit the LSE, i.e., the leader of the Stackelberg game.
This is further confirmed in Fig. 8-(b), in which we compare
the unit prices of the bargaining, the Stackelberg game, and
the SWM. The Stackelberg game yields the lowest unit price
and thus benefits the LSE the most. The unit price of the SWM
does not depend on X because the social designer does not
know X. Further, we note that the unit prices of the bargaining
are larger than that of the SWM for most realizations of X,
especially when X is small. The reason is as follows. When the
realization of X is small, the cost of the data center is high
so that it asks for higher price of compensation during the
iterative bargaining procedure. In contrast, in SWM scheme,
the designer is unaware that the realization of the data center’s
cost turns out to be high. So, the designer still prescribes a
relatively low unit price.

Additionally, we compare the realized load reduction of
the three schemes in Fig. 8-(c). When X is small, the load
reduction realized by the bargaining is the highest among
the three schemes. This is explained as follows. When X
is small, through iterative bargaining, the data center can
ask for high unit price to compensate its high cost so that
the unit price of bargaining is the highest among the three
schemes, as have been observed in Fig. 8-(b). The high unit
price in turn elicits relatively high load reduction supply from
the data center even when its cost is also high. In contrast,
in the Stackelberg game and the SWM, the decision makers
of the schemes are not well aware that X is small (so that
the cost of data center is high). In fact, in the Stackelberg
game, the LSE does not know X when it is making a one-
shot decision on its tentative price (unlike bargaining, there is
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no iterative negotiation or information feedback to inform the
LSE about X gradually), while in the SWM, the sole decision
maker, i.e., the social designer, is completely unaware of the
realization of X. As such, in Stackelberg game and SWM,
the unit prices are relatively low even when the cost of data
center is high. This leads to low load reduction supply from
the data center.

Furthermore, we compare the utilities of the LSE and the
data center in the three schemes in 8-(d). All utilities increase
with X as larger X implies low cost of the data center, which
benefit the data center directly and the LSE indirectly through
low prices. Besides, we observe that the gap between the
utilities of the LSE and the data center is the highest for
Stackelberg game, which verifies the leader’s advantage again.
In contrast, this utility gap of the bargaining is the smallest
since it realizes the NBS, a proportionally fair outcome. This
highlights the fairness of the bargaining approach, which is
reached through iterative negotiation between the LSE and the
data center.

Moreover, in Fig. 8-(e), we compare the social welfare,
i.e., the sum of the utilities of the LSE and the data center,
of the three schemes. Somewhat surprisingly, the bargaining
approach, instead of the SWM, yields the greatest social
welfare when X is small. This can be explained as follows.
In bargaining, though the direct goal is not to maximize the
social welfare, one of the decision makers, the data center,
knows the value of X and informs the LSE about X gradually
through iterative negotiation. This is an information advantage
over the SWM scheme, in which the sole decision maker,
i.e., the social designer, does not know X. This advantage
is especially significant when the realization of X is small.
Recall that the load reduction cost of the data center is
proportional to 1/X (c.f. (4)), which decreases dramatically
when X is small. As such, when X is small, the realization
of X is very valuable information in the bargaining since the
realized utility of the data center is far from its mean value for
random X. This renders the bargaining approach superior to
the SWM scheme in terms of social welfare. To further confirm
the social welfare benefits of the bau’gaining,2 we change the
load reduction cost of the data center to be 92—Y, wherer Y is
uniformly distributed over [y,y] with 7 > y > 0. In other
words, the load reduction cost of the data center is linear
in the random variable Y (as oppposed to being inversely
proportional to X in the original model), whose realization is
privately known to the data center. In such a case, the utility
function of the data center becomes

2
So(p 0, Y) =pq— -, (36)
and the supply function of the data center becomes
S(p,Y) = argmaxSp(p,q,Y) = 3. (37)
q20 Y

We note that the log-concavity of the (expected) utility func-
tions of the LSE and the data center no longer holds for this
model. Thus, problem (7) becomes nonconvex after taking the
logarithm and the NBS can only be computed numerically
with exhaustive search. The social welfare of the bargaining,
Stackelberg game, and SWM schemes is shown in Fig. 9
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fair outcome. In addition, the breakdown probability of the
bargaining can be made arbitrarily small by parameter tuning.
Two other demand response schemes, namely SWM and
Stackelberg game schemes, have also been considered for
comparison purposes. Extensive numerical results have been
presented to corroborate the effectiveness of the proposed
bargaining approach. The impact of system parameters and
comparison with other demand response schemes have been
studied to provide insight into the design of data center
demand response.

Assuming linear pricing for the demand response products,
this paper has focused on a bargaining solution that can
efficiently utilize renewable resources and distributed demand
response products in concert with traditional grid resources.
There are more sophisticated pricing schemes, including tiered
piecewise linear pricing and nonlinear pricing. It is of great
interest to study data center demand response under these

Criteria Bargaining | Stackelberg game | SWM

Unit price High Low Medium

Load reduction for i 0
small X High Low Medium
Utility of the LSE Low High Medium
Utility of the data center High Low Medium

Social welfare for : :
small X High Low Medium
Utility product High Low Medium

for different values of Y, where y = 0.25 and 7 = 10.
We observe that, the bargaining aﬁproach still outperforms
the SWM and Stackelberg game schemes when Y is small.
The reason is similar to that of the original model. When Y
is small, the supply function of the data center % decreases
dramatically with Y and deviates significantly from its mean
value for random Y. In such a case, the information about Y
is very valuable, which is fully utilized by the bargaining
approach.

Finally, we compare the product of the utilities of the LSE
and the data center in Fig. 8-(f). The utility product of the
bargaining mechanism is the highest, especially when X is
small. This again highlights the proportional fairness of the
bargaining approach established theoretically in Theorem 2.
Besides, unsurprisingly, the Stackelberg game yields the low-
est utility product because it is the least fair scheme (the LSE
has a remarkable leader’s advantage, c.f. Fig. 8-(d)).

The numerical comparison between the proposed bargain-
ing, the Stackelberg game, and the SWM schemes is summa-
rized in Table II. From the table, it is clear that the bargaining
approach favors the data center the most, while the Stackelberg
game favors LSE the most. The effect of the SWM scheme
is between that of bargaining and the Stackelberg game.
The performance of the bargaining approach manifests the
significant market power of the price-negotiating data center.

V. CONCLUSION

In this paper, we have proposed an iterative bargaining
algorithm for pricing data center demand response with on-
site renewable generation, where the data center has significant
market power in affecting the price. Computationally efficient
methods of implementing the best response updates in the
bargaining have been presented by making use of the log-
concavity of the (expected) utility functions. Furthermore, we
have shown analytically that the bid sequences of the LSE
and the data center are convergent and the final price clinched
by the bargaining coincides with the NBS, a proportionally

pricing mechanisms in the future.
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