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A Virtual-Queue-Based Algorithm for Constrained
Online Convex Optimization With Applications to
Data Center Resource Allocation

Xuanyu Cao

Abstract—In this paper, online convex optimization (OCO) prob-
lems with time-varying objective and constraint functions are stud-
ied from the perspective of an agent who takes actions in real time.
Information about the current objective and constraint functions
is revealed only after the corresponding action is already chosen.
Inspired by a fast converging algorithm for time-invariant opti-
mization in the very recent work [1], we develop a novel online
algorithm based on virtual queues for constrained OCO. Optimal
points of the dynamic optimization problems with full knowledge
of the current objective and constraint functions are used as a
dynamic benchmark sequence. Upper bounds on the regrets with
respect to the dynamic benchmark and the constraint violations
are derived for the presented algorithm in terms of the temporal
variations of the underlying dynamic optimization problems. It is
observed that the proposed algorithm possesses sublinear regret
and sublinear constraint violations, as long as the temporal varia-
tions of the optimization problems are sublinear, i.e., the objective
and constraint functions do not vary too drastically across time.
The performance bounds of the proposed algorithm are superior
to those of the state-of-the-art OCO method in most scenarios.
Besides, different from the saddle point methods widely used in
constrained OCO, the stepsize of the proposed algorithm does not
rely on the total time horizon, which may be unknown in practice.
Finally, the algorithm is applied to a dynamic resource allocation
problem in data center networks. Numerical experiments are con-
ducted to corroborate the merit of the developed algorithm and its
advantage over the state-of-the-art.

Index Terms—Online convex optimization, constrained opti-
mization, sequential decision making, virtual queues, dynamic re-
source allocation, data centers.

I. INTRODUCTION

N THE past decade, online convex optimization (OCO)
has emerged as a promising paradigm for tackling many
signal processing and resource allocation issues involving
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time-variability and uncertainty [2], [3]. Unlike traditional time-
invariant optimization [4], [5], OCO can be viewed as a sequen-
tial decision making procedure of an agent, who decides an
action at each time. The time-varying objective function and/or
constraint functions are unknown to the agent a priori. Further,
feedback information of the objective and constraint functions
is revealed to the agent only after the action of the agent is
already determined. Because of this lack of just-in-time infor-
mation, it is impossible for OCO algorithms to find the exact
optimal point in each time. Instead, OCO seeks to minimize the
regret, i.e., the performance gap between the actions induced by
the algorithm and some benchmark actions (e.g., the offline op-
tima in hindsight). Clearly, a sublinear regret is desirable since
it implies that the time average performance of the algorithm
is no worse than that of the benchmark asymptotically. Such
an OCO framework arises in many applications in which the
environment is dynamic and uncertain, e.g., smart grids with in-
termittent supply of renewable energy [6], [7] and data centers
with dynamic user demands [8]-[10].

Owing to its broad applicability, various forms of OCO prob-
lems have been investigated extensively in the recent decade. In
the seminal work [11], Zinkevich initiated the study of uncon-
strained OCO and proposed an online gradient descent algorithm

with sublinear regret of! O (\/T) (T is the total time horizon)

compared to the static offline optima. The regret was further
reduced to O(log T') by several online algorithms presented in
[12]. In [11], regret bound with respect to dynamic benchmark
was also presented, in which the “path length” (or temporal vari-
ation) of the benchmark sequence was bounded. Since dynamic
benchmarks were more meaningful in many applications, they
were adopted in [13] and [14], in which algorithms with sublin-
ear regrets compared to dynamic benchmarks were developed.
Moreover, Flaxman et al. examined OCO with bandit feedback,
in which only the values of the objective functions at the cho-
sen actions (instead of the entire functions) were revealed [15].

A modified online gradient method with O (T %) regret was
proposed in [15] based on single-point estimates of gradients
since only one-point information about the objective function
is available in the bandit setting. Later, Agarwal et al. proposed

'We follow the standard definition of O(-). That is, for positive sequences
ap and by, a, = O(by,) if there is a positive constant ¢ such that a,, < cb,
for sufficiently large n.
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to use multi-point bandit feedback to improve the regret perfor-
mance in [16]. In addition, Chen et al. took action switching
costs and noisy predictions of the dynamic objective functions
into consideration in [17], [18].

The aforementioned papers focused on unconstrained OCO,
whereas many practical OCO problems involved constraints,
which might be time-varying as well. This discrepancy
motivated several recent works on constrained OCO. In [19],
constrained OCO with time-invariant constraints and static
benchmark was studied by Mahdavi et al. and several online
variants of saddle point method were proposed for different sce-
narios of feedback information. Extensions to continuous-time
version of constrained OCO were investigated in [20], where
a saddle point type of controller was designed. Furthermore,
OCO with affine equality constraints was examined in [21]
by using an online version of the alternating direction method
of multipliers (ADMM) [22] while distributed OCO over
networks with consensus or proximity constraints were studied
in [23] and [24], respectively, by invoking online versions of
saddle point methods. In addition, the special case of online
linear optimization problem was considered in [25] for different
feedback information. The constraints of the OCO in all these
works are time-invariant and known in advance. Thus, no
feedback information associated with constraints is necessary.
Recently, constrained OCO with time-varying constraints was
studied in [26], where a dynamic benchmark was used to define
the regret. Specifically, in [26], the authors proposed a modified
online saddle point (MOSP) method and gave upper bounds
for its regret and constraint violations in terms of the temporal
variations of the dynamic optimization problems. However, the
upper bounds for regret and constraint violations of MOSP were

always no less than O T%> even when the temporal variations

of the problem were very small. Besides, in order to achieve
sublinear performance bounds, the stepsize parameters of
MOSP should depend on the total time horizon 7', which might
be unknown in practice, i.e., the online optimization/learning
procedure might stop at some unknown time. Even if the total
time horizon 7" was known in advance, the performance bounds
of MOSP only held for the particular time 7" and there was no
theoretical guarantee for MOSP before time 7" when the online
optimization procedure was still running. In fact, this reliance of
stepsizes on total time horizon was common in the various ver-
sions of saddle point methods widely used for constrained OCO
[19], [23], [24], [26]. Additionally, Neely and Yu developed
a virtual-queue based online algorithm for constrained OCO
with time-varying constraints in [27] recently. There, static
offline optimum is used to define the regret, which may not be
a reasonable benchmark if the underlying system is inherently
time-varying and static optimum is not very meaningful.

In this paper, instead of using saddle point method and its
variants, we develop an online version of the virtual queue al-
gorithm presented in [1], which exhibits faster convergence rate
than classical constrained optimization algorithms (e.g., dual
gradient method) for time-invariant optimization. The stepsize
parameter of the advocated algorithm does not rely on the en-
tire time horizon and thus the online optimization procedure

can terminate at any arbitrary (possibly unknown) time. Upper
bounds on the regret and constraint violations of the proposed
algorithm are established in terms of the temporal variations of
the dynamic optimization problems. The algorithm possesses
sublinear regret and constraint violations provided that the tem-
poral variations of the dynamic problems are sublinear, i.e., the
objective and constraint functions do not vary too drastically
across time. The regret and constraint violation bounds of the
developed algorithm are superior to those of MOSP in [26]
in most scenarios, especially when the temporal variations of
the dynamic problems are not overly drastic. Furthermore, we
note that the performance guarantees of the proposed algorithm
hold for arbitrary time instants, including those before the ter-
mination of the online optimization procedure. In contrast, the
performance guarantees for saddle point methods, e.g., MOSP,
generally only hold at the moment when the online procedure
is ended [19], [23], [24], [26]. Finally, we apply the presented
algorithm to a dynamic resource allocation problem in data
center networks. In such a case, the algorithm only involves
simple closed-form computation and affords distributed paral-
lel implementation. Numerical experiments are carried out to
demonstrate the merit of the algorithm and its performance gain
relative to the state-of-the-art constrained OCO algorithms such
as MOSP.

The organization of the rest of this paper is as follows. In
Section II, we formulate the constrained OCO problem and
develop an algorithm based on virtual queues. Upper bounds on
the regret and constraint violations of the algorithm are derived
in Section III. A case study of dynamic resource allocation in
data centers is presented Section I'V. In Section V, we conclude
this work.

II. PROBLEM FORMULATION AND VIRTUAL-QUEUE-BASED
ONLINE ALGORITHM

In this section, we first formulate the constrained OCO
problem with time-varying objective and constraint functions.
Regrets with respect to a dynamic benchmark and constraint
violations are defined as two performance criteria for online
algorithms of the OCO. Then, a novel algorithm based on
virtual queues is developed and its connections to existing
optimization methods are discussed.

A. Problem Formulation

The classical unconstrained OCO problem can be described
as the following iterative procedure between an agent and the
nature [11]. Assume that time is discretized. At each time ¢, the
agent selects an action ; € R” from an actionset X C R". Af-
ter the action x; is chosen, the nature announces a loss function
fi : R™ — R to the agent, who experiences a loss of f;(x;).
The goal of the agent is to minimize this loss. The action set X
is known in adavance to the agent before the OCO procedure
starts and remains unchanged as the procedure progresses. For
instance, in adaptive signal processing [28], x; may be the esti-
mate of the unknown parameters at time ¢; f; (-) may correspond
to some data fitting errors, e.g., the total or discounted squared
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errors, at time ¢; and X may be the set of possible values of
the unknown parameters. As new data arrive sequentially, the
fitting error function f; (-) varies across time, leading to an OCO
formulation.

This classical unconstrained OCO formulation, though be-
ing useful in many situations, cannot deal with problems with
constraints [19], especially time-varying constraints [20], [26],
which arise in many practical applications. For instance, in smart
grids, with the high penetration of renewables, power supply can
be uncertain and intermittent. The controller of the power grid
needs to schedule the time-varying random power supply in
a real time manner, which can be posed as online optimiza-
tion problems with time-varying resource constraints [6], [7]. In
data centers, due to the uncertain dynamic demands of users, the
operators also face with online optimization with time-varying
constraints. These applications motivate us to study constrained
OCO with time-varying constraints in this paper. Specifically,
at each time t, after an action x; € X is chosen, the nature will
reveal not only a loss function f;(-) but also a vector-valued
constraint function g, : R” — R to the agent. The agent aims
at minimizing the loss f;(x;) while satisfying the time-varying
constraints g, (x;) < 0 (for vectors a,b € R!, a < b means
a; < b;, Vi), i.e., it wants to solve the following dynamic opti-
mization problem:

x; € arg rmnei;gl{ft(w)lgt(w) = 0}. 1)

In adaptive signal processing, the constraint function g, () can
embody the knowledge of the unknown parameters at time ¢.
It varies across time as the knowledge is updated when new
data or measurements arrive sequentially. Nevertheless, solving
problem (1) directly is impossible in the online setting here as the
loss function f; (+) and constraint function g, (-) are revealed only
after the agent has already chosen the action ;. In particular,
since g,(-) is unknown a priori, the constraint g, (x;) < 0 is
hard to be satisfied for each time ¢. Instead, the agent tries to
satisfy the constraints in the long term. Specifically, the agent
tries to enforce the long-term constraint ZtT;Ol g,(x;) < 0over
a period of T'. In fact, this type of long-term constraint emerges
naturally in many applications. For example, in a smart grid
with renewable energy sources, the grid controller wants to
balance the power demand by the the renewable energy supply.
To combat the uncertainty and intermittence of renewables, the
controller often reserves some traditional energy (e.g., coal and
gas) to balance the possible temporary deficit of power supply
from the renewable energy sources. When the renewable energy
has surplus, the controller uses it to compensate the consumption
of traditional sources. As long as the renewable energy supply
and the power demand are balanced in the long run, i.e., the
controller does not need to infuse more and more traditional
energy into the grid in the long term, the controller is regarded
as successful in operating a smart grid powered by renewable
energy.

Therefore, the goal of the agent is to minimize the to-
tal loss Zf;ol fi(x;) subject to the long-term constraint
Sy g,(m:) < 0, which can be casted into the following

optimization problem:

T-1

t=0

T-1
subject to Z g:(x:) <0. 2)

t=0
Solving problem (2) exactly is still impossible in the online
setting here, because the information about the loss functions
and constraint functions are unknown in advance. Instead, our
goal is to obtain a total loss 3"/ f+(x;) that is not too large
compared to some benchmark, and meanwhile, to ensure that
Zf;()l g, (x;) is “not too positive”, i.e., the long-term constraint
is not violated too much. Here, different from the static bench-
mark used in [11], [19], [20], we choose {x; };°, as a dynamic
benchmark sequence. We note that dynamic benchmark is more
meaningful than static benchmark when the underlying optima
of the system is inherently changing, e.g., tracking a moving tar-
get. The first performance criterion is the regret of the objective

function with respect to the dynamic benchmark as follows:

T-1
Reg(T) = Y _ [filz:) — fi(x})]. 3)
t=0

The second performance metric is the constraint violations:

T-1
Viog(T) := th,k(fﬂt)» k=1,...,m, 4)
t=0
where g, 1 (+) is the k-th component of vector-valued constraint
function g,(-), i.e., g,(x) = [gi1(x), ..., gi.m(x)]". Ideally,
the regret and the constraint violations should be sublinear
with respect to 7T, i.e.,” Reg(T') < o(T') and Vio (T) < o(T),
Vk =1,...,m.Hence, as T goes to infinity, RegTﬂ <o(l)—0
and ‘h"}ﬂ < 0(1) — 0. This means that, as the time length
T increases to infinity, the time-average regret and the time-
average constraint violations are non-positive so that the per-
formance of the sequence {x;} is no worse than that of the
benchmark sequence {x; } asymptotically.

B. Virtual-Queue-Based Algorithm

Before formally presenting the proposed algorithm, we first
make several technical assumptions, which are useful in later
analysis.

Assumption I1: Foranyt>0and k=1,...,m, f; and g ;.
are convex continuous functions.

Assumption 2: The action set X is closed and convex.

Assumption 3: There exists some 3 > 0 such that for every
t=0,1,..., g, is Lipschitz continuous with modulous £, i.e.,
lg,(@) — 9,2 < Bla — yllo. for any @, .

Assumption 4: There exists some R > Osuchthat ||z|s < R
forany = € X.

Assumption 5: There exists some F' > 0 such that | f;,(x)| <
Fforanyt > 0,x € X.

2We follow the standard definition of o(-). For positive sequences a,, and b,, ,
a, = o(by, ) means lim,, _« % =0.
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Algorithm 1: An Online Algorithm Based on Virtue
Queues.
Inputs:
Cost function and constraint function sequences:
{fi.9:3%0
Outputs:
Action sequence: {x; }72
1: Initialize xy € X, Qy =0,g9_,(-) =0.
2: fort=0,1,2,...do
3:  Update the action:

@1 = argmin { (@) +(Q, + 9,1 (@) g, (x)

+allz — @3 }. )
4:  Update the virtual queues: fork =1,...,m,

Qi1 =max{—gi r(®i11), Qi + grx(Tip1)}. (6)
5: end for

Assumption 6: There exists some G >0 such that
llg:(x)]]2 < Gforanyt > 0,z € X.

We note that the aforementioned assumptions are all standard
in the literature of OCO [2], [3]. Specifically, Assumptions 1, 2,
3 are standard convexity and Lipschitz continutiy assumptions
widely used in the analysis of primal-dual algorithms such as
saddle point methods [19], [24] and ADMM [5], [29], [30].
Assumptions 4, 5, 6 bound the impact of individual actions and
function outputs so that one single term at one time instant is
not disastrous for the regret and constraint violations.

Now, we propose an online optimization algorithm based on
virtual queues as shown in Algorithm 1, in which o > 0 is an
algorithm parameter and satisfies the following assumption.

Assumption 7: The algorithm parameter « and Lipschitz
modulus 3 satisfy o > 2.

Assumption 7 requires that the algorithm stepsize parame-
ter « is large enough, i.e., the actions evolve slowly enough so
that there is no abrupt change. We note that Algorithm 1 is an
online version of the optimization algorithm in [1] when the
objective functions and constraint functions are time-varying
and unknown a priori. This extension to online setting neces-
sitates judicious choice of the time indicies of functions in the
algorithm. In particular, the -update in (5) makes use of both
functions g, and g,_, instead of only g,. This subtle difference
is important for later performance analysis.

Besides the action sequence {«; }, Algorithm I also maintains
and updates a sequence of auxiliary variables {Q; }, which are
called virtual queues. Actually, in (6), if the first term in the
maximization is replaced by 0, the update of @, is tantamount
to the standard queue updates with increments g, (;+1). Thus,
the virtual queues {Q, } characterize the cumulative constraint
violations and bounds of the queue backlogs can be readily
translated to bounds of constraint violations. In adaptive signal
processing, (5) corresponds to the updates of the estimates of the
unknown parameters and (6) corresponds to the updates of the
auxiliary variables. Together, as data arrive sequentially, these

two iterative equations enable real-time tracking of the possibly
time-varying unknown parameters.

Algorithm 1 has close connection with the saddle point type
of methods widely used in the literature of constrained OCO
[19], [20], [24], [26], if {x:} is viewed as primal variables
and {Q, } is regarded as dual variables (Lagrange multipliers).
The main difference between Algorithm 1 and the saddle point
methods is on the updates of dual variables and the way of
incorporating constraint functions in the (modified) Lagrangian.
These differences render Algorithm 1 some advantages over
saddle point methods in terms of performance guarantees, which
will be elaborated in Section III in more detail. Further, we
note that an online algorithm for constrained OCO has been
proposed in [27] recently, which is also based on virtual queues.
Nevertheless, the specific updates of the algorithm in [27] are
very different from those in Algorithm 1. Besides, a static offline
optimum is used to define the regret in [27], in contrast to
the more practically meaningful dynamic benchmark sequence
{x;} adopted in this paper.

It has been shown in [1] that a static form of Algorithm 1
converges to the optimal point with a rate of O (%) when the
objective and constraint functions are time-invariant. A main
goal of the current paper is to examine the impact of time-
varying objective and constraint functions, which are unknown
until the corresponding actions have been chosen. Specifically,
our goal is to ascertain (i) the impact of temporal variations of
the dynamic optimization problems on the performance guar-
antees of the regret and constraint violations of Algorithm 1;
(i1) under what conditions can we guarantee sublinear regret
and constraint violations for Algorithm 1. Intuitively, the per-
formance of Algorithm 1 should depend on how drastically { f; }
and {g, } vary across time. In Section III, we quantify this de-
pendence by deriving explicit upper bounds on the regret and
constraint violations in terms of temporal variations of { f; } and
{g,}. Finally, we remark that Algorithm 1 can be implemented
(and may work well) even if all of Assumptions 1-7 do not hold.
These assumptions are made to facilitate performance analysis.
We may not guarantee “good” performance of Algorithm 1 the-
oretically without these assumptions, which are all standard in
the performance analysis of OCO algorithms in the literature.

III. PERFORMANCE ANALYSIS

In this section, under Assumptions 1-7, we analyze the perfor-
mance of Algorithm 1 by deriving upper bounds on its regret and
constraint violations. The impact of the temporal variation of the
dynamic optimization problem (1) on the regret and constraint
violations of Algorithm 1 is explicitly demonstrated. Based on
the performance bounds, we obtain sufficient conditions un-
der which Algorithm 1 possesses sublinear regret and sublin-
ear constraint violations. Finally, the theoretical advantages of
Algorithm 1 over MOSP in [26] are discussed. In the following,
we carry out detailed performance analysis of Algorithm 1. We
begin with some simple relations for the virtual queues.

Lemma 1: 1) Foranyt >0,k =1,...,m: Qr > 0.

2) For any t>-1, k=1,....m: Quy1.k+ Gk
(zi11) 2 0.
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3) Forany t > 0: Q112 > llg (2e1)]lo-

Proof: The proof is presented in Appendix A.

For t > 0, as @, is a virtual queue, we can further define a
Lyapunov function L; := 3[|Q,||3 to quantify the size of the
queue backlog. In addition, we define the Lyapunov drift A; :=
L,y — L, todescribe the evolution of the queue backlog. Then,
we have the following bound for the Lyapunov drift.

Lemma 2: For every t > 0, we have:

Ar < Qfgy(@ea1) + llgi (@) 3 0

Proof: The proof is presented in Appendix B. |

To achieve a joint bound for the incurred cost and Lyapunov
drift (which is related to the constraint violations due to the
update of the queue backlogs in (6)) by Algorithm 1, we derive
the following result.

Lemma 3: Fort > (0, we have:

As + fr(®er) < filx)) +a ([l — |5 — |l — 2 ))3)

1
+5 (g @)z =llge-1 (@)I2) +llge-1 () — g, (1) 3.
®)

Proof: The proof is presented in Appendix C. ]

The goal of the performance analysis is to study the impact
of the temporal variations of the dynamic optimization problem
(1) on the regret and constraint violations of Algorithm 1. To
this end, we need to quantify the temporal variations of problem
(1). In particular, we need to quantify the temporal variations
of function sequences. To this end, for any positive integer [, n
and compact (i.e., closed and bounded) set X C R", we define
a linear space:

C(X) :={¢: X — R'| ¢ is continuouson X}, (9)

which is equipped with a norm || - || defined as:

|l = max|ig(a)s, Yo €CQ(X).  (10)
Note that when [ = 1, (10) degenerates to:
1]l = max|é(z)], ¥¢ € C1(X). (1D

Now, we can define the total variations of the point sequence
{z;} and the function sequence {f;} C C;(X) as:

Val(t) :i= i |

2y — ), (12)
7=0
t—1
Vi)=Y llfr = Fronll- (13)
7=0

Furthermore, we define the total squared variation of the func-
tion sequence {g,} C C,, (X) as:

t—1
Vo) = g, — g- % (14)
T=1

Another related quantity that will be used in later analysis
(Theorem 2 for constraint violations) is the total variation

of {g,} defined as:

t—1
Vo) = llgr1 — g lloo- (15)
T=1

Both Vg (t) and ‘N/g(t) characterize the temporal evolution of
{g;}. We observe that, in many practical cases, if V,(t) or
XN/g(t) is sublinear, then Vg (t) is often smaller than IN/g (t) in
the order sense. The reason is as follows. If ||g; | — g;|| iS @
constant, then both Vg (t) and Vg(t) are exactly linear in ¢. So,
when Vi () or I~/g(t) is sublinear, it is often the case (except for
some strange sequences constructed on purpose) that ||g,_; —
g, || converges to zero. Hence, ||g,_; — g, ||~ is much smaller
than 1 for large ¢ and Vg (t) is smaller than I~/g (t) in the order
sense. For instance, if ||g;_; — g;||~ o t* for some a € R, then
V,(t) = O (2941 and Vy (t) = O (t*1). So the condition for
a sublinear Vg (¢) or ‘~/g (t)is a < 0. If so, Vg(t) is smaller than
179 (t) in the order sense.

Next, we have the following bound closely related to the re-
gret and the queue backlogs (and thus related to the constraint
violations) in terms of the total variations or total squared vari-
ations defined above.

Lemma 4: For any t > 1, we have:

S fo(@)

t—1

1 1
<> f @) 45191 @5 =5 1QlE + Vi () +Vg(®)
7=0

+ 4RV (t)+ g0 (o) I3 + F+ fo (o) +allmg —j|f3-
(16)

Proof: Replace t by 7 in (8). For arbitrary £ > 1, summing
(8) for 7 from O to t — 1, we obtain:

t—1 t—1
DS AAD (@)
7=0

7=0

t—1 t—1
< F@)+ad) (le -3 - e — 2 ]]3)
7=0 7=0
=
+3 (lg: (@I = g, 1 (2:)]3)
7=0
t—1
+3 g () — g, (=) (17)
7=0
We note:
&, — @i |5 — @ — @5
= [la; — a5 — lJ@; 1 — @) +al,, —ai]3  (18)
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a
< llzr = @313 = (e @53

2@ -y ofler o —27 e + IIwiH*willg) (19)

(b)

< e — a2 |3 a3 + ARy — 2o,

(20)

— g1 —

where in (a) we make use of |u+v|3>|ul3 -
2||ul2[|v]|2 + ||v]]3, Yau, v; in (b), we use Assumption 4. Thus,
from (17), by making use of (20) and the definition of Lyapunov

drift, we obtain:

t—1

Ly — Lo + Zf7($7+1)

t—1
<Y f@) +a (IIwo — gy — lla — 273
T7=0
t—1 1
+ARY ||lar,, — ||2> + §Hgt—l(mt)”§
7=0
t—1
+>_llg- (@) — g (@) @)
7=0
We further note:
t—1
> fr(@ei)
7=0
t—1
= [f’f+1(m7+1)+f7(x7+1)7f7’+1(m7'+1)} (22)
7=0
t
> Z w‘r Z |f‘r wTJrl fT+1(wT+l)‘ (23)
=1 7=0
(a) t—1 t—1
> fr(@)=F = fo(xo) =D 1 fr(@ri1) = fri1(@ri),
7=0 7=0
(24)

where in (a) we make use of Assumption 5. Substituting (24)
into (21) and noting that L, = 1|Q,||3 and L, = 0, we get:

t—1
> frlxs) <fo ) +a(llzg — x5 — e~ 3)
7=0 7=0

t—1
1 1
+5 g1 ()13 *§||Qt||§+z [fr(@ri1) = frea (@)
7=0

t—1
+ Z ”ngl (137—) —9g- (157—)”%
7=0

t—1

+4aR Y |2t —

7=0

x| + F + fo(zo). (25)

In addition, we have:
t—1
Z |f7’ (w‘rJrl) -
7=0

and

t—1
> lg- (@) — g, (=)ll3
7=0

— fra1 ||oc = Vf(t)v
(26)

t—1
f‘r+1($7’+1)| < Z ||f7'

7=0

t—1

< lgo(®o)ll5 +>_llgr—1 — g, I =
T=1

lgo (o)lI3 + Vg (£).
27)

Substituting (26), (27) into (25), making use of the definition
of V in (12), and noting that ||z, — x}||3 > 0, we achieve the
result in (16). |

Next, we are ready to present the first main result regarding
the regret of Algorithm 1.

Theorem 1: (Regret) For any ¢ > 1, we have:
Reg(t) < Vi(t) + Vg(t) + 4aRV,(t) + afjzy — mé”%
+ llgo ()13 + F + fol).

In particular, if V;, V,, V,, are sublinear in ¢, then Reg(t) is also
sublinear, i.e., Reg(t) < o(t).

Proof: By Lemma 1-(3), we know that [Q,|2 >
llg;—i(xs)||2, ¥t > 1. Substituting this inequality into (16)
gives (28). |

Next, we endeavor to bound the constraint violations Vio; of
Algorithm 1. To this end, we first link the constraint violations
with the queue backlogs. By the queue update in (6), for any
t > 1, we have:

Qri1k = Qrt + grk(Tri1),

Summing (29) over all 7 =0, . . .,
lemma.

(28)

Vr=0,....t—1. (29

t — 1 leads to the following

Lemma 5: Foranyt > 1and any k = 1,...,m, we have:
t—1
Quie > Y gri(@ri1). (30)

=0
Denote the dual optimal point of the optimization problem

(1) as A; € R™. We further define the total variation of the dual
optimal points {A; } as:

t—2
=2 I -
7=0

According to Lemma 5, to bound the constraint violations, we
only need to bound the queue backlog @, which is accom-
plished in the following lemma.

Lemma 6: For any t > 1, we have:

Mo, v 1 31

1Qull2 < 4VA (1) + 24/ V3 () + /25 (1) + V/BaRVal(t)

+1/G2 +4F + 20|mo — w53 + 2l gy ()

+2([Ag ]l - (32)
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Proof: Fort > 0, the dual function of problem (1) is:

)+ATg,(z)}. (33)

q(A) = igg {ft(w

According to the strong duality of the convex optimization prob-
lem (1), we have:

fe(zy) = a: (A7) (34)
< (@) +2Tg, (i01) (35)
(a)
< fi(@i) +MT(Qr — Qy), (36)
where in (a) we make use of g, (1) = Q.1 — Q; (c.f. (6)

and A; > 0. Substitute ¢ by 7 in (36). For arbitrary ¢ > 1, sum-
ming (36) for 7 from O to ¢ — 1, we obtain:

t—1 t—1 t—1
Dof@) <) frl@e) + ) AT(Qr — Q). (3T
7=0 7=0 7=0

In addition, from the definition of V}; in (31), we have V4 (t) >
A1 = AGll2 = [[A7_1[l2 — [[Ag]]2- Thus, we know:

Ai_1ll2 < VA(E) + [IAG]2- (38)
Hence,
t—1 t—2 N
Z)"iT(QT-t-l - QT) = )‘?Ith + Z ()‘j' - A’:iqtl) QT+1
7=0 =
(39
t—2
2+ > (%7 = Al 1@l (40)
7=0
(a) )
< (AW + R IQu +VA(®)_max QM. @D
< (@t Rolly) max Q2 42)
where in (a) we make use of (38). Moreover, we have:
t—1
Z fT(wT+1)
7=0
t—1
Z f‘r+1 w‘r+1 +fr(337+1) fTJrl(wTJrlﬂ 43)
7=0
t—1
<D (@) + fil@) = folao)
7=0
t—1
+Z|fT(wT+1)_fT+1(:BT+1)‘ (44)
7=0
t—1
<Y fo(@e) + F = folao) + Vi (). (45)
7=0

Substituting (42) and (45) into (37), we get, for any ¢t > 1:

t—1 t—1

<> fr(@e) + F = folmo) + Vi (1)

7=0

() + A l) max Q. (46)

Define [(t) = argmax, -1, ||Q;||2. Substituting ¢ by I(¢) in
(16) and making use of Assumption 6, we achieve:

1(t)-1

> folxr)

7=0
l

(t)-
<X
7=0

+4aRVa(U(1)) + g (o) 3 + F

1

Fr @)+ 367 = 5 1@u [+ V5 () +Vy 1(0)

—+ f()(iL’()) +04H$() — iBS”% (47)
Substituting t by I(t) in (46) and noting that
max,_1 ) |Q;ll2 = ||Q1 , we obtain:

1(t)-1 1(t)-1
> LA > fe@e) + F — folzo) + Vi (U(1)
=0 7=0
+ %) + A5l [ Q- 48
Adding (47) and (48) together yields:

0< —*||Qz )5 + @VAAE) + 1351) | Quen

+ 2V (I(t)) + Vg(U(t)) + 4aRV5(I(1))

1
+allzo — 2jl; + 567+ llgo ()| +2F. (49)

Rearranging terms and noting that V,,, Vy, Vg, Vj are all mono-
tonically increasing sequences, we have:

MQl(t)H

< (20 + A5 1)*

2
2Va(®) + [xoll2)

+ 4V (t) 4+ 2Vg(t) + 8aRV,(1)

+ G? 4+ 4F + 20|z — x|13 + 2/lgo(x0) 3. (50)
Hence,
1Q: 2 < [|Ques (51)
<[lQuall, = VAW + IA51)] +2Va(0) + 33, (52)
(a) i
SAVA(E) + 2 (Ml + 20/ Vi (0) + 2V (6) + VBaRVa (1)
/G2 +4F 120 |l — w2+ 2llgo(@o) 3. (53)

where in (a) we exploit (50) and make use of the fact

I I )
D@ <Y a, Ya; >0,i=1,..., 1. [ |
Next, we are ready to present our second main result regarding
the constraint violations of Algorithm 1.
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Theorem 2: (Constraint Violations) For any ¢ > 1 and k =
1,....,m:

Viog (t)
< Vglt) + 4VA.(6) + 2/ Vi (6) + /20 (8) + /BaRVa (0

/G2 4F + 20y — w3 + 290 (o)

+ 2[5l + go,x (o). (54)
In particular, if 179, V4 are sublinear (o(t)) and Vy, Vg, V,, are
subquadratic (o (¢%)), then Vioy (¢) is sublinear, i.e., Vioy (t) <
o(t), forany k =1,...,m.

Proof: From Lemma 5, we know that for any ¢t > 2, k =
1,....,m:

t—2
Qrrk > Y grk(@ein). (55)
7=0
Therefore,
t—1 t—2
Zgr,k(wr) < go.k(xo) + Zgr,k(w‘rJrl)
7=0 7=0
t—2
+ Z |g‘r+1,k(mr+1) - g‘r,k(m7+l)‘ (56)
7=0
(a) ~
< gok(xo) + Qi1 + Vg(t), (57)

where in (a) we make use of (55) and the definition of ‘79 in (15).
Note that the inequality (57) holds trivially for ¢ = 1 and thus it
actually hods forany ¢ > 1. Note that @Q;—1 ; < ||@Q;_]|2. Thus,
foranyt > landany k =1,...,m:

t—1

Y grk(@r) < gos(@o) + Vg(t) + Q1 [lo-

7=0

(58)

Making use of (32) in Lemma 6 and noting that the R.H.S.
of (32) is monotonically increasing with ¢, we obtain the
bound in (54). |

From Theorems 1 and 2, we know that sufficient conditions
for sublinear regret and constraint violations are that the varia-
tions of problem data, e.g., V. (t), are sublinear or subquadratic.
These conditions can be justified as follows. In most applica-
tions of online optimization, the underlying system varies slowly
across time. For instance, in adaptive signal processing [28], it
is commonly assumed that the unknown parameters (weight
vectors) vary slowly across time. Otherwise, if the unknown
parameters vary too fast, virtually no adaptive algorithm can
track them well due to lack of information. In short, the un-
derlying system varies slowly in most applications of online
optimization, and so do the loss/constraint functions. Thus, the
variations of the problem data, e.g., V,, are often sublinear, i.e.,
o(t). On the contrary, if the variations are not sublinear, it is hard
to guarantee sublinear regret and constraint violations theoret-
ically. The reason is as follows. If the (cumulative) variations

are’ (), i.e., at least of the order ¢, then the gaps between
loss/constraint functions at adjacent time slots are at least (1),
i.e., the loss/constraint functions evolve at a constant rate at min-
imum. Recall that, in OCO, the loss function f; and constraint
function g, are revealed after the action x; is determined. Thus,
after x; is determined, in principle, we should be able to choose
a new loss function f; and a new constraint function g, such
that the optimal point ] is at least {2(1) distance away from the
chosen action x;. This may occur if the loss/constraint functions
are chosen by a non-oblivious adversary who observes the se-
lected action a;. In such a case, x; cannot track the benchmark
x; well and the regret/constraint violation are not guaranteed to
be sublinear.

Furthermore, two remarks regarding the comparison between
Algorithm 1 and existing algorithms for constrained OCO are
presented in the following.

Remark 1: We compare the performance guarantees of
Algorithm 1 in Theorems 1 and 2 with those of the MOSP
method presented in [26]. By choosing appropriate stepsize pa-
rameters, the MOSP can benefit from knowing the temporal
variations of the underlying dynamic optimization problems
(e.g., V(t)). Thus, the MOSP distinguishes two cases: with
or without the knowledge of the variations of the optimization
problems. In Algorithm 1, the choice of stepsize parameter «
does not depend on the variations of problem data. Thus, a
fair comparison benchmark of Algorithm 1 should be MOSP
without knowledge of variations (henceforth simply MOSP).
For MOSP, according to [26], the regret is upper bounded by

(@] (t% max {Vm (1), ‘N/g(t), t3 }) (with appropriate adaption of
notations) while the constraint violation is upper bounded by
@) (t%). In general, one cannot compare the regret and con-

straint violation bounds for Algorithm 1 with those of MOSP
since the comparison results rely on the specific values of the
related variations, i.e., for some values of the variations, the per-
formance bounds of Algorithm 1 are better, and for some other
values of the variations, the performance bounds of MOSP can
be better. Nevertheless, several prominent advantages of the
performance bounds for Algorithm 1 can be highlighted as fol-
lows. First, the regret bound for MOSP is always no less than
O (t%) even when f;, g, are time-invariant, i.e., all the varia-
tions are zero. In contrast, according to Theorem 1, the regret
bound for Algorithm 1 can decrease to O(1) smoothly as the
temporal variations of f;, g, decrease. Second, in order to guar-
antee sublinear regret for MOSP, the variations need to satisfy
Va(t) =0 (t%> and Vy(t) = o (t§>, while the condition for
sublinear regret of Algorithm 1 is V(t) = o(t), V4 (t) = o(t)
and V4 (t) = o(t). The latter condition is usually easier to be
satisfied than the former, i.e., Algorithm 1 possesses sublin-
ear regret for a broader class of dynamic optimization prob-
lems than MOSP does. Third, the bound for constraint violation
of MOSP is always O (t%
contrast, the constraint violation bound for Algorithm 1 can

) regardless of the variations. In

3We follow the standard definition of Q(-). That is, for sequences a,, and by, ,
an = Q(by, ) means b, = O(ay,).
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decrease smoothly to O(1) if the variations are sufficiently
small. In particular, when f; and g, are time-invariant, both
regret and constraint violation of Algorithm 1 become O(1),
which is equivalent to the O (}) convergence rate established
in [1] for static optimization problems. In this sense, Theorems
1 and 2 encompass the results in [1] as special cases. To achieve
a more quantitative comparison between the performance guar-
antees of Algorithm 1 and MOSP, we consider the case that all
variation terms are less than O (&) for some § € [0, 1]. Insucha
case, the regret and constraint violation bounds for Algorithm 1
are both O (td) while the regret and constraint violation bounds
for MOSP are O (t‘“x{5’ i) +é> and O (ﬁ), respectively.
This indicates that Algorithm 1 always possesses better regret
bound than MOSP does and the constraint violation bound of
Algorithm 1 is better than that of MOSP when § < 2, i.c., when
the variations of the dynamic optimization problem are not too
drastic. Finally, we remark that, different from the various sad-
dle point methods widely used for constrained OCO [19], [23],
[24], [26], in Theorems 1 and 2, the stepsize parameter « of Al-
gorithm 1 does not rely on the total time horizon ¢, which may
be unknown in practice, i.e., the online optimization procedure
may terminate at some unknown time. This observation also im-
plies that the performance bounds of Algorithm 1 in Theorems
1 and 2 hold for arbitrary time slots, inlcuding those before the
termination of the online optimization procedure. In contrast,
the performance bounds of saddle point methods generally only
hold for the time slot when the online procedure is ended [19],
[23], [24], [26].

Remark 2: Another related online algorithm for constrained
OCO has been developed by Neely and Yu in [27] recently.
Though the algorithm in [27] is also based on virtual queues, its
specific updates are very different from those of Algorithm 1.
Additionally, the performance criterion used in [27] is also dif-
ferent from that of this paper. Specifically, the regret defined in
[27] is with respect to the static offline optima, while the regret
used in this paper is with respect to the dynamic optimal bench-
mark sequence {x;} (c.f. (3)). This renders the performance
criterion of this paper more practically meaningful (yet more
challenging to analyze) since a static optimum may not be a good
benchmark if the underlying system is inherently time-varying.
In [27], dynamic benchmark is used only for the special case of
i.i.d. loss/constraint function sequences { f; (+), g,(:) }. This i.i.d.
assumption is often unrealistic because loss/constraint functions
at different time slots can be highly correlated in most practical
applications, e.g., these functions may evolve in a Markovian
way in many scenarios. In light of the above, the performance
analysis and guarantees in [27] are fundamentally different from
those in this paper.

IV. DATA CENTER RESOURCE ALLOCATION

In this section, we study the dynamic resource allocation
problem in data centers [8]-[10], [26], [31] under a constrained
OCO framework by invoking the proposed Algorithm 1. In such
a case, Algorithm 1 only involves simple closed-form compu-
tation and is amenable to distributed parallel implementation.
For comparison purposes, application of MOSP in [26] is also

considered. Numerical experiments are conducted to corrobo-
rate the effectiveness of Algorithm 1 and its adavantage over
MOSP.

A. Problem Formulation and Algorithm Development

Consider a cloud computing network comprised of J map-
ping nodes and K data centers. Each mapping node collects the
data processing requests from a local region and then transmits
them to the K data centers to accomplish the data processing
tasks. At each time ¢, we denote the amount of data requests
arriving at mapping node j as d; ;. Then, each mapping node j
sends ¥, ;. amount of data processing tasks to data center £ at
time ¢. Finally, each data center k accomplishes z; ; amount of
data tasks at time ¢. Each mapping node and each data center
have a local queue to buffer the unserved data requests. De-
note the queue backlog at mapping node j at time ¢ as wy j,

j=1,...,J. Denote the queue backlog at data center k at
time ¢ as wy j1+, kK =1,..., K. Define the queue backlog vec-
tor at time ¢ as wy = [wy 1, . .. ,wt,,HK]T. Define the extended

data arrival vector at time ¢ as d; = [d; 1, .. .,dt,J,O]xK}T.
The control variables (or actions in OCO’s term) of this cloud
computing system at time t are collected in the vector x; =
[Ye 11y Yt TE 2005 2] € R7EHE The control vari-
ables need to satisfy y; ;i < ¥ and z ; < Z;, for any j, k, t,
where ;. and Z;, are the maximum transmission rate of link
(4, k) and maximum data processing rate of data center k, re-
spectively. Define = [¢11,...,%/K,21,--.,ZK] and the ac-
tionsetX = {x|0 < & =< &}.Furthermore, we define a constant
matrix C as:

1
C — T EOJXR c R(J#»K’)X(JK%’B’)? (59)
S S
Ik I \—Ig

where 1 is a K dimensional column vector of all ones and I
is the K x K identity matrix. Then, the queueing updates for
w; can be written compactly as:

w1 = [w; + Coy + dy] ", (60)

where 7 = max{x, 0} is defined entrywise. Suppose the initial
queue backlog is some given w, >~ 0 and our goal is to clear all
backlogs at time 7', i.e., wr = 0, while minimizing some cost
function related to the transmission rates and processing rates
{x; }. Here, we consider the following time-varying quadratic
cost function at time ¢:

J K K
fi(x) = Zth,ijJQ‘k + Zm,kzi,
k=1

j=1k=1

(61)

where  collects all {y;;, } and {z;.}; & ;1 > 0and n; ; > 0 are
time-varying cost parameters of data transmission and data pro-
cessing. The costs of data transmission are time-varying since
the quality of wireless links varies. The costs of data processing
at data centers change across time because the energy prices
and availability are time-varying, e.g., due to the penetration
of intermittent renewable energy sources. Hence, the dynamic
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resouce allocation problem of the cloud network can be posed
as the following OCO problem:

T-1
Minimize{mf oo X fw 3 Z fi ("Bf)
t=0
subjecttow; 1 = [w; + Cxy +dy]", t=0,...,T — 1,
wr = 0. (62)

The constraints in problem (62) are difficult to deal with as
they are coupled across time. We note that a necessary condition
for these constraints to hold is Y,/ (Cx, + d;) < 0 [26],
[31]. This motivates us to consider the following OCO problem
instead:

T-1
Minimize,, 71 x Z filxy)
t=0
T—-1
subject to Z gi(xy) 20,
t=0

(63)

where ¢; () = Cx + d;. Problem (63) is evidently in the stan-
dard form of problem (2) and thus can be solved by the proposed
Algorithm 1. We remark that the problem formulation here is
related to existing settings for data center resource allocation
[26], [31], [32]. Specifically, data transmission costs (band-
width prices) and data processing costs (energy prices) have
also been considered in [32] to perform joint request mapping
and response routing with distributed data centers. The resource
allocation model in [32] is static (one-shot) and all the requests
from the clients must be fulfilled in the scheduling problem.
In contrast, the data center resource allocation in this paper is
dynamic and temporarily unfulfilled tasks can be stored in the
queues at the mapping nodes and data centers. This renders
the dynamic problem formulation in this paper more flexible
in scheduling deferrable (delay-tolerant) tasks in data centers.
Additionally, we note that the setting for data center resource
allocation in [31] is also dynamic. Nevertheless, the problem in
[31] falls into the category of stochastic optimization, i.e., the
objective and constraint functions are expectations of random
variables, which is different from the deterministic setting used
in this paper. The problem formulation of data center resource
allocation in this paper follows closely from that of [26], though
the online optimization algorithms used to solve the problem
are very different. Moreover, we note that online approaches for
scheduling data centers (such as Algorithm 1 advocated in this
paper) can handle time-varying model parameters that are avail-
able sequentially during the process of the online algorithms,
e.g., the dynamic requests d; ; and the dynamic cost coefficients
&t.jk»> M, May not be available until time ¢ due to the intermit-
tence/uncertainty of user requests and renewable generation. On
the contrary, offline approaches can only allocate resources in a
batch mode, i.e., all the model parameters need to be available
a priori before the start of the offline algorithms, which is not
the case in many practical scenarios. This also indicates that
online approaches are superior to offline approaches in terms of
computational complexity. The former processes the sequential
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data (model parameters) slot-by-slot while the latter processes
all the data at all time slots in a batch manner, which is much
more computationally demanding or even prohibitive.

Due to the decoupled structure of the cost function f; and
the network structure (reflected in C') of the constraint func-
tion g,, Algorithm 1 can be implemented in a distributed
manner, which will be detailed in the following. Define a
diagonal matrix A, = diag{& 11, & Jk M1y MK} €
RUK+E)X(JE+K) - Thus, f,(x) = x"A;z. Denote Q, €
R7*E as the virtual queues. Based on (5), the update of the
actions can be written as:

{iL’T(At +al)x

x;, 1 = arg min
+ ngm<5:

+a’ [CT(Qt +Cxi+d; 1) —2043/:,,] },
(64)

where e > 0 is the stepsize parameter. Since A, is diagonal, the
minimization in (64) can be distributed in each entry of x. Thus,
the action update can be conducted in closed-form in parallel as
follows for any j, k:

K
1
Yt+1,5k = lw (Qt,j —Qu gk — Z Y, jk!

k'=1

J Yik
Zyt,jwzt,wdt1,j+2ayt,jk>1 , (65

j'=1 0
Zt+1.k
; %k
1 ,

=\l |Qi+rTt ikt (2 — 1)z

2(7’]1‘,3](; +Oé) Q1,7+k‘ j;yf,]k ( ) t.k
0
(66)
where [7]% = min{b, max{x,a}}. Furthermore, according to

(6), the virtual queues can also be updated in parallel as: Vj =
L,....J,k=1,... K,

K K
Qi41,j = max {Z Y1,k —dr j, Q. j —Z Yt+1,5k +dt,j} ;

k=1 k=1
(67)
J
Qi+1,7+% = max { —Z Yi+1,k T 2t+1ks
Jj=1
J
Q.7+ +Z yt+1,jk_zt+1,k}- (68)
j=1

Equations (65), (66), (67) and (68) altogether constitute a
distributed implementation of Algorithm 1 for the dynamic re-
source allocation problem (63). In summary, for the data center
resource allocation problem under study, {d; ;, & jk,m k} are
sequential problem data; {yt,jk,zt,’k} are sequential control
variables; and {Q, } is a sequence of auxiliary variables used
to facilitate the implementation of Algorithm 1.
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B. Numerical Results

In this subsection, numerical experiments are carried out to
confirm the effectiveness of the Algorithm 1 for the dynamic
resource allocation problem in data centers. Specifically, we
consider a cloud computing network of J = 10 mapping nodes
and K = 10 data centers. All the maximum data transmission
rates {y;;, } are randomly and uniformly distributed in [10, 100]
while all the maximum data processing rates { z } are randomly
and uniformly distributed in [50, 500]. As for the time-varying
cost parameters {&; ;i } and {n; 5 } and arriving rates {d, ; }, we
distinguish the following two models of time-variability.

® Markovian parameters: Let T be some positive constant

controlling the varying rate of the function sequences The
bigger 7 is, the slower the parameters (and thus the objec-
tive and constraint functions) vary across time. The time-
varying parameters {d; ; }, {& ji } and {n; ;. } are updated
in a Markovian manner as follows:

+
dij = drs+t7el] v (69)
O]
Gk =[G+t e ViR 0)
+
M = [men+t7e] " vE, g

@ efj)k and ei?k? are independent random vari-

where ¢; ;
ables uniformly and randomly distributed in [—5,5],
[—0.25,0.25] and [—0.5, 0.5], respectively. The initial val-
ues of the parameters are generated as follows. dy_; is uni-
formly distributed on [0, 10]; &y ; is uniformly distributed
on [0, 0.5]; 1.1, is uniformly distributed on [0, 1].

® Noisy periodic parameters: Let Ty > 0 be the period. De-
fine the initial phases (;SJ(.d), qﬁgfj) and (b,(f" ) to be indepe-
dent random variables uniformly distributed in [0, 27].
The time-varying parameters {d; ;}, {& jx} and {m 1}
are generated as follows:

.y d d .
dy ; = 10sin (To + (;5; )> —|—v£’j), v, (72)
. 2rt .
&.1; = 0.5sin (TU + ¢](fj>> + vt(igj, Vi, k,  (73)
27t ) ,
Mk = sin (T: + ¢L”)> +u, vk, (74)

where the noises vfflj), vf@k) ; and vi"lg are uniformly and

randomly distributed over [10, 11], [0.5,0.55] and [1,1.1],
respectively.

We consider a total time horizon of 7' = 500. The stepsize
parameter « of Algorithm 1 is chosen to be 10. For comparison
purpose, besides Algorithm 1, we also simulate the MOSP, a
state-of-the-art constrained OCO algorithm suitable for time-
varying constraints [26]. The stepsize parameters of MOSP are
chosenas p = p = T-7 =0.126 according to the stepsize rule
in [26] for the case of no knowledge of variations. We note that
the role of % in Algorithm 1 is similar to that of p in MOSP.
Thus, the stepsize choices of the two algorithms are close.
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Reg(t)
t-Regg(l) and

the relative time average constraint violation M
& VoD [,

for Markovian objective and constraint function se-
quences in Figs. 1 and 2, respectively, where Vio(t) =
[Vioj(t),...,Vio,, (t)]T. Two values of T are considered: 7 =
0.25 and 7 = 0.5, in which the former represents faster varying
rate of the function sequences than the latter does. We observe
that the performance of Algorithm 1 is remarkably better than
that of MOSP in terms of both regret and constraint violations
in either cases of 7. This generalizes the performance adavan-
tage of the queue inspired algorithm in [1] over dual subgradi-
ent method to the scenario of time-varying objective/constraint
functions, which are unknown a priori. Furthermore, we remark
that the performance of Algorithm 1 is robust to the varying
rate of the function sequences. The regret and constraint vi-
olation of the case 7 = 0.25 is only slightly bigger than that
of the case 7 = 0.5. In either cases of 7, the time average
regret and time average constraint violation of Algorithm 1
can converge to zero, i.e., the regret and constraint violation
of Algorithm 1 are sublinear, as guaranteed by Theorems 1
and 2. Additionally, from the generation process of the Marko-
vian parameters, we know that* || f; — fi11]lc = © (t77), i.e.,
Ilfe = fi<1ll is on the order of ¢~7 for large ¢. Thus, ac-
cording to (13), we have V;(t) = © (t' 7). Similarly, we can

We first report the relative time average regret

4We follow the standard definition of O(+). That is, for sequences a,, and b,, ,
an = O(by,) means a,, = O(b, ) and b, = O(ay,).
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obtain Vy(t) = O(t177), Vy(t) = O(t127), Vy(t) = ©(t'7),
and V4 (t) = ©(t!"7). Therefore, by Theorems 1 and 2, we get

the asymptotic time-average performance bounds as Regf“’) <

O(t™") and Vl%“(t) < O(t7), in which constant factors are
omitted. To compare the numerical performance of Algorithm 1
with the corresponding theoretical bounds, we plot£~" in Figs. 1
and 2, in which 718 0.25 or 0.5. We observe that, for either value
of 7, the relative time average regret and the relative time aver-
age constraint violation are smaller than the corresponding t~"
for large enough time ¢, confirming the theoretical bounds. We
note that the numerical relative time average regrets and con-
straint violations can be larger than the corresponding t~" for
small ¢ since ©(¢ ") is asymptotic bound in order sense, which
omits constant factors. Moreover, we remark that the theoretical
bounds for regrets and constraint violations can be quite conser-
vative and the actual numerical performance can be much better
than the corresponding theoretical bounds for large ¢.

The relative time average regret and the relative time average
constraint violation for noisy periodic objective and constraint
function sequences are shown in Figs. 3 and 4, respectively,
where the period is set to be 7 = 50. In such a case, we note
that the variations of problem data are not sublinear so that the
sufficient conditions for sublinear regret and constraint viola-
tions in Theorems 1 and 2 do not hold. In fact, the theoretical
bounds of the regret and the constraint violations in Theorems 1
and 2 are linear, i.e., Reg(t) < ©(t) and Vioy (t) < O(¢), which

are not very useful. Interestingly, the relative time average regret
and the relative time average constraint violation of Algorithm 1
can still converge to zero empirically, i.e., the numerical regrets
and constraint violations are still sublinear for this particular
simulation setup. This indicates that the theoretical bounds in
Theorems 1 and 2 are not always tight and the corresponding
conditions for sublinear regret and constraint violations are only
sufficient conditions. Even when these sufficient conditions do
not hold, e.g., when the loss/constraint functions are chosen
by a non-oblivious adversary, it is still possible for Algorithm
1 to generate sublinear regrets and constraint violations, i.e.,
Algorithm 1 may still work well. In addition, analogous to the
Markovian case, we observe that the numerical performance of
Algorithm 1 is still considerably better than that of MOSP in
terms of both regret and constraint violation.

V. CONCLUSION

In this paper, we have studied constrained OCO with
time-varying objective and constraint functions. A novel
online algorithm based on virtual queues has been developed.
Adopting a dynamic benchmark sequence, we have established
upper bounds of the regret and constraint violations of the
algorithm in terms of the temporal variations of the underlying
dynamic optimization problems. The algorithm possesses
sublinear regret and sublinear constraint violations provided
that the temporal variations of the optimization problems are
sublinear, i.e., the objective and constraint functions do not vary
too drastically over time. The analytical bounds of the proposed
algorithm are superior to those of MOSP in [26] in most
scenarios and the choice of the stepsize parameter does not rely
on the total time horizon of the online optimization procedure.
Finally, we have applied the algorithm to a dynamic resource
allocation problem in data center networks. Numerical experi-
ments have demonstrated the effectiveness of the algorithm and
its performance improvement relative to the MOSP.

APPENDIX A
PROOF OF LEMMA 1

1) Fix any k=1,...,m. When t =0, Qpr =0, so it
is clearly nonnegative. We use induction to show
this holds for any ¢. Suppose for some ¢ >0,
Qrr 2 0. If g p(xi41) >0, then by (6), Qi1 >
Qik + grk(Tir1) > 0.1 gy g (1) < 0,then Qpyq >
=gtk (1) > 0. So, we always have Q41 5, > 0.

2) Fort > 0,wehave Q1,5 > — gk (e 41), 1.6, Qg1 i +
g1k (xi11) > 0. When ¢ = —1, the result trivially holds.

3) Fixany k=1,...,m. For t > 0, if g, x (1) > 0, we
have:

a
Q16 > Qi + gk (Tis1) (Z) Gk (@ee1) = gk (@i51)],
(A1)
where (a) results from part (1) of Lemma 1. If g; 5 (;41) <0,
then Qy 1% > —gi.x(Tir1) = |Gk (x4 41)]. Thus, we always
have Q411 > |9k (2i11)|. So, Q?H,k > th.k(f”t+1)~ Sum-
ming over all % yields [[Qy..1 12 = lg; (1) s
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APPENDIX B
PROOF OF LEMMA 2

For t > 0, we have Q1,1 = Q¢ + b ., Where b, ;. is de-
fined as:

_gt,k(thrl) - Qt,k,
if —grp(®ei1) > Qe + e (®e41),
otherwise.

bnk- =
gt,k($t+1)7
Thus, we have:
(bek + gk (@er1) + Qe i) (bey — gk (xe51)) = 0. (B1)

1 1 1
§Qf+1,k = §Qf,k + §bf,k + Qi kbe k (B2)

1 1
= §Qg,k +§b?,k +Qu kgt k(®i11) + Qu e (b ke —gek (Tes1))

(B3)
L o Lo
= iQt,k + ibt,k + Qi gk (Tis1)
= (bt + gtk (®e41)) (be.k — gk (Te41)) (B4)
1
< §Q?k + Qt gk (Tey1) + gtz,k(mtﬂ)- (B5)
Summing (B5) over all £ gives:
A < Qlgy(i1) + llgi (@) 13- (B6)

APPENDIX C
PROOF OF LEMMA 3

The proof makes use of the following fact [5], [33].

Fact 1: Let S C R™ be a convex set. Let ¢ : R" — R be
a strongly convex function with modulus ¢ > 0, i.e., ¢(x) —
%me is convex. Denote «* = arg mings ¢(x). Then, for any
z €S, we have ¢(z*) < ¢(x) — § |l — =*|3.

By Lemma 1-(2), we know, for ¢t >0, Q, + g, (x:) =
0. So, for t >0, f(x) + (Q, + g, 1(x:))"g,(x) is convex
with respect to . Thus, fi(x) + (Q, + g, (x;)) g, (x) +
allx — x| is strongly convex with modulus 2c. Note the
action update in (5). Thus, by Fact 1, we thus have:

fo(@e1) +(Qy + o1 () gy (Tis1) + al|Tist — 3
< fi(@) +(Q + g, 1 (1) g, () + o} — a3
— allwi — 3 (C1)

(a)

< felp) +alle; — @ — allze — @3, (€2)

where (a) is due to Q, +g,_(x;) = 0 and g,(x]) = 0. We
note:

1
gi1(@) g (@i1) = 5 (g1 @) 3+ g (@) 3

~llgi 1(@) =g (@ )l3),  (€3)

and

lge 1 (xe) = g (@es)II3

= g1 () — g (®0) + gy (@) — gy (T151) |15 (C4
<2llg, 1 () — g (@[3 + 2llg; (®:) — gy (@e51)]3 (CS)
(a)

<2l\g; 1 (1) — gi(@0)[|5 + 287 (| — 211113, (C6)

where in (a) we make use of the Lipschitz continuity of g,
(Assumption 3). Hence, from (C2), we have:

fi(@ei) + Qg (@is1)

(a)
< fil@) + alla) — @3 - ollze — 2

1
—aller =l + 5llgi (@) — gi (@)l

1 1
= 5llg @Iz = Sllge (@)l (C7)

)
< (@) + allzy — 25 — afleg — 273
—allzin — x5 + g (20) — gi(0)]3

1 1
+ Bllee = @l = 39 @I — 5lgn @)l

(C3)
C
< fi@p) + allz; — 23 — allzi — =3
+ llge—i () — gy (1) I3
1 s 1 2
- 5Hgt71(fct)Hz - §||9t(3’3t+1)||27 (C9)

where (a) results from (C3); (b) results from (C6); and (¢) results
from Assumption 7. Adding (C9) with (7) yields the desired
result (8).
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