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Joint Energy Procurement and Demand Response
Towards Optimal Deployment of Renewables

Xuanyu Cao , Junshan Zhang, and H. Vincent Poor

Abstract—In this paper, joint energy procurement and demand
response is studied from the perspective of the operator of a power
system. The operator procures energy from both renewable energy
sources (RESs) and the spot market. We observe the fact that the
RESs may incur considerable infrastructure cost. This cost is taken
into account and the optimal planning of renewables is examined
by controlling the investment in RES infrastructures. Due to the
uncertainty of renewables, the operator can also purchase energy
directly from the spot market to compensate for the possible deficit
incurred by the realization of the random renewable energy. By
setting appropriate prices, the operator sells the collected energy
to heterogeneous end users with different demand response char-
acteristics. We model the decision making process of the operator
as a two-stage optimization problem. The optimal decisions on
the renewable deployment, energy purchase from the spot market,
and pricing schemes are derived. Several solution structures are
observed and a computationally efficient algorithm, requiring only
closed-form calculation and simple bisection search, is proposed to
compute the optimal decisions. Finally, numerical experiments are
conducted to verify the optimality of the proposed algorithm and
the solution structures observed theoretically. In particular, the
impact of renewable penetration and the importance of its optimal
design are highlighted.

Index Terms—Renewable energy sources, demand response,
pricing, smart grid, optimization, resource allocation.

I. INTRODUCTION

DUE to their low generation costs and low production of
pollution, renewable energy sources (RESs), e.g., wind

and solar energy, are envisioned as indispensable elements of
future power grids [1]–[3]. RESs are usually uncertain (random)
and intermittent (time-varying), which makes them nondis-
patchable and cannot be readily incorporated into existing power
systems. Therefore, tremendous research efforts have been

Manuscript received September 30, 2017; revised March 8, 2018; accepted
June 6, 2018. Date of publication June 11, 2018; date of current version July
27, 2018. This work was supported in part by the U.S. Army Research Office
under Grant W911NF-16-1-0448 and in part by the Defense Threat Reduction
Agency under Grant HDTRA1-13-1-0029. The guest editor coordinating the
review of this manuscript and approving it for publication was Prof. Nikolaos
Gatsis.(Corresponding author: Xuanyu Cao.)
X. Cao and H. V. Poor are with the Department of Electrical Engineering,

Princeton University, Princeton, NJ 08544 USA (e-mail:,x.cao@princeton.edu;
poor@princeton.edu).
J. Zhang is with the School of Electrical, Computer, and Energy Engineering,

Arizona State University, Tempe, AZ 85281 USA (e-mail:,junshan.zhang@
asu.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/JSTSP.2018.2846043

devoted to the integration of RESs into smart grid operations in
the recent decade.
In [4], motivated by the fact that the forecast of renewables
may be accurate within a certain time window, Ilicet al.advo-
cated a model predictive control approach to dynamically adjust
the economic dispatch (ED) in response to the updated forecast
of renewables. In [5], modeling the renewables as random vari-
ables with known distribution, e.g., Weibull distribution for wind
speed, Liu proposed chance constrained methods for ED so that
the supply demand balance is satisfied with high probability un-
der the known distribution of the renewables. In practice, energy
trade is performed at different timescales, e.g., day ahead plan-
ning, real time energy procurement, before/after the realization
of random renewables. Thus, several multi-stage dynamic opti-
mization approaches were proposed in [6], [7] where the energy
is generated or purchased at different time periods. An analo-
gous multi-stage stochastic programming approach, named risk
limit dispatch (RLD), was proposed by Varaiyaet al.in [8] to
combat the uncertainty of renewable generation and user de-
mands. Later, Zhanget al.extended it to network RLS by tak-
ing into account the power network topology and gave explicit
expression for the price of uncertainty [9]. Besides, to match
the time-varying user demands, integration of renewables in a
given power network topology was investigated in [10]. Re-
cently, multi-stage optimization methods were proposed to inte-
grate renewables for energy efficient wireless communications
[11]. A more robust (and also more conservative) approach to
incorporate renewables was the robust optimization framework
pursued in [12] and [13], where the outputs of RESs were known
to be located in some uncertainty set and the objective was to
optimize the worst-case performance of the power system. Fur-
thermore, in [14], inspired by the dual gradient method widely
used in communication networks [15], Enyiohaet al.presented
an online power allocation algorithm to adapt to the time-varying
energy supply and user demands. In addition, a network calcu-
lus approach was proposed in [16] to incorporate renewables by
accounting for the presence of energy storage devices.
In most existing works on RESs, the renewables are con-
sidered stochastically given (e.g., with a fixed distribution) or
deterministically given (e.g., known within a time window or
known to be located in a uncertainty set). In other words, the
renewables are not subject to design and optimization. More-
over, the renewables are assumed to be completely cost free. In
practice, though the operation of RESs incurs little cost, their
infrastructures necessitate substantial cost such as the construc-
tion cost and the maintenance cost. For example, the typical unit
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infrastructure cost of solar panels is around $0.1218 per kW·h
(calculation of this number is based on information from the
website “Solar Power Authority” and is detailed in Section II)
while the residential electricity rate in the US is between
$0.0837-0.3734 per kW·h [17]. These numbers suggest that
the infrastructure cost of RESs is comparable with the cost of
traditional energy sources and thus should not be neglected.
Therefore, in this paper, we are motivated to take into account
the cost of renewables and designoptimaldeployment of RESs
in a power system. We can “control” the distribution, particularly
expected generation, of the RESs by investing on RES infras-
tructures appropriately, e.g., constructing appropriate amount of
solar panels or wind turbines. Further, we note that trading and
management of renewable energy have been studied through the
lens of stochastic optimization in [18], where the energy man-
agement system (EMS) can purchase the surplus of distributed
renewable generation with certain prices. This cost of real-time
purchase of renewable energy is fundamentally different from
the infrastructure cost of renewable generation (usually incurred
in the planning phase of the power system) considered in this
paper.
After the construction of RES infrastructures, in each follow-

ing time frame, e.g., each hour or each day, the generation of the
RESs is still uncertain since RESs are random and intermittent.
Thereby, after the renewables at a time frame are realized, if the
realization level is low, the operator (e.g., the utility company)
of the power system may need to purchase extra energy from
some spot market (usually with relatively high unit price) to
compensate the energy deficit. Then, the operator sells the col-
lected energy to end users through judious pricing schemes so
that appropriate demands are elicited. This energy sale method
is called demand response (DR), a widely used technique in the
demand side management (DSM) in smart grid.
In the literature, extensive DR and DSM schemes have been

proposed [19]–[21]. In [22], the device scheduling problems at
a single user’s side was studied to maximize the net benefit.
In [23], Kim and Giannakis examined the demand manage-
ment problem with multiple subscribers and dynamic prices
and proposed parallel algorithms for the corresponding mixed
integer programming. Additionally, DR with real-time pricing
was also investigated in [24] and [25], in which the effects
of price uncertainty and prediction were incorporated. Further-
more, the competition between multiple end users was studied
under game-theoretic frameworks in [26]. Later, Maharjanet al.
took the competition among utility companies into considera-
tion and proposed a Stackelberg game approach for DR in [27].
Besides, a VCG auction mechanism was proposed in [28] to
incentivize users to reveal their private information truthfully. A
review of game-theoretic approaches in DSM was presented in
[29]. One important principle in DR is to shift the loads away
from the peak hours so that the generation cost is reduced. This
matches well with the charging needs of plug-in electric vehi-
cles (EVs), which only require to be charged in some given time
intervals and are flexible in charging rates across time. Thus,
many works were devoted to schedule EV charging in the con-
text of DR and DSM [30]–[34]. Moreover, DR in the presence
of RESs was examined in [35]–[39].

Fig. 1. System model.

The main focus of this paper is on the impact of optimal
design of RES deployment. Thus, we use a simplified DR model
for users. Specifically, we assume that the DR functions of the
heterogeneous users are known to the operator through past
usage history and these DR functions remain unchanged across
time (if they do change, the operator needs to remodel the power
system and compute new optimal decisions). We summarize the
main contributions of this paper as follows.

A profit maximization problem is formulated from the per-
spective of the operator of a power system. The operator
procures energy from the RESs and the spot market and
then sells the energy to heterogeneous end users with dif-
ferent demand response functions. The optimization prob-
lem consists of two stages: (1) optimal deployment design
of RESs (e.g., investment in RES infrastructures) in the
planning phase; (2) optimal energy procurement from the
spot market and optimal pricing to users in each time frame.
In the latter stage, optimal decisions are made based upon
the realization of the random renewables in that time frame.
The solution of the formulated profit maximization prob-
lem is derived and several structures of the solution are
observed. Accordingly, a computationally efficient algo-
rithm, involving only closed-form calculations and simple
bisection search, is proposed to sequentially find the op-
timal decisions on RES deployment, purchase from the
spot market and pricing. Numerical experiments are im-
plemented to corroborate the optimality of the algorithm
and the observed solution structures. In particular, the im-
portance of the optimal design of RES penetration is high-
lighted.

The remaining part of this paper is organized as follows. In
Section II, we formally introduce the system model and problem
formulation. In Section III, we solve the formulated optimization
problems and propose an efficient algorithm to compute the
solution. Simulation results are presented in Section IV and we
conclude this paper in Section V.

II. PROBLEMFORMULATION

Consider a power system comprised of an operator, an RES,
a spot market selling electrical power and some end users of
power, as illustrated in Fig. 1. The operator can be a utility com-
pany who serves users in a region. The operator procures energy
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from two sources: the RES and the spot market. The RES may
consist of solar farms and wind farms. The energy sold in the
spot market mostly originates from traditional energy sources,
e.g., coal and gas, and is thus more costly. Though the energy
of RES is potentially cheaper and cleaner than that of the spot
market, the former is subject to uncertainty and intermittence
owing to the stochastic temporal variations of wind and solar en-
ergy. Thus, when the realization of the renewable energy is not
enough, the operator may need to purchase extra energy from the
spot market to compensate the energy deficit. Aftering procur-
ing the energy from the RES and the spot market, the operator
sells it to the end users by setting appropriate prices. The users’
demand response (DR) depends on the announced prices: high
prices suppress demands while low prices enhance demands.
In this paper, we consider from the operator’s perspective and
our goal is to maximize its (expected) profit from procuring
and selling the energy. In the following, we present the system
model and formulate the optimization problems in detail.

A. Renewable Energy Source

In existing works [4]–[7], [9]–[14], [16], renewable energy
is usually modeled as random variables with fixed distribution
or deterministic quantities with partial knowledge, e.g., pre-
dictable within some time window or known to be located in
some uncertainty set. In other words, the renewable energy is
either stochastically or deterministically given and it is not sub-
ject to design and optimization. Additionally, in most existing
models, renewable energy does not incur any cost. In practice,
though the operation of RES facilities, e.g., solar panel and
wind turbine, incurs little cost, their construction and mainte-
nance necessitate remarkable infrastructure cost. For example,
according to the website “Solar Power Authority”, the infras-
tructure cost of solar panels is between $7–$9 per watt, which
is approximated as $8000 per kW. The typical lifespan of solar
panels is around 20 years. In each year, we assume that 75%
of days are clear days with sufficient sunshine and roughly one
half of each day is daytime. Thus, a solar panel can work for
20×365×34×12 =65700 hours. Thus, the typical cost of a
solar panel is $8000/65700=$0.1218 per kW·h. As compar-
ison, in the United States, Hawaii residents have the highest
electricity rate of $0.3734 per kW·h while Louisiana residents
have the lowest of $0.0837 per kW·h [17]. These numbers sug-
gest that the infrastructure cost of RES is comparable with the
cost of traditional energy. Thus, the cost of RES should not
be neglected when incorporating renewables into power sys-
tems. Since renewable energy is random and intermittent, we
cannot control its exact realization at each time. However, we
can control theexpectedamount of harvested renewables by
constructing appropriate amount of RES facilities. Therefore,
different from most existing works, in this paper, we are mo-
tivated todesignthe expected amount of renewables optimally
by taking the (infrastructure) cost of RES into account.
Consider a certain time frame, e.g., one hour or one day. The

amount of renewable energy harvested during this time frame
is a random variableR. For simplicity, we assume thatRis
uniformly distributed over some interval[0,r], wherer≥0is

Fig. 2. Justification of the uniform distribution of renewable generation (left)
and the exponential form of the demand response function (right). (a) Histogram
of wind generation [40]. (b) Per customer electricity sale versus prices [41].

the maximum possible realization of renewables. We note that
this uniform distribution can serve as an approximation of the
distribution of real-world renewable generation. To verify this
claim, we make use of the wind power data (made publicly avail-
able by the Australian Electricity Market Operator) of several
wind farms in south-east Australia from 2012 to 2013 [40]. In
Fig. 2(a), we plot the histogram of the normalized wind power
generation data and it fits well with a uniform distribution. We
observe that, though the distribution of the real data is compli-
cated with several peaks and valleys, it can be approximated by
the uniform distribution reasonably well. In practice, if more ac-
curate approximation is needed, one can use piecewise uniform
distribution (i.e., the support is split into several intervals and
the probability density function (PDF) is constant within each
interval) in lieu of uniform distribution. The analysis in this pa-
per can be extended to the scenario with piecewise uniformly
distributed renewable generation at the cost of cluttered nota-
tions. Actually, in such a scenario, the integrals in the proofs
in Section III-C need to be split into multiple integrals over
individual intervals of the piecewise uniform distribution.
We denote the unit cost of the expected renewables asα>0.
Thus, the cost of the RES isαE[R]=αr2. Here,ris a design
variable to be chosen by a private party such as an investor or
a system planner, who owns the RES infrastructures. This can
be achieved by constructing a certain amount of RES facilities.
Note thatris determined in the planning phase of the power
system as it is related to the construction of RES infrastruc-
tures. Once determined, its value will be used for the following
multiple time frames, e.g., one year. Defineθ=R

r to be the
realization factor, which is a random variable uniformly located
on[0,1]. The realization factorθchanges across time frames
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since renewables are intermittent and time-varying depending
on the weather conditions. When choosingrin the planning
phase, the private party does not know the realizations ofθin
later time frames. In the planning phase, the private party is only
aware of the statistical distribution (uniform distribution in this
case) ofθ.

B. Spot Market

Afterris chosen and the planning phase is over, the power
system starts operating in the following multiple time frames.
In each time frame, a newθis realized, i.e., the renewable en-
ergyR=θris realized. After the realization ofθ, the operator
may purchase extra electrical energy from the spot market to
compensate the energy deficit if the realization ofθis low. The
unit price of the energy from the spot market isβ>0. Denote
the amount of energy purchased from the spot market ass≥0,
which is chosen by the operator. Thus, the operator paysβsto
the spot market. Note that, different from the amount of renew-
ablesR,sis a deterministic quantity without any randomness.
Usually, the unit priceβin the spot market is higher than that
of the RESαas the energy in the spot market mainly originates
from traditional energy sources. Notice thatrandsare decided
at different phases:ris determined in the planning phase before
θis realized whilesis determined in each time frame afterθ
is realized for this frame. This information gap is the advantage
of spot market over the RES. The operator should weigh this
information gap and the price gap betweenα, βjudiously to
make the optimal decisions.

C. Pricing

In each time frame, aftersis chosen, the operator hasθr+s
amount of energy supply. Then, it sells the energy to the end
users through pricing and demand response. Suppose there are
nusers in total. If the operator announces a unit energy price
ofpito useri, the demand response of useriisdi(pi), which
is some monotonically decreasing function ofpi. In this paper,
for mathematical tractability, we assume an exponential form
of demand response functiondi(pi)=ξie

−φipi, whereξiand
φiare two positive constants describing the price-demand char-
acteristic of useri. This exponential demand response function
can be used as an approximation of the real-world price-demand
relations. To validate this approximation, we make use of the an-
nual retail sales data (by state and utility company) of electricity
in the U.S. in 2016 [41]. The relations between the price and the
per customer sale are plotted in Fig. 2(b), and an exponential
functionaebxis fitted, wherea=22.35andb=−0.05333.We
remark that the exponential function can fit the real data rea-
sonably well, considering that the exponential function is very
simple with only two parameters. This justifies the choice of
exponential demand response function. Given the demand re-
sponse functiondi(pi), the operator obtainspiξie

−φipiamount
of revenue from useri. In general, different users have different
price-demand parameters, i.e.,(ξi,φi)=(ξj,φj),∀i=j.This
captures the heterogeneity of real-world users. Facing with the
same price, different users often have different demands as they
may have different living standards and economic conditions.

We assume that the operator is aware of the price-demand pa-
rameters(ξi,φi)of each nodei. This assumption is reasonble
as these parameters can be learned from the past power usage
history of the users. Since users are heterogeneous, the operator
uses differentiated pricingp=[p1, ..., pn]

T, i.e., it sets different
prices for different users, to obtain more revenue. Intuitively, if
auserihas high demand, i.e.,ξiis large and/orφiis small, the
operator will set high price for her to extract more profit from
her. Thus, the differentiated pricing schemepcan potentially
enhance the fairness of energy allocation among the heteroge-
neous users: it suppresses high demands of individual users and
encourages low demand users to consume more energy. We note
that various setups/methods of differentiated pricing have been
used worldwide and have been studied in the research literature.
For instance, in 2004, the National Development and Reform
Commission of China established a policy permitting differen-
tial electricity pricing for high energy-consuming industries in
which electricity prices can be set based on the energy efficiency
level of each enterprise. The differentiated energy tarrifs are de-
signed to phase-out energy inefficient enterprises by imposing
high electricity prices on them. Various differentiated pricing
schemes have been proposed and analyzed in the research lit-
erature to penalize enterprises with high energy consumptions
[42], [43]. Further, differentiated rate plans have been proposed
in [44] for residential electricity based on individual customers’
consumption behaviors. Spatially varying differential pricing
schemes have also been applied to electric vehicle charging in
[45]. Another example of differentiated pricing is the locational
marginal pricing (LMP), which has been used in the U.S. and
investigated in the literature extensively [46], [47]. In light of
the above, differentiated pricing considered in this paper can
be applied to industrial enterprises, electric vehicles, and even
residential electricity in the future.
Additionally, we remark that electricity prices are conse-

quences of many complicated factors in real-world markets.
The U.S. Energy Information Administration (EIA) has iden-
tified several key factors that influence the electricity prices,
including costs of fuels, costs of power plants, weather condi-
tions, and costs of the transmission/distribution systems [48].
The operators of the power systems, e.g., the utilities, adjust
electricity prices based on these factors. In the model of this pa-
per, the costs of fuels can be incorporated into the energy price
βof the spot market. The costs of power plants are embodied by
the unit cost of renewable infrastructureαand can be controlled
by the design of renewable deploymentr. The time-varying ran-
dom weather conditions are captured by the random renewable
realization factorθ, which varies across time frames. The costs
of transmission/distribution systems can be partially reflected
by the spot market priceβ. More comprehensively speaking,
the costs of transmission systems should depend on the topolo-
gies of the underlying power networks and the electricity prices
need to be set to satisfy the operation constraints of the power
networks [49]. In this paper, for simplicity, we do not take into
account the effects of power network constraints and only focus
on the optimal design of renewable deployment. The impact of
power networks is a promising direction for future work. The
notations of the system model are summarized in Table I.
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TABLE I
NOTATIONS OF THEMODEL

D. Optimization Problems

Based on the above system model, the private party (e.g., an
investor owning the RES) aims at solving the following opti-
mization problem to maximize the expected profit:

Maximizer≥0Eθ[w(θ, r)], (1)

wherew(θ, r)is the profit with fixedrandθand the correspond-
ing optimalsandp. The computation of the functionw(θ, r)is
through the following optimization problem:

w(θ, r)= sup
s∈R,p∈Rn

n

i=1

piξie
−φipi−βs−

αr

2

θr+s≥

n

i=1

ξie
−φipi,s≥0,p 0 , (2)

which is used by the operator to determine the optimalsand
p. The objective function in (2) is the total revenue from all
users substracted by the costs from the RES and the spot market
while the constraint points to the fact that the total procured
energy should be no less than the total sold energy. We note
that real-world power systems must balance the supply and the
demand, i.e., the total procured energy must be equal to the
total sold energy, so that the first constraint in (2) must hold
with equality in practice. Nevertheless, in most practical sce-
narios, surplus energy or oversupply can usually be disposed
of at negligible cost. For example, the operator can cut some
solar panels off from the grid for supply curtailment [50]. Better
solutions include sharing/selling the excessive energy to other
utilities or storing surplus energy if local storages are available.
As such, in problem (2), we allow the total procured energy to
be larger than the total sold energy. Moreover, in (2), we restrict
the prices to be nonnegative since excessive energy can be han-
dled at negligible expense and the operator never needs to pay
(i.e., sell at negative prices) to get rid of surplus energy. Addi-
tionally, we note that the cost of renewable energy generation
mainly comes from the infrastructure cost, which does not de-
pend on the specific renewable realization factorθin a certain
time frame. Instead, this infrastructure cost is proportional to
theexpectedrenewable generationr2(with proportion factorα),
which is directly related to the quantity/quality of infrastruc-
ture construction. The renewable realization factorθdepends
on the weather conditions and is not related to the infrastructure
directly. As such, in the objective function of (2), the cost of
renewable energy isαr2, which does not depend onθ.

Further, the computation ofw(θ, r)in (2) can be decomposed
into two optimization problems:

w(θ, r)=sup
s≥0
{h(θr+s)−βs}−

αr

2
, (3)

where the functionh(·)is defined as:∀t>0,

h(t)= sup
p∈Rn

n

i=1

piξie
−φipi

n

i=1

ξie
−φipi≤t,p 0 .

(4)

The derivation of this optimization decomposition is given as
follows. Starting from (2), we have:

w(θ, r)

(a)
= sup
s∈R,p∈Rn

n

i=1

piξie
−φipi−βs

θr+s≥

n

i=1

ξie
−φipi,s≥0,p 0 −

αr

2
(5)

(b)
=sup
s≥0

sup
p∈Rn

n

i=1

piξie
−φipiθr+s≥

n

i=1

ξie
−φipi,p 0

−βs −
αr

2
(6)

(c)
=sup
s≥0
(h(θr+s)−βs)−

αr

2
, (7)

where in (a) we move the termαr
2 out of thesupsince it does

not depend onsandp; in (b) we first holdsfixed and optimize
overponly, and then optimize overs≥0(the termβsis taken
out of the innersupbecause it does not depend onp); in (c) we
simply make use of the definition of the functionh(·)in (4).
Our goal is to make optimal decisions onr,sandpby solv-
ing the two-stage optimization problem (1) and (2), where the
former is before the realization ofθand the latter is after it. To
this end, we need to sequentially solve the optimal pricing prob-
lem in (4), the optimal energy procurement from spot market
in (3) and the optimal design of RES penetration in (1), which
will be accomplished in Section III. Note that the optimalsand
pdepends on the realization ofθbecause the purchase from
the spot market and pricing happen after the random renewable
energy is realized.
Problem (1) and problem (2) are solved at different

timescales. An instance of problem (2) with a particular realiza-
tion ofθis solved in each time frame, e.g., each hour or each day.
Its solution{s∗,p∗}is used in this time frame only. In contrast,
problem (1) is solved at the planning phase of the power system
(becausercorresponds to the infrastructure construction) and
its solutionr∗will be used for multiple time frames, e.g., one
year. For instance, a practical timescale of problems (1) and (2)
can be as follows. The optimalr∗is decided for one whole year
by constructing an appropriate amount of RES infrastructures.
Afterwards, in each day of the following year, given the previ-
ously determinedrfor the whole year and the realization ofθ
in this day, the operator solves (2) and makes optimal decisions
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s∗andp∗, which are used in this day only. Notice that problems
(3) and (4) are nothing but equivalent reformulation of problem
(2) and they are solved at the same timescale, i.e., each time
frame.
We note that, in practice, model parameters ξi,φiandβ

can be time-varying and/or random, which necessitates some
modifications to the problem formulation in (1) and (2). Suppose
these parameters are time-varying and denote their realizations
at time frametasξi,t,φi,tandβt, respectively. Define their

time-averages as̄ξi=
1
T

T
t=1ξi,t,̄φi=

1
T

T
t=1φi,t, and̄β=

1
T

T
t=1βt, whereTis the total number of time frames. Though

the parametersξi,t,φi,tandβtmay be random, we assume that
reasonably accurate estimates of their time-averages̄ξi,̄φiand
β̄are available in the planning phase based on past histories
and patterns. Then, in the planning phase, these time-average
quantities are used to compute the optimalr∗by solving a
modified version of problem (1), i.e.,

r∗= arg max
r≥0

Eθ[̄w(θ, r)], (8)

where

w̄(θ, r)= sup
s∈R,p∈Rn

n

i=1

pīξie
−φ̄ipi−β̄s−

αr

2

θr+s≥

n

i=1

ξ̄ie
−φ̄ipi,s≥0,p 0 . (9)

Afterr∗is determined, in each time framet, the operator ob-
serves the current values ofξi,t,φi,t,βtand the current renew-
able realization factorθt. Then, she computes the optimals

∗
t

andp∗tby solving a modified version of problem (2), i.e.,

(s∗t,p
∗
t) = arg max

s∈R,p∈Rn

n

i=1

piξi,te
−φi,tpi−βts−

αr∗

2

θtr
∗+s≥

n

i=1

ξi,te
−φi,tpi,s≥0,p 0 .(10)

We note that the optimization methods for problems (1) and (2)
can be readily transformed to those of problems (8) and (10) with
minor notation adaptations. In the analytical part of this paper,
for simplicity, we still stick to the assumption thatξi,φiandβ
are time-invariant deterministic quantities because the main goal
of this paper is to examin the optimal deployment of renewables
instead of studying the dynamics of user demands and spot
market prices. Nevertheless, numerical experiments based on
real-world time-varying data will be conducted in Section IV,
confirming the applicability of the proposed algorithm to time-
varying parameters.
Additionally, in practice, multiple types of RESs (e.g., solar

power, wind power and hydropower) may be used simultane-
ously to reduce the volatility of renewable generation. Different
RESs can have different costs per expected renewable genera-
tion, which can be accommodated by some adaptation of the
problem formulation (1) and (2) as follows. Supposemtypes
of RESs are used and the cost per expected renewable genera-
tion of RESjisαj. Denote the maximum possible renewable

generation and the renewable realization factor of RESjas
rjandθj, respectively, whereθjis uniformly distributed over
[0,1]. Componentsrjandθjof all RES types are stacked as
vectorsr∈Rm andθ∈Rm, respectively. In such a case, the
two-stage optimization problems (1) and (2) become:

Maximizer 0Eθ[w(θ, r)], (11)

where the profitw(θ, r)is given as:

w(θ, r)= sup
s∈R,p∈Rn

n

i=1

piξie
−φipi−βs−

m

j=1

αjrj
2

m

j=1

θjrj+s≥

n

i=1

ξie
−φipi,s≥0,p 0 .

(12)

Analogous to (3) and (4), optimization problem (12) can also
be decomposed into two problems with respect tosandp,
respectively:

w(θ, r)=sup
s≥0

⎧
⎨

⎩
h

⎛

⎝s+

m

j=1

θjrj

⎞

⎠−βs

⎫
⎬

⎭
−

m

j=1

αjrj
2
,(13)

where the functionh(·)is defined in (4). In principle, the analysis
and solution methods of problems (1) and (2) can be extended
to those of problems (11) and (12) for multiple types of RESs,
though the notations will be more cluttered.
Lastly, if the assumptions of uniformly distributed renew-
able generation and exponential demand response functions do
not hold, the detailed/quantitative results in this paper, e.g.,
Algorithm 1 to be presented, may need to be modified. Never-
theless, most of the structural/qualitative results, e.g., the thresh-
old structures to be stated in Section IV, are still true, i.e., they
are robust to these assumptions.

III. OPTIMALDECISIONS

In this section, we derive the optimal decisions of the renew-
able energyr, the purchase from spot marketsand the pricing
schemepby solving the optimal pricing problem in (4), the op-
timal purchase from spot market in (3) and the optimal design
of RES penetration in (1) sequentially. Accordingly, a compu-
tationally efficient algorithm is proposed to find the optimal
decisions. The proposed algorithm only involves closed-form
computation and simple bisection search.

A. Optimal Pricing

In this section, we solve the optimal pricing problem in (4),
which can be rewritten as:

Minimizep∈Rn f(p):=−

n

i=1

piξie
−φipi

subject to
n

i=1

ξie
−φipi≤t,

p 0,

(14)
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wheret>0is the problem parameter representing the total
available energy supply from both the RES and the spot market.
We note that the objective functionf(p)is not a convex function.
Hence, problem (14) is a non-convex optimization problem,
for which strong duality does not hold in general [51], [52].
However, in the sequel (Proposition 1), we show that strong
duality actually holds for problem (14) and its solution can be
obtained in pseudo-closed-form by using duality theory. Denote
the optimal point and the optimal objective function value of
problem (14) asp∗andf∗=f(p∗), respectively. The solution
of problem (14) is given by the following result.
Proposition 1:The solution to problem (14) is as follows.
1) Ift≤e−1 n

i=1ξi, then the optimal point is given by
p∗i=λ

∗+ 1
φi
,i=1, ..., n, whereλ∗≥0is the unique solution

to the following equation:

n

i=1

ξie
−φiλ

∗−1=t, (15)

and the corresponding optimal value is:

f∗=−

n

i=1

ξi
φi
e−φiλ

∗−1−λ∗t. (16)

2) Ift>e−1 n
i=1ξi, then the optimal point is given by

p∗i=
1
φi
,i=1, ..., n, and the corresponding optimal value is:

f∗=−e−1
n

i=1

ξi
φi
. (17)

Proof:The proof is presented in Appendix A.
In problem (14),tis the total available energy supply at the

operator. According to the system model or equation (3), we
know thatt=θr+s. When the total supplytis large enough
so that case (2) of Proposition 1 takes place, we observe that the
total energy will not be sold out. In other words, in case (2), with
optimal pricing, the total supplytis strictly larger than the total
demands from all end users. The reason is that, to sell all energy,
i.e., to elicit large demands from users, the prices need to be very
low, which strongly hurt the revenue of the operator and are thus
not optimal. Further, we note that the optimal pricesp∗exhibit
interesting structures. When the total supplytis very large, i.e.,
in case (2) of Proposition 1,p∗is a constant vector and does not
decrease witht. The reason is that further loweringp∗will hurt
the revenue. On the other hand, when the total supplytis small,
i.e., in case (1) of Proposition 1, sinceλ∗decreases witht(c.f.
(15)), so do the optimal pricesp∗. This is reasonable because
lowering prices can boost user demands, which can help sell the
increasing supplyt.
To refer to the solution of equation (15) more compactly, we

make the following definition.
Definition 1:Defineδ:(0,+∞)→R to be the inverse

function of n
i=1ξie

−φix−1, i.e., for anyy>0,δ(y)is the
unique solutionxof the following equation:

n

i=1

ξie
−φix−1=y. (18)

Note that n
i=1ξie

−φix−1is a strictly decreasing function
ofx. Thus, its inverse functionδ(·)is well-defined and is also
strictly decreasing. By definition, we immediately know:

lim
y→0+

δ(y)=+∞, lim
y→+∞

δ(y)=−∞, (19)

δ e−1
n

i=1

ξi =0. (20)

According to Proposition 1 and Definition 1, the functionh(·)
defined in (4) can be written in the following compact form. For
anyt>0:

h(t)=

n
i=1

ξi
φi
e−φiδ(t)−1+tδ(t),ift≤e−1 n

i=1ξi,

e−1 n
i=1

ξi
φi
, ift>e−1 n

i=1ξi.

(21)

The physical meaning ofh(t)is the maximal revenue the opera-
tor can obtain from the end users through differentiated pricing
whentunit of energy supply is available.

B. Optimal Procurement From the Spot Market

Next, givenθandr, we compute the optimal decision on
purchasing energy from the spot market by solving the problem
in (3), i.e.,

Maximizes≥0q(s), (22)

whereq(s):=h(θr+s)−βs. Note that the dependence of
q(s)onθandris implicit. The physical meaning ofq(s)is
the partial profit, i.e., the revenue collected from the users sub-
stracted by the energy purchasing cost from the spot market.
This partial profit does not contain the cost of the RES, which
is independent ofs. Define the optimal point and the optimal
value of (22) ass∗andq∗=q(s∗), respectively. The solution to
problem (22) is given in the following result.
Proposition 2:The solution to problem (22) is given as fol-

lows.
1) Ifθr > e−1 n

i=1ξi, then the optimal point iss
∗=0and

the corresponding optimal value isq∗=e−1 n
i=1

ξi
φi
.

2) If n
i=1ξie

−φiβ−1≤θr≤e−1 n
i=1ξi, then the optimal

point iss∗=0and the corresponding optimal value is:

q∗=

n

i=1

ξi
φi
e−φiδ(θr)−1+θrδ(θr). (23)

3) Ifθr < n
i=1ξie

−φiβ−1, then the optimal point and the
corresponding optimal value are given as:

s∗=

n

i=1

ξie
−φiβ−1−θr, (24)

q∗=
n

i=1

ξi
φi
e−φiβ−1+βθr. (25)

Proof:The proof is presented in Appendix B.
From Proposition 2, we can write the optimal purchase from

the spot market compactly ass∗= n
i=1ξie

−φiβ−1−θr
+
,

where[x]+= max{x,0}. This suggests a threshold structure
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of the optimals∗: the operator should purchase energy from the
spot market if and only if the realized renewable energyθris
less than a constant threshold of n

i=1ξie
−φiβ−1. Further, the

optimal partial profitq∗also possesses interesting structures.
When the renewable realizationθris very large, i.e., in case (1)
of Proposition 2,q∗is a constant independent ofθandr.The
reason is that, in such a case, the user demands are saturated even
if no energy is purchased from the spot market (c.f. case (2) of
Proposition 1). Thus, extra renewable supply will be wasted and
cannot boost the partial profitq∗. When the renewable realization
θris medium, i.e., in case (2) of Proposition 2,q∗depends on
θrnonlinearly through (23). In addition, when the renewable
realizationθris small, i.e., in case (3) of Proposition 2,q∗

increases linearly withθr.

C. Optimal Design of RES Penetration

According to (3), we knoww(θ, r)=q∗−αr2, whereq
∗is

given in Proposition 2 and depends onθ, rimplicitly. To sim-
plify notations, we define the following four positive constants
μ1,μ2,π1,π2:

μ1=

n

i=1

ξie
−φiβ−1,μ2=e

−1
n

i=1

ξi, (26)

π1=
n

i=1

ξi
φi
e−φiβ−1,π2=e

−1
n

i=1

ξi
φi
. (27)

With these definitions, we immediately know:

δ(μ1)=β, δ(μ2)=0, (28)

which will be used frequently in later analysis. Combining the
definitions in (26), (27) and Proposition 2, we can writew(θ, r)
compactly as:

w(θ, r)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π1+βθr−
αr
2, ifθr < μ1,

n
i=1

ξi
φi
e−φiδ(θr)−1+θrδ(θr)−αr2,

ifμ1≤θr≤μ2,

π2−
αr
2, ifθr > μ2.

(29)

We further define another positive constant , which will be used
later:

=e−2
n

i,j=1

ξiξjφj
φi+φj

1

φi+φj
−

1

φi+φj
e−(φi+φj)β

−βe−(φi+φj)β . (30)

In this section, we compute the optimal RES penetrationrby
solving the optimization problem (1). To this end, we first eva-
lute the objective function of (1), i.e.,Eθ[w(θ, r)], which is
accomplished in the following lemma.
Lemma 1:As a function ofr,Eθ[w(θ, r)]satisfies the fol-

lowing statements.
1) Whenr>μ2,wehave:

E[w(θ, r)] =π2−
αr

2
−
βμ21
2r
−
r
, (31)

which is a concave function over the intervalr∈[μ2,+∞).

2) Whenμ1≤r≤μ2,wehave:

E[w(θ, r)] =−
αr

2
−
βμ21
2r
+βμ1+π1+

r

μ1

δ(μ)dμ

−
1

r

r

μ1

δ(μ)μdμ, (32)

which is a concave function over the intervalr∈[μ1,μ2].
3) When0≤r<μ1,wehave:

E[w(θ, r)] =π1+
(β−α)r

2
. (33)

Proof:The proof is presented in Appendix C.
Based on Lemma 1, we can solve (1) in the following propo-
sition, in which we identify three regimes for the cost of RES.
Proposition 3:The optimal pointr∗of the optimal RES pen-

etration problem (1) is given as follows.

1)(Low RES Cost Regime)When0<α≤
βμ21+2

μ22
, the opti-

mal point is:

r∗=
βμ21+2

α
. (34)

2)(Medium RES Cost Regime)When
βμ21+2

μ22
<α≤β,the

optimal point is:

r∗=

n

i=1

ξie
−φix

∗−1, (35)

wherex∗is the unique solution of the following equation over
the intervalx∈[0,β]:

e−2
n

i,j=1

ξiξjφj
φi+φj

x+
1

φi+φj
e−(φi+φj)x

− β+
1

φi+φj
e−(φi+φj)β

−
α

2

n

i=1

ξie
−φix−1

2

+
βμ21
2
=0. (36)

(3)(High RES Cost Regime)Whenα>β, the optimal point
is:r∗=0.
Proof:The proof is presented in Appendix D.
From Proposition 3, the optimal pointr∗can be computed
in closed-form in the low and high RES cost regimes. In the
medium RES cost regime, defineψ(x)as the L.H.S. of (36). We

noteψ(0) =μ22(−
α
2+μ22

+
βμ21
2μ22
)≤0andψ(β)=

μ21(β−α)
2 ≥

0. Therefore, equation (36) can be solved very efficiently by
using simple bisection method. Besides, in accordance with the
intuition, in the high RES cost regime, i.e., when the unit cost
of renewable energy is larger than the unit price of energy in
spot market, no investment in RES should be made. This ob-
servation should be true even if the assumptions of uniformly
distributed renewable generation and exponential demand re-
sponse functions made in Section II do not hold. This is because
the operator always prefers deterministic energy procurement
(spot market) to random energy generation (RES), as long as the
price of the former is lower than that of the latter. This holds true
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Algorithm 1:Computing the optimal decisions.

Inputs:
The unit (infrastructure) cost of RES:α
The unit energy price of the spot market:β
The price-demand parameters of users:(ξi,φi),
i=1, ..., n
The realization factor (revealed afterris determined):θ

Outputs:
The optimal RES penetration:r∗

The optimal energy purchase from the spot market:s∗

The optimal pricing vector:p∗

1: Compute the constantsμ1,μ2,π1,π2,according to
(26), (27) and (30).
////////////////////////////Computation ofr∗////////////////////////////

2:ifα≤
βμ21+2

μ22
then

3: Computer∗as in (34).

4:else if
βμ21+2

μ22
<α≤βthen

5: Solve (36) by using bisection method to getx∗. Then
computer∗according to (35).

6:else
7: Setr∗=0.
8:end if
////////////////////////////Computation ofs∗////////////////////////////

9: The realization factorθis realized.
10: Computes∗= n

i=1ξie
−φiβ−1−θr∗

+
.

////////////////////////////Computation of
p∗////////////////////////////

11:ifθr∗+s∗≤e−1 n
i=1ξithen

12: Solve n
i=1ξie

−φiλ
∗−1=θr∗+s∗using bisection

method to obtainλ∗≥0. Setp∗i=λ
∗+ 1

φi
,

i=1, ..., n.
13:else
14: Setp∗i=

1
φi
,i=1, ..., n.

15:end if

regardless of the specific distribution of renewable generation
and the functional forms of demand response characteristics.

D. Summary of the Algorithm

Based on Propositions 1, 2 and 3, we summarize the com-
putation procedure of the optimal decisionsr∗,s∗andp∗in
Algorithm 1. We note that, in practice,r∗,s∗,p∗are computed
at different timescales.s∗andp∗are computed once in each
time frame, e.g., each hour or each day, whiler∗is computed
in the planning phase and remains the same for multiple time
frames, e.g., one year. For instance, in the planning phase, the
private party (an investor or planner) uses Algorithm 1 to com-
pute the optimalr∗and constructs the corresponding amount
of RES infrastructures. Then, thisr∗remains the same for the
following whole year. In each day of the following year, after
the realization ofθin this day is revealed, the operator uses
Algorithm 1 to compute the optimals∗andp∗, which are used
in this day only. In the next day, the realization ofθchanges and
the operator uses Algorithm 1 again to compute the new optimal
s∗andp∗.

Fig. 3. The impact of the RES penetrationron the expected profit in low,
medium and high RES cost regimes.

Fig. 4. The impact of the unit costαof renewable energy and the unit price
βof the energy from the spot market. (a) The impact ofα,βon the optimal
RES penetrationr∗. (b) The impact ofα,βon the optimal expected profit
E(w(θ, r∗))

Further, as stated in Section II, the model parametersξi,φi
andβcan be time-varying in practice. In such a case, some minor
modifications of Algorithm 1 are needed. Specifically, denote
the values of these parameters at time frametasξi,t,φi,tandβt.
Denote their time-averages asξ̄i,̄φiand̄β, respectively (defined
in Section II). In the partComputation ofr∗of Algorithm 1
(planning phase), we replaceξi,φiandβwith their time-average
versionsξ̄i,̄φiandβ̄, respectively. Additionally, in each time
framet, the partsComputation ofs∗andComputation ofp∗of
Algorithm 1 are executed by replacingξi,φiandβwith their
current values at time framet, i.e.,ξi,t,φi,tandβt.

IV. NUMERICALEXPERIMENTS

In this section, simulations are implemented to verify the op-
timality of Algorithm 1 and the solution structures of problems
(1) and (2). In all experiments, we consider a power system de-
picted in Fig. 1 withn= 100end users and set the price-demand

parameters asξi=
√
i,φi=1+

4(i−1)
99 ,i=1, ...,100. These

user parameters are chosen for demonstration purpose only and
our observations in this section hold with general parameters.
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Fig. 5. Impact of the realization factorθ. (a) The impact ofθon the realized profitw(θ, r∗). (b) The impact ofθon the optimal spot market purchases∗.(c)The
impact ofθon the optimal pricep∗50for user 50.

First, we demonstrate the importance of theoptimaldesign
of RES penetration. To this end, we vary the RES penetration
rand study its impact on the expected profitE[w(θ, r)].From
[17], we know that the electricity rate of New York residents is
$0.1762 per kW·h. Thus, we choose the unit price of energy from
the spot market to beβ=0.1762. We consider three possible
values of the unit cost of renewable energy:α=0.07,α=0.14
andα=0.21, which correspond to the low, medium, and high
RES cost regimes, respectively, according to Proposition 3. As
explained in Section II, we note that the typical cost of renewable
energy from solar panels is around $0.1218 per kW·h, which is
at the same scale of the chosen values forα. For these three
values ofα, the plots of the expected profit versus the values of
rare given in Fig. 3, in which the expectation is computed as the
average of 10000 Monte Carlo trials. According to Proposition
3, forα=0.07,0.14,0.21, the values of the optimalr∗are
300.5321, 203.445 and 0, respectively, which are in accordance
with the maximal points of the three curves in Fig. 3. This
confirms the optimality of Algorithm 1 in choosingr. Moreover,
we observe the importance of optimal design of RES penetration
from Fig. 3. Specifically, in the low and medium RES cost
regimes, some renewables should be incorporated to improve
the profit, e.g., whenα=0.07, appropriate RES penetration
can improve the expected profit fromE[w(θ,0)] = 50.31to
E[w(θ, r∗)] = 62.13. The reason is that, in low and medium
RES cost regimes, the unit cost of RES is lower than the unit
price in the spot market. However, renewable energy should not
be incorporated too much since its realization is uncertain and
the extra supply, if realized, can only be sold at low prices or
even wasted (c.f. Proposition 1). In the following experiments,
the renewable deploymentris chosen to be the optimalr∗by
Algorithm 1 unless otherwise noted.
Next, we investigate the impact of the unit costαof renewable

energy and the unit priceβof the energy in the spot market.
From [17], we know that, in the US, Hawaii residents have
the highest electricity rate ($0.3734 per kW·h) while Louisiana
residents have the lowest ($0.0837 per kW·h). Togerther with
New York residents’ rate of ($0.1762 per kW·h, we consider
three possible values of the unit price of energy from the spot
market:β=0.0837,β=0.1762andβ=0.3734. For each of
these three values ofβ, we plot the optimal RES penetrationr∗

versus the unit costαof renewables, as illustrated in Fig. 4(a).
For fixedβ, we observe a threshold structure ofr∗whenα
varies. Whenαincreases,r∗first decreases smoothly (since the
renewable energy becomes more and more expensive) and then
drops to zero suddenly. From Fig. 4(a), we see that the threshold
ofαforr∗to drop to zero is the correspondingβof the curve. The

Fig. 6. The impact ofαandβon the expected optimal pricing vectorE[p∗].

reason is that, whenαis larger thanβ, the system enters the high
RES cost regime andr∗becomes zero (c.f. Proposition 3). In
addition, for fixedα, by comparing the three curves in Fig. 4, we
observe thatr∗increases withβ. The reason is that, as the energy
from the spot market becomes more expensive, more investment
should be made in RES. Furthermore, we examine the impact
ofα, βon the optimal expected profitE[w(θ, r∗)]in Fig. 4(b).
For fixedβ, by increasingα, we see an analogous threshold
structure of the profit, which first decreases and then remains
constant. The reason is that, as long asαenters into the high RES
cost regime, no investment in RES should be made, i.e.,r∗=0,
and further increase inαwill not affect the profit. Additionally,
we note thatr∗is zero in the high RES cost regime regardless
of the specific distribution of the renewable generation and the
functional forms of the demand response characteristics, i.e.,
robustness to the model assumptions in Section II. Thus, even
if these assumptions do not hold, the aforementioned threshold
structures of the optimal solution are still true.
We further study the influence of the realization factor θ.

Recall that a new value ofθis realized in each time frame, e.g.,
each day or each hour, while the RES penetrationr∗remains
the same for multiple time frames, e.g., one year. So, the impact
ofθreflects how the power system varies daily or hourly for a
given RES penetration levelr∗. Specifically, we setβ=0.1762
and consider three values ofα: 0.07, 0.14 and 0.21, which are in
the low, medium and high RES cost regimes, respectively. The
impact ofθon the realized profitw(θ, r∗)is plotted in Fig. 5(a).
We observe that, in the high RES cost regime, w(θ, r∗)is a
constant independent ofθ. The reason is that, in high RES cost
regime, the optimalr∗is zero and the realization factorθaffects
nothing. We also observe that, in the low RES cost regime,
w(θ, r∗)first increases withθand then saturates, i.e., remains
constant, for large enoughθ. The reason can be explained as
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Fig. 7. Real data based experiment and comparison with heuristic method. (a) Distribution of price-demand parameters of users estimated from real data.
(b) Daily spot prices of wholesale electricity of PJM West (an electricity hub) in 2017. (c) Comparison between Algorithm 1 and the heuristic method.

follows. In the low RES cost regime, the optimalr∗is no less
thanμ2(c.f. Proposition 3). Thus, according to (29), whenθ>
μ2
r∗,w(θ, r

∗)=π2−
αr∗

2, which does not depend onθ(note that
r∗is determined beforeθis realized, i.e.,r∗does not depend on
the realization ofθ). Actually, in such a case, the total supply
tfalls into case 2 of Proposition 1 so that the supply is larger
than demand and any extra supply will be wasted. Thus, further
increase inθwill not enhance the realized profit any more.
Furthermore, we plot the impact ofθon the optimal purchases∗

from the spot market in Fig. 5(b). We observe a similar threshold
structure: for large enoughθ,s∗is zero, i.e., the operator does
not purchase any energy from the spot market. This verifies the
threshold solution structure ofs∗in Proposition 2. Additionally,
in Fig. 5(c), we examine the impact ofθon the optimal price
p∗50for user 50. We remark that, in all RES cost regimes,p

∗
50

remains constant for smallθ. The reason is that, for smallθ,from
Proposition 2, we know thats∗= n

i=1ξie
−φiβ−1−θr∗so that

the total supplyt=s∗+θr∗is a constant n
i=1ξie

−φiβ−1.
Hence, the optimal pricing vectorp∗also remains constant.
In low and medium RES cost regimes, whenθis larger than
a certain threshold,p∗decreases withθ, i.e., more realized
renewable energy helps reduce energy prices at the user side.
We further observe that, asθkeeps increasing, in the low RES
cost regime,p∗50finally saturates at a constant. This corresponds
to case 2 of Proposition 1 and can be explained as follows. In the
low RES cost regime, high penetration of renewables is favored,
i.e.,r∗is large. Thus, whenθis large, the realized renewable
energyθr∗is large so that the total supply satisfies case 2 of
Proposition 1. In such a case, the optimal price of each useriis
a constantp∗i=

1
φi
(p∗50=1/φ50=0.3356in our case).

Next, we investigate the impact ofαandβon the expected
optimal prices of users. We consider two values ofβ: 0.3734
(Hawaii’s rate) and 0.0837 (Louisiana’s rate). We also con-
sider two values ofα: 0.07 and 0.2, which are of the same
scale as the typical unit cost of solar panels (0.1218). Then, we
consider three values of(α, β): (0.07, 0.3734), (0.2, 0.3734),
(0.2, 0.0837), which are in the low, medium and high RES cost
regimes, respectively. The corresponding expected optimal pric-
ing vectors are shown in Fig. 6. Comparison between the three
pricing vectors suggest that the prices at the user side increase
with bothαandβ, i.e., the higher the energy cost/price is, the
higher the prices at the user side are. We further plot the vector
[1/φi]i=1,...,100in Fig. 6 and observe that all pricing vector are
its constant shifts (all curves are parallel). The reason is that
the difference between the optimal prices of two arbitrary users
i, jis alwaysp∗i−p

∗
j=

1
φi
− 1
φj
(c.f. Proposition 1), which is a

constant related toφonly. Thus,∀i, j:p∗i−
1
φi
=p∗j−

1
φj
. So,

p∗i−
1
φi
does not depend oni.

Finally, we apply the proposed Algorithm 1 to real data and
compare it with a heuristic method, which determines renew-
able deployments based on heuristics. To this end, we make use
of the annual retail sales data of electricity in the U.S. (with
state labels) in 2016 [41] (also shown in Fig. 2(b)) and fit an
exponential form demand response functiondi(pi)=̄ξie

−φ̄ipi

for each statei,i=1, ...,42(onlyn=42states have enough
data to fit relatively accurately). Here, each state is regarded as
a user with a specific demand response function. The distribu-
tion of the price-demand parameters(̄ξi,̄φi)of the 42 states is
shown in Fig. 7(a). In addition, the daily spot prices of whole-
sale electricity of PJM West (an electricity hub) in 2017 are
shown in Fig. 7(b) [53] and are regarded as the time-varying
prices{βt}

T
t=1 of the spot market, whereT= 249(the prices

are only available on weekdays). The time-average spot market
price isβ̄= 1

T
T
t=1βt=3.3745and the cost of renewable

energy is set to beα=2.5. In practice, the price-demand pa-
rameters of users can also be time-varying across days. Thus,
fort=1, ..., T, we set the time-varying price-demand param-
eters asξi,t=ξ̄i+ui,tandφi,t=φ̄i+vi,t, whereui,tand
vi,tare uniformly distributed on−

1
5ξ̄i,

1
5ξ̄i and−

1
5φ̄i,

1
5φ̄i,

respectively. The tuple(α,{βt},{ξi,t},{φi,t})based on real
data defines the model setup. According to the discussion in
the end of Section III, time-varying model parameters can be
handled by minor modification of Algorithm 1 as follows. In
the planning phase, the optimal renewable deploymentr∗is
computed by Algorithm 1 based on the time-average param-
eters(α,β̄,{̄ξi},{̄φi}). In this case,r

∗= 319. On the other
hand, without the optimal design of renewable deployment, one
may use a simple heuristic method to determinerheuas fol-
lows. If the price to users is set to bep=1.5α(this price is
used only to get a rough estimate of typical user demands and
the real prices of the heuristic method will be set optimally by
using Algorithm 1), then the average total demand from users
is n

i=1ξ̄ie
−φ̄ip= 669. If we match the expected renewable

generationr2with this total demand, the heuristic renewable de-
ployment isrheu= 1338. Then, in each timet, for both choices
ofr, i.e.,r∗of Algorithm 1 andrheuof the heuristic method,
we use Algorithm 1 to compute the optimal pricesp∗tand the
optimal procurement from spot markets∗tbased on the cur-
rent model parameters at timet. For both Algorithm 1 and the
heuristic method, the time-varying expected profitEθ[wt(θ, r)]
is plotted in Fig. 7(c), wherewtis a time-varying version of the
functionwdefined in (2) by replacingβ, ξi,φiwithβt,ξi,t,φi,t,
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respectively. The expected profits are computed with respect to
two distributions of the renewable realization factorθ, namely
the uniform distribution on[0,1]and the non-uniform distri-
bution of real renewable generation in Australia (c.f. Fig. 2(a))
[40]. We observe that, for both distributions ofθ, the expected
profit of Algorithm 1 is higher than that of the heuristic method,
highlighting the importance of optimal design of renewable de-
ployment advocated in this paper. Moreover, the expected profits
computed from these two distributions ofθare very close. This
further confirms that the uniform distribution can approximate
the distribution of real-world renewable generation well, as has
been justified in Fig. 2(a).

V. CONCLUSION

In this paper, we have studied the joint energy procurement
and demand response in a power system. The operator procures
energy from RESs and the spot market and then sells it to end
users through differentiated pricing. Unlike most existing works
on RES, we take into account the (infrastructure) cost of renew-
ables and design optimal renewable deployment by controlling
the construction of RES facilities in the planning phase. For-
mulating the energy procurement and pricing procedure as a
two-stage optimization problem, we have derived optimal deci-
sions on RES penetration, purchase from the spot market and
user pricing. A computationally efficient algorithm involving
only closed form computation and simple bisection search has
been presented to compute the optimal decisions. Numerical
experiments have been carried out to corroborate the optimal-
ity of the proposed algorithm and the solution structure of the
optimal decisions. This work sheds some light on the optimal
deployment of renewables in the context of energy procurement
and demand response in power grids. One prospective future
direction is to take into account the temporal variations of user
demands and spot market prices more systematically by resort-
ing to practical stochastic models such as Markov processes.
Another promising future direction is to examine the effects of
power network constraints on the optimal design of renewable
deployment.

APPENDIX

A. Proof of Proposition 1

The (partial) Lagrangian of problem (14) can be written as:

L(p,λ)=−

n

i=1

piξie
−φipi+λ

n

i=1

ξie
−φipi−t ,(37)

whereλis the associated multiplier. Forλ≥0, the dual function
is given by:

g(λ)= inf
p 0
L(p,λ) (38)

=
n

i=1

inf
pi≥0

(−pi+λ)ξie
−φipi −λt. (39)

We note:

d

dpi
(−pi+λ)e

−φipi =φie
−φipi pi−λ−

1

φi
. (40)

Thus, thepithat achieves the infimum in (39) is given by:

pi=λ+
1

φi
,i=1, ..., n, (41)

and forλ≥0, the dual function is given by:

g(λ)=−

n

i=1

ξi
φi
e−φiλ−1−λt. (42)

The dual problem of problem (14) is:

Maximizeg(λ)

subject toλ≥0. (43)

Denote the dual optimal point and the dual optimal value as
λ∗andd∗=g(λ∗), respectively. Forλ≥0, we compute the
derivative ofg(λ)as:

g(λ)=

n

i=1

ξie
−φiλ−1−t. (44)

We observe thatg(λ)is a strict increasing function forλ≥0
withg(0) =e−1 n

i=1ξi−tandlimλ→+∞g(λ)=−t<0.
Therefore, we distinguish two situations. (i) Ifg(0)≥0, i.e.,
t≤e−1 n

i=1ξi, then the dual optimal pointλ
∗≥0is the

unique solution ofg(λ∗)=0, i.e.,

n

i=1

ξie
−φiλ

∗−1=t. (45)

(ii) Ifg(0)<0, i.e.,t>e−1 n
i=1ξi, theng(λ)<0,∀λ≥0.

So the dual optimal point isλ∗=0. Since the primal objec-
tive functionf(p)is non-convex, the primal problem (14) is a
non-convex problem, for which strong duality does not hold in
general [51]. Therefore, it is not rigorous to directly use (41) to
obtain the primal optimal point from the dual optimal pointλ∗.
In the following, we verify that strong duality indeed holds for
problem (14) and we can indeed compute the primal optimal
point fromλ∗by using (41). Again, we distinguish two cases.
Case (i):t≤e−1 n

i=1ξi. In this case,λ
∗is determined by

(45) and the dual optimal value isd∗=− n
i=1

ξi
φi
e−φiλ

∗−1−

λ∗t. Define a price vectorpaspi=λ
∗+ 1

φi
,i=1, ..., n. Thus,

n

i=1

ξie
−φipi=

n

i=1

ξie
−φiλ

∗−1=t, (46)

where the last step results from (45). Hence,pis primal feasible.
Furthermore, we have:

f(p)=−

n

i=1

λ∗+
1

φi
ξie
−φi λ

∗+ 1
φi (47)

=−λ∗
n

i=1

ξie
−φiλ

∗−1−

n

i=1

ξi
φi
e−φiλ

∗−1 (48)

=d∗, (49)

where in the last equality we make use of (45). Therefore,

d∗=f(p)
(a)
≥f∗

(b)
≥d∗, (50)



CAOet al.: JOINT ENERGY PROCUREMENT AND DEMAND RESPONSE TOWARDS OPTIMAL DEPLOYMENT OF RENEWABLES 669

in which (a) is due to the primal feasibility ofpand (b) results
from the weak duality of any optimization problems (not neces-
sarily convex) [51]. So,f(p)=f∗=d∗. In other words, strong
duality holds andpis primal optimal.
Case (ii):t>e−1 n

i=1ξi. In such a caseλ
∗=0andd∗=

−e−1 n
i=1

ξi
φi
. Consider the price vectorpdefined aspi=

1
φi
,

i=1, ..., n. Thus,

n

i=1

ξie
−φipi=

n

i=1

ξie
−1<t, (51)

which implies the primal feasibility ofp. Moreover,f(p)=
− n

i=1
ξi
φi
e−1=d∗. Thus, we haved∗=f(p)≥f∗≥d∗,in

which the first inequality is due to the primal feasibility ofpand
the second inequality means weak duality. Therefore,f(p)=
f∗=d∗, i.e., strong duality holds andpis primal optimal.
Summarizing cases (i) and (ii) concludes Proposition 1.

B. Proof of Proposition 2

We first distinguish two cases.
Case (1):θr > e−1 n

i=1ξi. In this case, for anys≥0,we

haveh(θr+s)=e−1 n
i=1

ξi
φi
andq(s)=e−1 n

i=1
ξi
φi
−βs,

which decreases withs. Thus,s∗=0andq∗=e−1 n
i=1

ξi
φi
.

Case (2):θr≤e−1 n
i=1ξi. In this case, fors>e

−1 n
i=1

ξi−θr,wehaveq(s)=e
−1 n

i=1
ξi
φi
−βs. Thus, whensis

already larger thane−1 n
i=1ξi−θr, further increasingswill

makeq(s)to decrease. Therefore, to find the maximal point, we
only need to focus on the interval0≤s≤e−1 n

i=1ξi−θr.
Whensis within this interval, we have:

q(s)=

n

i=1

ξi
φi
e−φiδ(θr+s)−1+(θr+s)δ(θr+s)−βs.(52)

Taking derivative, we obtain:

q(s)=−

n

i=1

ξie
−φiδ(θr+s)−1δ(θr+s)+δ(θr+s)

+(θr+s)δ(θr+s)−β (53)

(a)
=δ(θr+s)−β, (54)

where in (a) we make use of the fact n
i=1ξie

−φiδ(θr+s)−1=
θr+sfrom Definition 1. Thus,q(s)is a strictly decreasing
function over the intervals∈[0,e−1 n

i=1ξi−θr]. In addi-
tion, we know thatq(0) =δ(θr)−βandq(e−1 n

i=1ξi−θr)
=−β<0. As such, we further distinguish case (2) into two
cases as follows.

Case (2a): n
i=1ξie

−φiβ−1≤θr. In such a case, from
the monotonicity ofδ,wehaveδ(θr)≤β, i.e.,q(0)≤
0. Thus,q(s)≤0for anys∈ 0,e−1 n

i=1ξi−θr. So,
s∗=0and the corresponding optimal value is:

q∗=

n

i=1

ξi
φi
e−φiδ(θr)−1+θrδ(θr). (55)

Case (2b): n
i=1ξie

−φiβ−1>θr. In such a case, we
haveδ(θr)>β, i.e.,q(0)>0. So the optimal points∗

is the unique solution ofq(s∗)=0over the interval

0,e−1 n
i=1ξi−θr. Thus, solving fors

∗gives:

s∗=
n

i=1

ξie
−φiβ−1−θr. (56)

The corresponding optimal valueq∗=q(s∗)is computed as:

q∗=

n

i=1

ξi
φi
e−φiδ(θr+s

∗)−1+(θr+s∗)δ(θr+s∗)−βs∗

(57)

(a)
=

n

i=1

ξi
φi
e−φiβ−1+β

n

i=1

ξie
−φiβ−1

−β

n

i=1

ξie
−φiβ−1−θr (58)

=

n

i=1

ξi
φi
e−φiβ−1+βθr, (59)

where in (a) we make use of the factδ(θr+s∗)=βand
(56).

Summarizing cases (1), (2a) and (2b) gives the result in
Proposition 2.

C. Proof of Lemma 1

We distinguish three cases.
Case (i):r>μ2. In such a case, according to (29), we com-
pute:

E[w(θ, r)] (60)

=
1

0

w(θ, r)dθ (61)

=

μ1
r

0

π1+βθr−
αr

2
dθ

+

μ2
r

μ1
r

n

i=1

ξi
φi
e−φiδ(θr)−1+θrδ(θr)−

αr

2
dθ

+
1

μ2
r

π2−
αr

2
dθ (62)

(a)
=π2−

π2μ2
r
−
αr

2
+
π1μ1
r
+
βμ21
2r

+
1

r

μ2

μ1

n

i=1

ξi
φi
e−φiδ(μ)−1dμ+

1

r

μ2

μ1

μδ(μ)dμ, (63)

where in (a) we change the integral variable fromθtoμ=θr.
With integration by parts, we obtain:

μ2

μ1

n

i=1

ξi
φi
e−φiδ(μ)−1dμ

=μ
n

i=1

ξi
φi
e−φiδ(μ)−1

μ2

μ1

−
μ2

μ1

μd
n

i=1

ξi
φi
e−φiδ(μ)−1.(64)
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Making use of (28) and the definitions in (26), (27), we can
compute:

μ
n

i=1

ξi
φi
e−φiδ(μ)−1

μ2

μ1

=μ2π2−μ1π1. (65)

Taking derivatives of n
i=1

ξi
φi
e−φiδ(μ)−1, we get:

d

dμ

n

i=1

ξi
φi
e−φiδ(μ)−1

=−

n

i=1

ξie
−φiδ(μ)−1 δ(μ) (66)

=−μδ(μ). (67)

Substituting (65) and (67) into (64) yields:

μ2

μ1

n

i=1

ξi
φi
e−φiδ(μ)−1dμ (68)

=μ2π2−μ1π1+
μ2

μ1

μ2δ(μ)dμ (69)

(a)
=μ2π2−μ1π1−μ

2
1β−2

μ2

μ1

μδ(μ)dμ, (70)

where in (a) we use integration by parts. Furthermore,
μ2

μ1

μδ(μ)dμ (71)

(a)
=

0

β

n

i=1

ξie
−φix−1 xd

n

i=1

ξie
−φix−1 (72)

=e−2
n

i,j=1

ξiξjφj
β

0

xe−(φi+φj)xdx (73)

(b)
= , (74)

where in (a) we change the integral variable fromμtox=δ(μ),
i.e.,μ= n

i=1ξie
−φix−1; in (b) we make use of the definition

of in (30). Substituting (70) and (74) into (63), we obtain:

E[w(θ, r)] =π2−
αr

2
−
βμ21
2r
−
r
, (75)

which is clearly concave over the intervalr∈[μ2,+∞).
Case (ii):μ1≤r≤μ2. In such a case, according to (29), we

compute:

E[w(θ, r)] (76)

=

μ1
r

0

π1+βθr−
αr

2
dθ

+
1

μ1
r

n

i=1

ξi
φi
e−φiδ(θr)−1+θrδ(θr)−

αr

2
dθ (77)

=−
αr

2
+
π1μ1
r
+
βμ21
2r

+
1

r

r

μ1

n

i=1

ξi
φi
e−φiδ(μ)−1+μδ(μ)dμ. (78)

Moreover,

r

μ1

n

i=1

ξi
φi
e−φiδ(μ)−1 dμ (79)

(a)
=μ

n

i=1

ξi
φi
e−φiδ(μ)−1

r

μ1

−
r

μ1

μd

n

i=1

ξi
φi
e−φiδ(μ)−1

(80)

(b)
=r

n

i=1

ξi
φi
e−φiδ(r)−1−μ1π1+

r

μ1

μ2δ(μ)dμ (81)

(c)
=r

n

i=1

ξi
φi
e−φiδ(r)−1−μ1π1+r

2δ(r)−μ21β

−2
r

μ1

δ(μ)μdμ, (82)

where in (a) and (c) we use integration by parts; in (b) we
make use of the facts d

dμ(
n
i=1

ξi
φi
e−φiδ(μ)−1)=−μδ(μ)and

δ(μ1)=β. We want to transform the first summation in (82)
into a form more amenable to differentiation. To this end, we
derive:

r

μ1

δ(μ)dμ (83)

=
δ(r)

β

xd
n

i=1

ξie
−φix−1 (84)

=

n

i=1

ξiφi
β

δ(r)

xe−φix−1dx] (85)

=−

n

i=1

ξiβe
−φiβ−1−δ(r)e−φiδ(r)−1+

1

φi
e−φiβ−1

−
1

φi
e−φiδ(r)−1 (86)

=−βμ1+rδ(r)−π1+

n

i=1

ξi
φi
e−φiδ(r)−1. (87)

Substituting (87) into (82) gives:

r

μ1

n

i=1

ξi
φi
e−φiδ(μ)−1dμ

=βμ1r+π1r−μ1π1−μ
2
1β+r

r

μ1

δ(μ)dμ−2
r

μ1

δ(μ)μdμ.

(88)

Substitiuting (88) into (78), we obtain:

E[w(θ, r)]

=−
αr

2
−
βμ21
2r
+βμ1+π1+

r

μ1

δ(μ)dμ−
1

r

r

μ1

δ(μ)μdμ.

(89)

In addition, taking twice derivative, we get:

d2

dr2
E[w(θ, r)] =−

v(r)

r3
, (90)
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where the functionv(r)is defined as:

v(r)=βμ21+2
r

μ1

δ(μ)μdμ−δ(r)r2. (91)

The derivative ofv(r)is:

v(r)=−δ(r)r2≥0, (92)

where we make use of the fact thatδis a monotonically decreas-
ing function (and thusδ(r)≤0). So,v(r)is a monotonically in-
creasing function over the interval[μ1,μ2]. Note thatv(μ1)=0.

Therefore,v(r)≥0for anyv∈[μ1,μ2]. So,
d2

dr2E[w(θ, r)]≤0
for anyv∈[μ1,μ2], which implies thatE[w(θ, r)]is concave
over the interval[μ1,μ2].
Case (iii):0≤r<μ1. In such a case, according to (29), we
have:

E[w(θ, r)] (93)

=
1

0

π1+βθr−
αr

2
dθ (94)

=π1+
(β−α)r

2
. (95)

D. Proof of Proposition 3

We first study the derivative ofE[w(θ, r)]in the three cases
identified in Lemma 1.
(i) Whenr>μ2, from (31), we have:

d

dr
E[w(θ, r)] =−

α

2
+
βμ21
2r2
+
r2
, (96)

which is monotonically decreasing over the interval(μ2,+∞).

In addition, we knowddrE[w(θ, r)]μ+2
=−α2+

βμ21
2μ22
+
μ22
and

limr→+∞
d
drE[w(θ, r)] =−

α
2<0.

(ii) Whenμ1≤r≤μ2,wehave:

d

dr
E[w(θ, r)] =−

α

2
+
βμ21
2r2
+
1

r2

r

μ1

δ(μ)μdμ. (97)

d
drE[w(θ, r)]is monotonically decreasing over the interval
[μ1,μ2]asE[w(θ, r)]is concave over this interval (Lemma 1).
In addition, we have:

d

dr
E[w(θ, r)]

μ−2

=−
α

2
+
βμ21
2μ22
+
1

μ22

μ2

μ1

δ(μ)μdμ

(a)
=
d

dr
E[w(θ, r)]

μ+2

, (98)

where in (a) we make use of (74). So,d
drE[w(θ, r)]is continuous

atr=μ2. Furthermore, we know
d
drE[w(θ, r)]μ+1

=β−α
2 .

(iii) When0≤r<μ1,wehave
d
drE[w(θ, r)] =

β−α
2 , which

is a constant. So,ddrE[w(θ, r)]is continuous atr=μ1as well.
Combining the aforementioned three cases, we see that
d
drE[w(θ, r)]is continuous and monotonically decreasing over
the entire interval[0,+∞). Hence,E[w(θ, r)]is concave over
the entire interval[0,+∞). Thus, in what follows, we find the
minimal point ofE[w(θ, r)]over[0,+∞)by distinguishing

three regimes based on the signs ofddrE[w(θ, r)]at the bound-
ary pointsμ1andμ2.
1) In theLow RES Cost Regimeof Proposition 3, we have

d
drE[w(θ, r)]μ2≥0. In such a case, the optimalr

∗is in

the interval[μ2,+∞)and is determined by (according to
(96)):

−
α

2
+
βμ21
2(r∗)2

+
(r∗)2

=0, (99)

which leads tor∗=
βμ21+2
α .

2) In theMedium RES Cost Regimeof Proposition 3, we
haved

drE[w(θ, r)]μ2<0and
d
drE[w(θ, r)]μ1≥0.In

such a case, the optimal pointr∗is in the interval[μ1,μ2]
and is determined as the unique solution of the following
equation over[μ1,μ2](according to (97)):

−
α

2
+
βμ21
2(r∗)2

+
1

(r∗)2

r∗

μ1

δ(μ)μdμ=0. (100)

With similar calculations as in achieving (74), we can
demonstrate that, for anyr∈[μ1,μ2]:

r

μ1

δ(μ)μdμ

=e−2
n

i,j=1

ξiξjφj
φi+φj

δ(r)e−(φi+φj)δ(r)−βe−(φi+φj)β

+
1

φi+φj
e−(φi+φj)δ(r)−e−(φi+φj)β . (101)

Substituting (101) into (100) and definingx∗=δ(r∗),we
know thatr∗= n

i=1ξie
−φix

∗−1andx∗is determined
as the unique solution of the following equation over the
intervalx∈[0,β]:

e−2
n

i,j=1

ξiξjφj
φi+φj

x+
1

φi+φj
e−(φi+φj)x

− β+
1

φi+φj
e−(φi+φj)β

−
α

2

n

i=1

ξie
−φix−1

2

+
βμ21
2
=0. (102)

3) In theHigh RES Cost Regimeof Proposition 3,d
drE[w

(θ, r)]<0for anyr≥0. Thus, the optimal point isr∗=0.
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