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Joint Energy Procurement and Demand Response
Towards Optimal Deployment of Renewables

Xuanyu Cao

Abstract—In this paper, joint energy procurement and demand
response is studied from the perspective of the operator of a power
system. The operator procures energy from both renewable energy
sources (RESs) and the spot market. We observe the fact that the
RESs may incur considerable infrastructure cost. This cost is taken
into account and the optimal planning of renewables is examined
by controlling the investment in RES infrastructures. Due to the
uncertainty of renewables, the operator can also purchase energy
directly from the spot market to compensate for the possible deficit
incurred by the realization of the random renewable energy. By
setting appropriate prices, the operator sells the collected energy
to heterogeneous end users with different demand response char-
acteristics. We model the decision making process of the operator
as a two-stage optimization problem. The optimal decisions on
the renewable deployment, energy purchase from the spot market,
and pricing schemes are derived. Several solution structures are
observed and a computationally efficient algorithm, requiring only
closed-form calculation and simple bisection search, is proposed to
compute the optimal decisions. Finally, numerical experiments are
conducted to verify the optimality of the proposed algorithm and
the solution structures observed theoretically. In particular, the
impact of renewable penetration and the importance of its optimal
design are highlighted.

Index Terms—Renewable energy sources, demand response,
pricing, smart grid, optimization, resource allocation.

1. INTRODUCTION

UE to their low generation costs and low production of
D pollution, renewable energy sources (RESs), e.g., wind
and solar energy, are envisioned as indispensable elements of
future power grids [1]-[3]. RESs are usually uncertain (random)
and intermittent (time-varying), which makes them nondis-
patchable and cannot be readily incorporated into existing power
systems. Therefore, tremendous research efforts have been
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devoted to the integration of RESs into smart grid operations in
the recent decade.

In [4], motivated by the fact that the forecast of renewables
may be accurate within a certain time window, Ilic ef al. advo-
cated a model predictive control approach to dynamically adjust
the economic dispatch (ED) in response to the updated forecast
of renewables. In [5], modeling the renewables as random vari-
ables with known distribution, e.g., Weibull distribution for wind
speed, Liu proposed chance constrained methods for ED so that
the supply demand balance is satisfied with high probability un-
der the known distribution of the renewables. In practice, energy
trade is performed at different timescales, e.g., day ahead plan-
ning, real time energy procurement, before/after the realization
of random renewables. Thus, several multi-stage dynamic opti-
mization approaches were proposed in [6], [7] where the energy
is generated or purchased at different time periods. An analo-
gous multi-stage stochastic programming approach, named risk
limit dispatch (RLD), was proposed by Varaiya et al. in [8] to
combat the uncertainty of renewable generation and user de-
mands. Later, Zhang ef al. extended it to network RLS by tak-
ing into account the power network topology and gave explicit
expression for the price of uncertainty [9]. Besides, to match
the time-varying user demands, integration of renewables in a
given power network topology was investigated in [10]. Re-
cently, multi-stage optimization methods were proposed to inte-
grate renewables for energy efficient wireless communications
[11]. A more robust (and also more conservative) approach to
incorporate renewables was the robust optimization framework
pursued in [12] and [13], where the outputs of RESs were known
to be located in some uncertainty set and the objective was to
optimize the worst-case performance of the power system. Fur-
thermore, in [14], inspired by the dual gradient method widely
used in communication networks [15], Enyioha ef al. presented
an online power allocation algorithm to adapt to the time-varying
energy supply and user demands. In addition, a network calcu-
lus approach was proposed in [16] to incorporate renewables by
accounting for the presence of energy storage devices.

In most existing works on RESs, the renewables are con-
sidered stochastically given (e.g., with a fixed distribution) or
deterministically given (e.g., known within a time window or
known to be located in a uncertainty set). In other words, the
renewables are not subject to design and optimization. More-
over, the renewables are assumed to be completely cost free. In
practice, though the operation of RESs incurs little cost, their
infrastructures necessitate substantial cost such as the construc-
tion cost and the maintenance cost. For example, the typical unit
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infrastructure cost of solar panels is around $0.1218 per kW:h
(calculation of this number is based on information from the
website “Solar Power Authority” and is detailed in Section II)
while the residential electricity rate in the US is between
$0.0837-0.3734 per kW:h [17]. These numbers suggest that
the infrastructure cost of RESs is comparable with the cost of
traditional energy sources and thus should not be neglected.
Therefore, in this paper, we are motivated to take into account
the cost of renewables and design opfimal deployment of RESs
in a power system. We can “control” the distribution, particularly
expected generation, of the RESs by investing on RES infras-
tructures appropriately, e.g., constructing appropriate amount of
solar panels or wind turbines. Further, we note that trading and
management of renewable energy have been studied through the
lens of stochastic optimization in [18], where the energy man-
agement system (EMS) can purchase the surplus of distributed
renewable generation with certain prices. This cost of real-time
purchase of renewable energy is fundamentally different from
the infrastructure cost of renewable generation (usually incurred
in the planning phase of the power system) considered in this
paper.

After the construction of RES infrastructures, in each follow-
ing time frame, e.g., each hour or each day, the generation of the
RES:s is still uncertain since RESs are random and intermittent.
Thereby, after the renewables at a time frame are realized, if the
realization level is low, the operator (e.g., the utility company)
of the power system may need to purchase extra energy from
some spot market (usually with relatively high unit price) to
compensate the energy deficit. Then, the operator sells the col-
lected energy to end users through judious pricing schemes so
that appropriate demands are elicited. This energy sale method
is called demand response (DR), a widely used technique in the
demand side management (DSM) in smart grid.

In the literature, extensive DR and DSM schemes have been
proposed [19]-[21]. In [22], the device scheduling problems at
a single user’s side was studied to maximize the net benefit.
In [23], Kim and Giannakis examined the demand manage-
ment problem with multiple subscribers and dynamic prices
and proposed parallel algorithms for the corresponding mixed
integer programming. Additionally, DR with real-time pricing
was also investigated in [24] and [25], in which the effects
of price uncertainty and prediction were incorporated. Further-
more, the competition between multiple end users was studied
under game-theoretic frameworks in [26]. Later, Maharjan ef al.
took the competition among utility companies into considera-
tion and proposed a Stackelberg game approach for DR in [27].
Besides, a VCG auction mechanism was proposed in [28] to
incentivize users to reveal their private information truthfully. A
review of game-theoretic approaches in DSM was presented in
[29]. One important principle in DR is to shift the loads away
from the peak hours so that the generation cost is reduced. This
matches well with the charging needs of plug-in electric vehi-
cles (EVs), which only require to be charged in some given time
intervals and are flexible in charging rates across time. Thus,
many works were devoted to schedule EV charging in the con-
text of DR and DSM [30]-[34]. Moreover, DR in the presence
of RESs was examined in [35]-[39].
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Fig. 1. System model.

The main focus of this paper is on the impact of optimal
design of RES deployment. Thus, we use a simplified DR model
for users. Specifically, we assume that the DR functions of the
heterogeneous users are known to the operator through past
usage history and these DR functions remain unchanged across
time (if they do change, the operator needs to remodel the power
system and compute new optimal decisions). We summarize the
main contributions of this paper as follows.
® A profit maximization problem is formulated from the per-
spective of the operator of a power system. The operator
procures energy from the RESs and the spot market and
then sells the energy to heterogeneous end users with dif-
ferent demand response functions. The optimization prob-
lem consists of two stages: (1) optimal deployment design
of RESs (e.g., investment in RES infrastructures) in the
planning phase; (2) optimal energy procurement from the
spot market and optimal pricing to users in each time frame.
In the latter stage, optimal decisions are made based upon
the realization of the random renewables in that time frame.

® The solution of the formulated profit maximization prob-
lem is derived and several structures of the solution are
observed. Accordingly, a computationally efficient algo-
rithm, involving only closed-form calculations and simple
bisection search, is proposed to sequentially find the op-
timal decisions on RES deployment, purchase from the
spot market and pricing. Numerical experiments are im-
plemented to corroborate the optimality of the algorithm
and the observed solution structures. In particular, the im-
portance of the optimal design of RES penetration is high-
lighted.

The remaining part of this paper is organized as follows. In
Section II, we formally introduce the system model and problem
formulation. In Section III, we solve the formulated optimization
problems and propose an efficient algorithm to compute the
solution. Simulation results are presented in Section IV and we
conclude this paper in Section V.

II. PROBLEM FORMULATION

Consider a power system comprised of an operator, an RES,
a spot market selling electrical power and some end users of
power, as illustrated in Fig. 1. The operator can be a utility com-
pany who serves users in a region. The operator procures energy
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from two sources: the RES and the spot market. The RES may
consist of solar farms and wind farms. The energy sold in the
spot market mostly originates from traditional energy sources,
e.g., coal and gas, and is thus more costly. Though the energy
of RES is potentially cheaper and cleaner than that of the spot
market, the former is subject to uncertainty and intermittence
owing to the stochastic temporal variations of wind and solar en-
ergy. Thus, when the realization of the renewable energy is not
enough, the operator may need to purchase extra energy from the
spot market to compensate the energy deficit. Aftering procur-
ing the energy from the RES and the spot market, the operator
sells it to the end users by setting appropriate prices. The users’
demand response (DR) depends on the announced prices: high
prices suppress demands while low prices enhance demands.
In this paper, we consider from the operator’s perspective and
our goal is to maximize its (expected) profit from procuring
and selling the energy. In the following, we present the system
model and formulate the optimization problems in detail.

A. Renewable Energy Source

In existing works [4]-[7], [9]-[14], [16], renewable energy
is usually modeled as random variables with fixed distribution
or deterministic quantities with partial knowledge, e.g., pre-
dictable within some time window or known to be located in
some uncertainty set. In other words, the renewable energy is
either stochastically or deterministically given and it is not sub-
ject to design and optimization. Additionally, in most existing
models, renewable energy does not incur any cost. In practice,
though the operation of RES facilities, e.g., solar panel and
wind turbine, incurs little cost, their construction and mainte-
nance necessitate remarkable infrastructure cost. For example,
according to the website “Solar Power Authority”, the infras-
tructure cost of solar panels is between $7-$9 per watt, which
is approximated as $8000 per kW. The typical lifespan of solar
panels is around 20 years. In each year, we assume that 75%
of days are clear days with sufficient sunshine and roughly one
half of each day is daytime. Thus, a solar panel can work for
20 x 365 x % x 12 = 65700 hours. Thus, the typical cost of a
solar panel is $8000/65700 = $0.1218 per kW-h. As compar-
ison, in the United States, Hawaii residents have the highest
electricity rate of $0.3734 per kW-h while Louisiana residents
have the lowest of $0.0837 per kW-h [17]. These numbers sug-
gest that the infrastructure cost of RES is comparable with the
cost of traditional energy. Thus, the cost of RES should not
be neglected when incorporating renewables into power sys-
tems. Since renewable energy is random and intermittent, we
cannot confrol its exact realization at each time. However, we
can control the expecfed amount of harvested renewables by
constructing appropriate amount of RES facilities. Therefore,
different from most existing works, in this paper, we are mo-
tivated to design the expected amount of renewables optimally
by taking the (infrastructure) cost of RES into account.

Consider a certain time frame, e.g., one hour or one day. The
amount of renewable energy harvested during this time frame
is a random variable R. For simplicity, we assume that R is
uniformly distributed over some interval [0, r], where > 0 is
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Fig. 2. Justification of the uniform distribution of renewable generation (left)
and the exponential form of the demand response function (right). (a) Histogram
of wind generation [40]. (b) Per customer electricity sale versus prices [41].

the maximum possible realization of renewables. We note that
this uniform distribution can serve as an approximation of the
distribution of real-world renewable generation. To verify this
claim, we make use of the wind power data (made publicly avail-
able by the Australian Electricity Market Operator) of several
wind farms in south-east Australia from 2012 to 2013 [40]. In
Fig. 2(a), we plot the histogram of the normalized wind power
generation data and it fits well with a uniform distribution. We
observe that, though the distribution of the real data is compli-
cated with several peaks and valleys, it can be approximated by
the uniform distribution reasonably well. In practice, if more ac-
curate approximation is needed, one can use piecewise uniform
distribution (i.e., the support is split into several intervals and
the probability density function (PDF) is constant within each
interval) in lieu of uniform distribution. The analysis in this pa-
per can be extended to the scenario with piecewise uniformly
distributed renewable generation at the cost of cluttered nota-
tions. Actually, in such a scenario, the integrals in the proofs
in Section III-C need to be split into multiple integrals over
individual intervals of the piecewise uniform distribution.

We denote the unit cost of the expected renewables as o > 0.
Thus, the cost of the RES is aE[R] = 5. Here, 7 is a design
variable to be chosen by a private party such as an investor or
a system planner, who owns the RES infrastructures. This can
be achieved by constructing a certain amount of RES facilities.
Note that r is determined in the planning phase of the power
system as it is related to the construction of RES infrastruc-
tures. Once determined, its value will be used for the following
multiple time frames, e.g., one year. Define § = % to be the
realization factor, which is a random variable uniformly located
on [0, 1]. The realization factor § changes across time frames
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since renewables are intermittent and time-varying depending
on the weather conditions. When choosing r in the planning
phase, the private party does not know the realizations of @ in
later time frames. In the planning phase, the private party is only
aware of the statistical distribution (uniform distribution in this
case) of 6.

B. Spot Market

After r is chosen and the planning phase is over, the power
system starts operating in the following multiple time frames.
In each time frame, a new @ is realized, i.e., the renewable en-
ergy R = Or is realized. After the realization of @, the operator
may purchase extra electrical energy from the spot market to
compensate the energy deficit if the realization of € is low. The
unit price of the energy from the spot market is 3 > 0. Denote
the amount of energy purchased from the spot market as s > 0,
which is chosen by the operator. Thus, the operator pays s to
the spot market. Note that, different from the amount of renew-
ables R, s is a deterministic quantity without any randomness.
Usually, the unit price 3 in the spot market is higher than that
of the RES « as the energy in the spot market mainly originates
from traditional energy sources. Notice that r and s are decided
at different phases: r is determined in the planning phase before
6 is realized while s is determined in each time frame after ¢
is realized for this frame. This information gap is the advantage
of spot market over the RES. The operator should weigh this
information gap and the price gap between «, 3 judiously to
make the optimal decisions.

C. Pricing

In each time frame, after s is chosen, the operator has r + s
amount of energy supply. Then, it sells the energy to the end
users through pricing and demand response. Suppose there are
n users in total. If the operator announces a unit energy price
of p; to user ¢, the demand response of user i is d; (p; ), which
is some monotonically decreasing function of p;. In this paper,
for mathematical tractability, we assume an exponential form
of demand response function d;(p;) = &e %P where & and
¢; are two positive constants describing the price-demand char-
acteristic of user . This exponential demand response function
can be used as an approximation of the real-world price-demand
relations. To validate this approximation, we make use of the an-
nual retail sales data (by state and utility company) of electricity
in the U.S. in 2016 [41]. The relations between the price and the
per customer sale are plotted in Fig. 2(b), and an exponential
function ae?” is fitted, where a = 22.35 and b = —0.05333. We
remark that the exponential function can fit the real data rea-
sonably well, considering that the exponential function is very
simple with only two parameters. This justifies the choice of
exponential demand response function. Given the demand re-
sponse function d;(p; ), the operator obtains p; & e 9Pi amount
of revenue from user :. In general, different users have different
price-demand parameters, i.e., (§;, @;) # (§;,;), Vi # j. This
captures the heterogeneity of real-world users. Facing with the
same price, different users often have different demands as they
may have different living standards and economic conditions.

We assume that the operator is aware of the price-demand pa-
rameters (&;, ¢;) of each node :. This assumption is reasonble
as these parameters can be learned from the past power usage
history of the users. Since users are heterogeneous, the operator
uses differentiated pricing p = [p1, ..., pn]', i.€., it sets different
prices for different users, to obtain more revenue. Intuitively, if
a user ¢ has high demand, i.e., §; is large and/or ¢; is small, the
operator will set high price for her to extract more profit from
her. Thus, the differentiated pricing scheme p can potentially
enhance the fairness of energy allocation among the heteroge-
neous users: it suppresses high demands of individual users and
encourages low demand users to consume more energy. We note
that various setups/methods of differentiated pricing have been
used worldwide and have been studied in the research literature.
For instance, in 2004, the National Development and Reform
Commission of China established a policy permitting differen-
tial electricity pricing for high energy-consuming industries in
which electricity prices can be set based on the energy efficiency
level of each enterprise. The differentiated energy tarrifs are de-
signed to phase-out energy inefficient enterprises by imposing
high electricity prices on them. Various differentiated pricing
schemes have been proposed and analyzed in the research lit-
erature to penalize enterprises with high energy consumptions
[42], [43]. Further, differentiated rate plans have been proposed
in [44] for residential electricity based on individual customers’
consumption behaviors. Spatially varying differential pricing
schemes have also been applied to electric vehicle charging in
[45]. Another example of differentiated pricing is the locational
marginal pricing (LMP), which has been used in the U.S. and
investigated in the literature extensively [46], [47]. In light of
the above, differentiated pricing considered in this paper can
be applied to industrial enterprises, electric vehicles, and even
residential electricity in the future.

Additionally, we remark that electricity prices are conse-
quences of many complicated factors in real-world markets.
The U.S. Energy Information Administration (EIA) has iden-
tified several key factors that influence the electricity prices,
including costs of fuels, costs of power plants, weather condi-
tions, and costs of the transmission/distribution systems [48].
The operators of the power systems, e.g., the utilities, adjust
electricity prices based on these factors. In the model of this pa-
per, the costs of fuels can be incorporated into the energy price
3 of the spot market. The costs of power plants are embodied by
the unit cost of renewable infrastructure e and can be controlled
by the design of renewable deployment . The time-varying ran-
dom weather conditions are captured by the random renewable
realization factor #, which varies across time frames. The costs
of transmission/distribution systems can be partially reflected
by the spot market price 3. More comprehensively speaking,
the costs of transmission systems should depend on the topolo-
gies of the underlying power networks and the electricity prices
need to be set to satisfy the operation constraints of the power
networks [49]. In this paper, for simplicity, we do not take into
account the effects of power network constraints and only focus
on the optimal design of renewable deployment. The impact of
power networks is a promising direction for future work. The
notations of the system model are summarized in Table I.
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TABLE 1
NOTATIONS OF THE MODEL
Notations Definitions
T The maximum possible amount of renewable energy
R The realized amount of renewable energy
[ The realization factor of the RES
[ The unit cost of the expected renewable energy
s The amount of energy purchased from the spot market
8 The unit price of energy from the spot market
&, &4 The price-demand parameters of user

P The price vector comprised of prices of all users

D. Optimization Problems

Based on the above system model, the private party (e.g., an
investor owning the RES) aims at solving the following opti-
mization problem to maximize the expected profit:

Maximize, o Eq[w(8,r)], (1)

where w(@, ) is the profit with fixed r and # and the correspond-
ing optimal s and p. The computation of the function w(#, r) is
through the following optimization problem:

{szse PP — fs — =

w(f,r) =

sup
scR, pcRn

n
Or+s>) &e %P, s>0,pr 0}, 2

i=1

which is used by the operator to determine the optimal s and
p. The objective function in (2) is the total revenue from all
users substracted by the costs from the RES and the spot market
while the constraint points to the fact that the total procured
energy should be no less than the total sold energy. We note
that real-world power systems must balance the supply and the
demand, i.e., the total procured energy must be equal to the
total sold energy, so that the first constraint in (2) must hold
with equality in practice. Nevertheless, in most practical sce-
narios, surplus energy or oversupply can usually be disposed
of at negligible cost. For example, the operator can cut some
solar panels off from the grid for supply curtailment [50]. Better
solutions include sharing/selling the excessive energy to other
utilities or storing surplus energy if local storages are available.
As such, in problem (2), we allow the total procured energy to
be larger than the total sold energy. Moreover, in (2), we restrict
the prices to be nonnegative since excessive energy can be han-
dled at negligible expense and the operator never needs to pay
(i.e., sell at negative prices) to get rid of surplus energy. Addi-
tionally, we note that the cost of renewable energy generation
mainly comes from the infrastructure cost, which does not de-
pend on the specific renewable realization factor € in a certain
time frame. Instead, this infrastructure cost is proportional to
the expected renewable generation 3 (with proportion factor a),
which is directly related to the quantity/quality of infrastruc-
ture construction. The renewable realization factor € depends
on the weather conditions and is not related to the infrastructure
directly. As such, in lhe objective function of (2), the cost of
renewable energy is &, which does not depend on 6.

Further, the computation of w (8, ) in (2) can be decomposed
into two optimization problems:

w(l,r) = sslig){h(ﬁr +5)— Bs} —

T

— 3
N ©)
where the function k() is defined as: V¢ > 0,

n
Y et <t pr 0} :

i=1
“

The derivation of this optimization decomposition is given as
follows. Starting from (2), we have:

w(f,r)
Q@ sup PP —
scR,peR™ {Z
- — i i or
br+s>) e s20,pr0y - )
i=1
sup( sup {szfz —¢iPi |G + 5 > Z Le 9P p - 0}
20 \peR? i=1
ar
- 35) iy ©)
{c) sup(h(g'r +s) —fs) — %, %)

where in (a) we move the term %~ out of the sup since it does
not depend on s and p; in (b) we ﬁrsl hold s fixed and optimize
over p only, and then optimize over s > 0 (the term s is taken
out of the inner sup because it does not depend on p); in (c) we
simply make use of the definition of the function A(-) in (4).

Our goal is to make optimal decisions on r, s and p by solv-
ing the two-stage optimization problem (1) and (2), where the
former is before the realization of & and the latter is after it. To
this end, we need to sequentially solve the optimal pricing prob-
lem in (4), the optimal energy procurement from spot market
in (3) and the optimal design of RES penetration in (1), which
will be accomplished in Section III. Note that the optimal s and
p depends on the realization of @ because the purchase from
the spot market and pricing happen after the random renewable
energy is realized.

Problem (1) and problem (2) are solved at different
timescales. An instance of problem (2) with a particular realiza-
tion of @ is solved in each time frame, e.g., each hour or each day.
Its solution {s*, p*} is used in this time frame only. In contrast,
problem (1) is solved at the planning phase of the power system
(because r corresponds to the infrastructure construction) and
its solution r* will be used for multiple time frames, e.g., one
year. For instance, a practical timescale of problems (1) and (2)
can be as follows. The optimal r* is decided for one whole year
by constructing an appropriate amount of RES infrastructures.
Afterwards, in each day of the following year, given the previ-
ously determined r for the whole year and the realization of 6
in this day, the operator solves (2) and makes optimal decisions
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s* and p*, which are used in this day only. Notice that problems
(3) and (4) are nothing but equivalent reformulation of problem
(2) and they are solved at the same timescale, i.e., each time
frame.

We note that, in practice, model parameters &;, ¢; and 3
can be time-varying and/or random, which necessitates some
modifications to the problem formulation in (1) and (2). Suppose
these parameters are time-varying and denote their realizations
at time frame ¢ as &; t, ¢i: and (;, respectively. Define their

tlme -averagesas§; = + LSl &= * ST, éig,and B =
* th] B¢, where T is the total number of time frames. Though
the parameters §; ;, ¢; ; and 3; may be random, we assume that
reasonably accurate estimates of their time-averages {7;-, qz_‘.:;- and
{3 are available in the planning phase based on past histories
and patterns. Then, in the planning phase, these time-average
quantities are used to compute the optimal 7* by solving a
modified version of problem (1), i.e.,

r* = arg max Eq[w(6,r)], (8)
r=0
where
w(f,r su Eie 0P gs — 2T
( ) sE]R,pF(;]R { ZP f ﬁ 2

n
6‘T+322ée_¢"’p",320,pt0}. 9
i=1
After r* is determined, in each time frame ¢, the operator ob-
serves the current values of §; ;, ¢; ¢, 3; and the current renew-
able realization factor ;. Then, she computes the optimal s}
and p; by solving a modified version of problem (2), i.e.,

ar*®
(St:pt)_ argmax {Zpﬂfz t€ —PiaPi )81‘-3_

zcR,pcR" i—1 2

n
Oir* + s > Zf«;,:e_"ﬁ‘:‘pi, sz0,p=z 0}- (10)
i=1
We note that the optimization methods for problems (1) and (2)
can be readily transformed to those of problems (8) and (10) with
minor notation adaptations. In the analytical part of this paper,
for simplicity, we still stick to the assumption that §;, ¢; and 3
are time-invariant deterministic quantities because the main goal
of this paper is to examin the optimal deployment of renewables
instead of studying the dynamics of user demands and spot
market prices. Nevertheless, numerical experiments based on
real-world time-varying data will be conducted in Section IV,
confirming the applicability of the proposed algorithm to time-
varying parameters.

Additionally, in practice, multiple types of RESs (e.g., solar
power, wind power and hydropower) may be used simultane-
ously to reduce the volatility of renewable generation. Different
RESs can have different costs per expected renewable genera-
tion, which can be accommodated by some adaptation of the
problem formulation (1) and (2) as follows. Suppose m types
of RESs are used and the cost per expected renewable genera-
tion of RES j is a;. Denote the maximum possible renewable

generation and the renewable realization factor of RES j as
r; and 6;, respectively, where ¢; is uniformly distributed over
[0,1]. Components r; and 6; of all RES types are stacked as
vectors 7 € R™ and 8 € R™, respectively. In such a case, the
two-stage optimization problems (1) and (2) become:

Maximize,. o Eg[w(0,r)], an
where the profit w(8, r) is given as:
= [
w(f,r) = sup szs e PP —Bs— Z %
s, pecR® i=1
m mn
Y Ori+s> D Gt s>0,p 0}.
j=1 i=1
(12)

Analogous to (3) and (4), optimization problem (12) can also
be decomposed into two problems with respect to s and p,
respectively:

mO:'l"
N1 (13
d_ 55 (13

j=1

w(8, 'r‘)—sup h s—I—ZG | — Bs
i=1

where the function k() is defined in (4). In principle, the analysis
and solution methods of problems (1) and (2) can be extended
to those of problems (11) and (12) for multiple types of RESs,
though the notations will be more cluttered.

Lastly, if the assumptions of uniformly distributed renew-
able generation and exponential demand response functions do
not hold, the detailed/quantitative results in this paper, e.g.,
Algorithm 1 to be presented, may need to be modified. Never-
theless, most of the structural/qualitative results, e.g., the thresh-
old structures to be stated in Section IV, are still true, i.e., they
are robust to these assumptions.

III. OPTIMAL DECISIONS

In this section, we derive the optimal decisions of the renew-
able energy r, the purchase from spot market s and the pricing
scheme p by solving the optimal pricing problem in (4), the op-
timal purchase from spot market in (3) and the optimal design
of RES penetration in (1) sequentially. Accordingly, a compu-
tationally efficient algorithm is proposed to find the optimal
decisions. The proposed algorithm only involves closed-form
computation and simple bisection search.

A. Optimal Pricing

In this section, we solve the optimal pricing problem in (4),
which can be rewritten as:

Minimizepcr- f(P) :=

n
—Zp;fje_"ﬁ‘p"
i=1

n 14
subject to Z&e"‘i"’p" < t, a4

i=1

p = 0,
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where £ > 0 is the problem parameter representing the total
available energy supply from both the RES and the spot market.
We note that the objective function f(p) is nota convex function.
Hence, problem (14) is a non-convex optimization problem,
for which strong duality does not hold in general [51], [52].
However, in the sequel (Proposition 1), we show that strong
duality actually holds for problem (14) and its solution can be
obtained in pseudo-closed-form by using duality theory. Denote
the optimal point and the optimal objective function value of
problem (14) as p* and f* = f(p*), respectively. The solution
of problem (14) is given by the following result.

Proposition 1: The solution to problem (14) is as follows.

DIft<e !>, &, then the optimal point is given by
p; =A"+ L. i=1,...,n, where A* > 0 is the unique solution
to the follow'ing equation:

n
Y gt =g, (15)
i=1
and the corresponding optimal value is:
— ¢
* i —g; A*—1 *
=— —e " — A"t 16
f ; = (16)

) Ift>e! > i, &, then the optimal point is given by
,1=1,...,n, and the corresponding optimal value is:

* - - gi
fr=—et =

Proof: The proof is presented in Appendix A. |

In problem (14), £ is the total available energy supply at the
operator. According to the system model or equation (3), we
know that ¢ = 6r + s. When the total supply ¢ is large enough
so that case (2) of Proposition 1 takes place, we observe that the
total energy will not be sold out. In other words, in case (2), with
optimal pricing, the total supply { is strictly larger than the total
demands from all end users. The reason is that, to sell all energy,
i.e., to elicit large demands from users, the prices need to be very
low, which strongly hurt the revenue of the operator and are thus
not optimal. Further, we note that the optimal prices p* exhibit
interesting structures. When the total supply £ is very large, i.e.,
in case (2) of Proposition 1, p* is a constant vector and does not
decrease with ¢. The reason is that further lowering p* will hurt
the revenue. On the other hand, when the total supply £ is small,
i.e., in case (1) of Proposition 1, since A* decreases with ¢ (c.f.
(15)), so do the optimal prices p*. This is reasonable because
lowering prices can boost user demands, which can help sell the
increasing supply £.

To refer to the solution of equation (15) more compactly, we
make the following definition.

Definition 1: Define ¢ : (0,+400) — R to be the inverse
function of Y1, &e %71, je., for any y > 0, d(y) is the
unique solution z of the following equation:

n
Z Ge ¥l =y
i1

(1

(18)

Note that Y1 | &e %21 is a strictly decreasing function
of x. Thus, its inverse function 4(-) is well-defined and is also
strictly decreasing. By definition, we immediately know:

ylilg d(y) = +oo, lim §(y)=—oo, (19)
5 (e_l Zg,;) =0. (20)
i=1

According to Proposition 1 and Definition 1, the function h(-)
defined in (4) can be written in the following compact form. For
any t > 0:

) Sy Se 0Ol t6(h), ift < et YT &,
t) = '
(t) o1 E:Ll%’ ift >e Y0 &
(21)

The physical meaning of k(¢) is the maximal revenue the opera-
tor can obtain from the end users through differentiated pricing
when ¢ unit of energy supply is available.

B. Optimal Procurement From the Spot Market

Next, given € and r, we compute the optimal decision on
purchasing energy from the spot market by solving the problem
in (3), i.e.,

Maximizeg>p g(s), (22)

where g(s) := h(fr + s) — B3s. Note that the dependence of
g(s) on @ and r is implicit. The physical meaning of g(s) is
the partial profit, i.e., the revenue collected from the users sub-
stracted by the energy purchasing cost from the spot market.
This partial profit does not contain the cost of the RES, which
is independent of s. Define the optimal point and the optimal
value of (22) as s* and ¢* = ¢(s*), respectively. The solution to
problem (22) is given in the following result.
Proposition 2: The solution to problem (22) is given as fol-
lows.
1) If0r > e 1 Y7, &, then the optimal point is s* = 0 and
the corresponding optimal value is ¢* = e~ Y g'r
DI Le %Pt < fr <e 1Y I | &, then the optimal
point is s* = 0 and the corresponding optimal value is:
& pon
¥ _ Si —gpid(or)-1
q ; 5 + 0r6(6r). (23)
3)If Or < Y1, &e ?P~1, then the optimal point and the
corresponding optimal value are given as:

n
s =) &e? Pt —or, (24)
i=1
n 6
=) =% 4 gor. (25)
i
Proof: The proof is presented in Appendix B. |

From Proposition 2, we can write the optimal purchase from
the spot market compactly as s* = [Y1_, &e #F~1 —or] ",
where [z]* = max{x,0}. This suggests a threshold structure
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of the optimal s*: the operator should purchase energy from the
spot market if and only if the realized renewable energy 6r is
less than a constant threshold of """ | &e?*#~1. Further, the
optimal partial profit ¢* also possesses interesting structures.
When the renewable realization 6 is very large, i.e., in case (1)
of Proposition 2, ¢* is a constant independent of # and r. The
reason is that, in such a case, the user demands are saturated even
if no energy is purchased from the spot market (c.f. case (2) of
Proposition 1). Thus, extra renewable supply will be wasted and
cannot boost the partial profit g*. When the renewable realization
@r is medium, i.e., in case (2) of Proposition 2, ¢* depends on
6r nonlinearly through (23). In addition, when the renewable
realization @r is small, i.e., in case (3) of Proposition 2, ¢*
increases linearly with 6.

C. Optimal Design of RES Penetration

According to (3), we know w(f,7) = ¢* — -, where ¢* is
given in Proposition 2 and depends on 8, r implicitly. To sim-
plify notations, we define the following four positive constants
H1, M2, T, 2!

mn mn
= Ge ¥ =, (26)
i=1 i=1
m=25¢ , m=e€ ™ 27)
i=1 i=1
With these definitions, we immediately know:
6(m1) = B, 6(u2) =0, (28)

which will be used frequently in later analysis. Combining the
definitions in (26), (27) and Proposition 2, we can write w(f, 1)
compactly as:

my + B0r — - ifBr(,ul,
§_‘_ —dJ'a(ﬁ‘r 0r6(6
'!‘.U(9, T') — El 1o + T ( T) PR (29)
ifpr < 0r < po,
TI'Q—C;—T, ifﬁ'T)pﬁg.

We further define another positive constant €, which will be used
later:

o (9:+0;)8

_ 2 §i&jd; [ 11
Z bi +@j i + @5 P + Dy

i,j=1

— ﬁe—(¢i+¢j)ﬁ] ) (30)
In this section, we compute the optimal RES penetration r by
solving the optimization problem (1). To this end, we first eva-
lute the objective function of (1), i.e., Eg[w(#,r)], which is
accomplished in the following lemma.

Lemma 1: As a function of r, Eg[w(6, )] satisfies the fol-
lowing statements.

1) When r > po, we have:

E[w(8,r)] = (31)

which is a concave function over the interval r € [ug, +00).

2) When p; < 1 < po, we have:

r
T
Blu(@,r) = -5~ 24 4 gy w4 [ dwra
Hi
1/
—+ [ Suudn 32)
r H1
which is a concave function over the interval 7 € [u1, pa].
3) When 0 < r < p, we have:
— O)r
Elw(8,r)]=m + % (33)
Proof: The proof is presented in Appendix C. u

Based on Lemma 1, we can solve (1) in the following propo-
sition, in which we identify three regimes for the cost of RES.

Proposition 3: The optimal point r* of the optimal RES pen-
etration problem (1) is given as follows.

1) (Low RES Cost Regime) When 0 < o < ﬁ—“:gﬁ the opti-

mal point is:
242
pr— B 2E
(8]

2) (Medium RES Cost Regime) When B—FL,"E < a < f, the
optimal point is:

(34)

(35)

i
— i T¥—
=Y et
i=1

where z* is the unique solution of the following equation over
the interval = € [0, (]:
6o (a: 4 1
bi + &; i+ ¢;

) o (6i+0y)z
ij=1

_ L\ ~i+o)8
(ﬁ " bi + & ) ]

a [ ’ Bu?
-5 (Seeer) + 2o
i=1

(3) (High RES Cost Regime) When « > [3, the optimal point
istr* =0.

Proof: The proof is presented in Appendix D. u

From Proposition 3, the optimal point * can be computed
in closed-form in the low and high RES cost regimes. In the
medium RES cost regime define ¢/(z) as the L.H.S. of (36). We

note (0) = p3(—§ + 5 + 54) < Oandy(8) = G- >
0. Therefore, equatlon (36) can be solved very efﬁcwntly by
using simple bisection method. Besides, in accordance with the
intuition, in the high RES cost regime, i.e., when the unit cost
of renewable energy is larger than the unit price of energy in
spot market, no investment in RES should be made. This ob-
servation should be true even if the assumptions of uniformly
distributed renewable generation and exponential demand re-
sponse functions made in Section II do not hold. This is because
the operator always prefers deterministic energy procurement
(spot market) to random energy generation (RES), as long as the
price of the former is lower than that of the latter. This holds true

(36)
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Algorithm 1: Computing the optimal decisions.

Inputs:
The unit (infrastructure) cost of RES: a
The unit energy price of the spot market: 3
The price-demand parameters of users: (&;, ¢;),
i=1,..,n
The realization factor (revealed after r is determined): 6
Outputs:
The optimal RES penetration: r*
The optimal energy purchase from the spot market: s*
The optimal pricing vector: p*
1: Compute the constants p1, pa, 1, T2, € according to
(26), (27) and (30).
T I Computation of +* TN
cifa < ﬁ—“L;ﬁ then

Compute ™ as in (34).

: eISi31f’g—FL+;—2E < a < 3 then

Solve (36) by using bisection method to get z*. Then

compute r* according to (35).

: else

7 Setr*=0.
8: end if

M iComputation of ™/
9: The realization factor 6 is realized.

10: Compute s* = [y, &e ®F~1 —0r*]"
I T Computation of
P

11: ifOr* +s* < e 1Y 7 | & then

12:  Solve .7 | &e %% ~1 = @r* + s* using bisection

method to obtain A* > 0. Set p = A" + -,
t=1,..,n

13: else

14:  Setp! = —

15: end if

5-:""*‘5*.’“

=)}

regardless of the specific distribution of renewable generation
and the functional forms of demand response characteristics.

D. Summary of the Algorithm

Based on Propositions 1, 2 and 3, we summarize the com-
putation procedure of the optimal decisions 7*, s* and p* in
Algorithm 1. We note that, in practice, *, s*, p* are computed
at different timescales. s* and p* are computed once in each
time frame, e.g., each hour or each day, while r* is computed
in the planning phase and remains the same for multiple time
frames, e.g., one year. For instance, in the planning phase, the
private party (an investor or planner) uses Algorithm 1 to com-
pute the optimal 7* and constructs the corresponding amount
of RES infrastructures. Then, this r* remains the same for the
following whole year. In each day of the following year, after
the realization of @ in this day is revealed, the operator uses
Algorithm 1 to compute the optimal s* and p*, which are used
in this day only. In the next day, the realization of # changes and
the operator uses Algorithm 1 again to compute the new optimal
s* and p*.
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Further, as stated in Section II, the model parameters &;, ¢;
and 3 can be time-varying in practice. In such a case, some minor
modifications of Algorithm 1 are needed. Specifically, denote
the values of these parameters at time frame t as &; ;, ¢; ; and [3;.
Denote their time-averages as &;, ¢; and /3, respectively (defined
in Section II). In the part Computation of v* of Algorithm 1
(planning phase), we replace &;, ¢; and 3 with their time-average
versions &;, ¢; and 3, respectively. Additionally, in each time
frame ¢, the parts Computation of s* and Computation of p* of
Algorithm 1 are executed by replacing &;, ¢; and /3 with their
current values at time frame ¢, i.e., & ¢, ¢ and [3;.

IV. NUMERICAL EXPERIMENTS

In this section, simulations are implemented to verify the op-
timality of Algorithm 1 and the solution structures of problems
(1) and (2). In all experiments, we consider a power system de-
picted in Fig. 1 with n = 100 end users and set the price-demand
parameters as & = /i, ¢; = 1 + 4(’ 1) ,1=1,...,100. These
user parameters are chosen for demonstration purpose only and
our observations in this section hold with general parameters.
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Fig. 5.
impact of # on the optimal price p;, for user 50.

First, we demonstrate the importance of the optimal design
of RES penetration. To this end, we vary the RES penetration
r and study its impact on the expected profit E[w(#, r)]. From
[17], we know that the electricity rate of New York residents is
$0.1762 per kW-h. Thus, we choose the unit price of energy from
the spot market to be 3 = 0.1762. We consider three possible
values of the unit cost of renewable energy: o« = 0.07, o = 0.14
and o = 0.21, which correspond to the low, medium, and high
RES cost regimes, respectively, according to Proposition 3. As
explained in Section II, we note that the typical cost of renewable
energy from solar panels is around $0.1218 per kW-h, which is
at the same scale of the chosen values for a. For these three
values of «, the plots of the expected profit versus the values of
r are given in Fig. 3, in which the expectation is computed as the
average of 10000 Monte Carlo trials. According to Proposition
3, for & = 0.07, 0.14, 0.21, the values of the optimal r* are
300.5321, 203.445 and 0, respectively, which are in accordance
with the maximal points of the three curves in Fig. 3. This
confirms the optimality of Algorithm 1 in choosing r. Moreover,
we observe the importance of optimal design of RES penetration
from Fig. 3. Specifically, in the low and medium RES cost
regimes, some renewables should be incorporated to improve
the profit, e.g., when a = 0.07, appropriate RES penetration
can improve the expected profit from E[w(#,0)] = 50.31 to
E[w(#,r*)] = 62.13. The reason is that, in low and medium
RES cost regimes, the unit cost of RES is lower than the unit
price in the spot market. However, renewable energy should not
be incorporated too much since its realization is uncertain and
the extra supply, if realized, can only be sold at low prices or
even wasted (c.f. Proposition 1). In the following experiments,
the renewable deployment r is chosen to be the optimal r* by
Algorithm 1 unless otherwise noted.

Next, we investigate the impact of the unit cost o of renewable
energy and the unit price 3 of the energy in the spot market.
From [17], we know that, in the US, Hawaii residents have
the highest electricity rate ($0.3734 per kW-h) while Louisiana
residents have the lowest ($0.0837 per kW-h). Togerther with
New York residents’ rate of ($0.1762 per kW-h, we consider
three possible values of the unit price of energy from the spot
market: 3 = 0.0837, = 0.1762 and 3 = 0.3734. For each of
these three values of /3, we plot the optimal RES penetration r*
versus the unit cost o of renewables, as illustrated in Fig. 4(a).
For fixed 3, we observe a threshold structure of v* when «
varies. When « increases, r* first decreases smoothly (since the
renewable energy becomes more and more expensive) and then
drops to zero suddenly. From Fig. 4(a), we see that the threshold
of a for r* to drop to zero is the corresponding 3 of the curve. The

Impact of the realization factor 6. (a) The impact of § on the realized profit w(@, r*). (b) The impact of # on the optimal spot market purchase s*. (c) The
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Fig. 6. The impact of o and 3 on the expected optimal pricing vector E[p*].

reason is that, when « is larger than (3, the system enters the high
RES cost regime and r* becomes zero (c.f. Proposition 3). In
addition, for fixed «, by comparing the three curves in Fig. 4, we
observe that * increases with (3. The reason is that, as the energy
from the spot market becomes more expensive, more investment
should be made in RES. Furthermore, we examine the impact
of o, 3 on the optimal expected profit E[w(#,*)] in Fig. 4(b).
For fixed 3, by increasing o, we see an analogous threshold
structure of the profit, which first decreases and then remains
constant. The reason is that, as long as « enters into the high RES
cost regime, no investment in RES should be made, i.e., 7* = 0,
and further increase in o will not affect the profit. Additionally,
we note that 7* is zero in the high RES cost regime regardless
of the specific distribution of the renewable generation and the
functional forms of the demand response characteristics, i.e.,
robustness to the model assumptions in Section II. Thus, even
if these assumptions do not hold, the aforementioned threshold
structures of the optimal solution are still true.

We further study the influence of the realization factor 6.
Recall that a new value of f is realized in each time frame, e.g.,
each day or each hour, while the RES penetration r* remains
the same for multiple time frames, e.g., one year. So, the impact
of f reflects how the power system varies daily or hourly for a
given RES penetration level r*. Specifically, we set 5 = 0.1762
and consider three values of a:: 0.07,0.14 and 0.21, which are in
the low, medium and high RES cost regimes, respectively. The
impact of @ on the realized profit w(8, r*) is plotted in Fig. 5(a).
We observe that, in the high RES cost regime, w(f,7") is a
constant independent of §. The reason is that, in high RES cost
regime, the optimal r* is zero and the realization factor  affects
nothing. We also observe that, in the low RES cost regime,
w(@,r*) first increases with @ and then saturates, i.e., remains
constant, for large enough 6. The reason can be explained as
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follows. In the low RES cost regime, the optimal r* is no less
than s (c.f. Proposition 3). Thus, according to (29), when 8 >
L2 w(f,r") =m — “'T’”*, which does not depend on @ (note that
r* is determined before 4 is realized, i.e., r* does not depend on
the realization of #). Actually, in such a case, the total supply
t falls into case 2 of Proposition 1 so that the supply is larger
than demand and any extra supply will be wasted. Thus, further
increase in # will not enhance the realized profit any more.
Furthermore, we plot the impact of & on the optimal purchase s*
from the spot market in Fig. 5(b). We observe a similar threshold
structure: for large enough 6, s* is zero, i.e., the operator does
not purchase any energy from the spot market. This verifies the
threshold solution structure of s* in Proposition 2. Additionally,
in Fig. 5(c), we examine the impact of # on the optimal price
pig for user 50. We remark that, in all RES cost regimes, p:
remains constant for small 6. The reason is that, for small 8, from
Proposition 2, we know that s* = > | &e %F~1 — @r* so that
the total supply ¢ = s* + 6r* is a constant >, , e 91,
Hence, the optimal pricing vector p* also remains constant.
In low and medium RES cost regimes, when @ is larger than
a certain threshold, p* decreases with #, i.e., more realized
renewable energy helps reduce energy prices at the user side.
We further observe that, as 6 keeps increasing, in the low RES
cost regime, p; finally saturates at a constant. This corresponds
to case 2 of Proposition 1 and can be explained as follows. In the
low RES cost regime, high penetration of renewables is favored,
i.e., r* is large. Thus, when @ is large, the realized renewable
energy Or* is large so that the total supply satisfies case 2 of
Proposition 1. In such a case, the optimal price of each user i is
a constant p} = - (p5o = 1/¢s0 = 0.3356 in our case).

Next, we investigate the impact of a and 3 on the expected
optimal prices of users. We consider two values of 3: 0.3734
(Hawaii’s rate) and 0.0837 (Louisiana’s rate). We also con-
sider two values of a: 0.07 and 0.2, which are of the same
scale as the typical unit cost of solar panels (0.1218). Then, we
consider three values of (e, 3): (0.07, 0.3734), (0.2, 0.3734),
(0.2, 0.0837), which are in the low, medium and high RES cost
regimes, respectively. The corresponding expected optimal pric-
ing vectors are shown in Fig. 6. Comparison between the three
pricing vectors suggest that the prices at the user side increase
with both a and §, i.e., the higher the energy cost/price is, the
higher the prices at the user side are. We further plot the vector
[1/¢ili=1....,100 in Fig. 6 and observe that all pricing vector are
its constant shifts (all curves are parallel). The reason is that
the difference between the optimal prices of two arbitrary users

1

i, j is always p} — p; = (;—' % (c.f. Proposition 1), which is a

constant related to ¢ only. Thus, Vi, j: p] — ;—‘ =p; — % So,
pi— d:% does not depend on :.

Finally, we apply the proposed Algorithm 1 to real data and
compare it with a heuristic method, which determines renew-
able deployments based on heuristics. To this end, we make use
of the annual retail sales data of electricity in the U.S. (with
state labels) in 2016 [41] (also shown in Fig. 2(b)) and fit an
exponential form demand response function d;(p;) = & e %P
for each state 7, 2 = 1, ..., 42 (only n = 42 states have enough
data to fit relatively accurately). Here, each state is regarded as
a user with a specific demand response function. The distribu-
tion of the price-demand parameters (&;, @;) of the 42 states is
shown in Fig. 7(a). In addition, the daily spot prices of whole-
sale electricity of PJM West (an electricity hub) in 2017 are
shown in Fig. 7(b) [53] and are regarded as the time-varying
prices {5;}1_, of the spot market, where T' = 249 (the prices
are only available on weekdays). The time-average spot market
price is =% 3";_, B = 3.3745 and the cost of renewable
energy is set to be o = 2.5. In practice, the price-demand pa-
rameters of users can also be time-varying across days. Thus,
fort =1,...,T, we set the time-varying price-demand param-
eters as &, =& +u;; and ¢;; = ¢; + v;;, Where u,;, and
v;,¢ are uniformly distributed on [—£&;, £&] and [—£6;, £6].
respectively. The tuple (o, {5}, {& ¢}, {¢i:}) based on real
data defines the model setup. According to the discussion in
the end of Section III, time-varying model parameters can be
handled by minor modification of Algorithm 1 as follows. In
the planning phase, the optimal renewable deployment r* is
computed by Algorithm 1 based on the time-average param-
eters (a,3,{&}, {#i}). In this case, * = 319. On the other
hand, without the optimal design of renewable deployment, one
may use a simple heuristic method to determine r,., as fol-
lows. If the price to users is set to be p = 1.5« (this price is
used only to get a rough estimate of typical user demands and
the real prices of the heuristic method will be set optimally by
using Algorithm 1), then the average total demand from users
is I, &e %P =669. If we match the expected renewable
generation £ with this total demand, the heuristic renewable de-
ployment is 14e, = 1338. Then, in each time ¢, for both choices
of r, i.e., r* of Algorithm 1 and 7y, of the heuristic method,
we use Algorithm 1 to compute the optimal prices p} and the
optimal procurement from spot market s; based on the cur-
rent model parameters at time ¢. For both Algorithm 1 and the
heuristic method, the time-varying expected profit Eg [w; (6, 7)]
is plotted in Fig. 7(c), where w; is a time-varying version of the
function w defined in (2) by replacing 3, &, ¢; with 3;, & ¢, die,
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respectively. The expected profits are computed with respect to
two distributions of the renewable realization factor #, namely
the uniform distribution on [0, 1] and the non-uniform distri-
bution of real renewable generation in Australia (c.f. Fig. 2(a))
[40]. We observe that, for both distributions of 6, the expected
profit of Algorithm 1 is higher than that of the heuristic method,
highlighting the importance of optimal design of renewable de-
ployment advocated in this paper. Moreover, the expected profits
computed from these two distributions of @ are very close. This
further confirms that the uniform distribution can approximate
the distribution of real-world renewable generation well, as has
been justified in Fig. 2(a).

V. CONCLUSION

In this paper, we have studied the joint energy procurement
and demand response in a power system. The operator procures
energy from RESs and the spot market and then sells it to end
users through differentiated pricing. Unlike most existing works
on RES, we take into account the (infrastructure) cost of renew-
ables and design optimal renewable deployment by controlling
the construction of RES facilities in the planning phase. For-
mulating the energy procurement and pricing procedure as a
two-stage optimization problem, we have derived optimal deci-
sions on RES penetration, purchase from the spot market and
user pricing. A computationally efficient algorithm involving
only closed form computation and simple bisection search has
been presented to compute the optimal decisions. Numerical
experiments have been carried out to corroborate the optimal-
ity of the proposed algorithm and the solution structure of the
optimal decisions. This work sheds some light on the optimal
deployment of renewables in the context of energy procurement
and demand response in power grids. One prospective future
direction is to take into account the temporal variations of user
demands and spot market prices more systematically by resort-
ing to practical stochastic models such as Markov processes.
Another promising future direction is to examine the effects of
power network constraints on the optimal design of renewable
deployment.

APPENDIX
A. Proof of Proposition 1
The (partial) Lagrangian of problem (14) can be written as:

£(p.h) == _pike O+ (Z Gie™ P — t) . (37
i=1 i=1

where A is the associated multiplier. For A > 0, the dual function
is given by:

9(2) = inf £(p, 1) (38)
p=0

= Z;ptﬂzfu {(pi+0)&Ge P} =2t (39)
We note:

d 1
— [ (=mn: —¢ipi] — A o PiPi Y
dp; [( Pt A)e™? ] pre (pﬁ * ¢) - @0

T

Thus, the p; that achieves the infimum in (39) is given by:

1
pi:l+_:i:11'")n: (41)
i
and for A > 0, the dual function is given by:
n g
g(A) == E‘_e—‘ﬁi*—l — AL 42)
i=1 "
The dual problem of problem (14) is:
Maximize g(A)
subjectto A > 0. (43)

Denote the dual optimal point and the dual optimal value as
A% and d* = g(A"), respectively. For A > 0, we compute the
derivative of g(A) as:

dA) =) e ? -t (44)
i=1

We observe that g'(A) is a strict increasing function for A > 0
with ¢(0) =e 131 & —t and lim; ., g'(A) = —t < 0.
Therefore, we distinguish two situations. (i) If ¢’(0) > 0, i.e.,
t<e 1Y ", &, then the dual optimal point A* >0 is the
unique solution of ¢'(A*) =0, i.e.,

n
i=1

(ii) If ¢'(0) < 0,i.e., t > e 1 D1, &, then g'() < 0,%A > 0.
So the dual optimal point is A* = 0. Since the primal objec-
tive function f(p) is non-convex, the primal problem (14) is a
non-convex problem, for which strong duality does not hold in
general [51]. Therefore, it is not rigorous to directly use (41) to
obtain the primal optimal point from the dual optimal point A*.
In the following, we verify that strong duality indeed holds for
problem (14) and we can indeed compute the primal optimal
point from A* by using (41). Again, we distinguish two cases.
Case (i): t < e ! E?:l &;. In this case, A" is determined by
(45) and the dual optimal value is d* = — Y I, %e“f"*"l —
A*t. Define a price vector p as p; = A" + é, i =1,...,n. Thus,

n n

— i b AF
E 5«;8 @iDs — E gie ik lzt,
i=1 i=1

where the last step results from (45). Hence, p is primal feasible.
Furthermore, we have:

(45)

(46)

n

@ =-> (x* + %) ge (%) 7)
i=1 !
=\ g Lie OV g %e—"***‘—l (48)
=d", (49)
where in the last equality we make use of (45). Therefore,
&=f@) > f 2, (50)
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in which (a) is due to the primal feasibility of p and (b) results
from the weak duality of any optimization problems (not neces-
sarily convex) [51]. So, f(p) = f* = d*. In other words, strong
duality holds and p is primal optimal.

Case (ii): t > 7! i, & . Insuchacase A\* =0and d* =
—e 130 fﬁ'T Consider the price vector p defined as p; = é,
t =1,...,n. Thus,

n n
Zfie_¢‘ﬁi = Z&e_l <t
i=1 i=1

which implies the primal feasibility of p. Moreover, f(p) =
— Y1y jre”! =d". Thus, we have d* = f(p) > f* > d', in
which the first inequality is due to the primal feasibility of p and
the second inequality means weak duality. Therefore, f(p) =
f* =d', i.e., strong duality holds and p is primal optimal.
Summarizing cases (i) and (ii) concludes Proposition 1.

(G1)

B. Proof of Proposition 2

We first distinguish two cases.

Case (1): Or > e >, &. In this case, for any s > 0, we
have h(fr +s) = e~ 3.1, S-andg(s) = e~ Y1, & — ,Bs,
which decreases with s. Thus s*=0andg* =e! 21_1 b

Case (2): Or < e ' Y"1 | &. In this case, for s > e 1 Y
& —Or, we have g(s) =e 1 Y1, g— — Bs. Thus, when s is
already larger than e ' Y_""_| & — Or, further increasing s will
make ¢(s) to decrease. Therefore, to find the maximal point, we

only need to focus on the interval 0 < s < el E?:l & —0Or
‘When s is within this interval, we have:

a(s) =) %e—ﬁ*s“ﬂfﬂ)—l + (6r 4 s)3(0r + s)— Bs. (52)

i=1 "¢

Taking derivative, we obtain:

d(s) ==Y &e #0150 + 5) + 6(6r + 5)

i=1

+ (0r + 5)8" (6r + ) — (53)

@ 5(6r +s) — (54)

where in (a) we make use of the fact Y | &e 9007+ =
fr + s from Definition 1. Thus, ¢'(s) is a strictly decreasing
function over the interval s € [0,e! Y. ; & — 6r]. In addi-
tion, we know that ¢'(0) = §(6r) — Band ¢'(e 1 Y1, & — Or)
= —f3 < 0. As such, we further distinguish case (2) into two

cases as follows.
e Case (2a): Y1, &e %P~ <@r. In such a case, from
the monotonicity of §, we have §(fr) < 3, i.e., ¢'(0) <

0. Thus, ¢'(s) < O forany s € [0,e " Y1, & — 6r]. So,
s* = 0 and the corresponding optimal value is:
& e—9i8(0r)—
q = L+ 0r8(0r). (53)
> S

i=1

* Case (2b): Y.\, &e ?P~1 > Or. In such a case, we
have 6(6r) > f3, i.e., ¢'(0) > 0. So the optimal point s*
is the unique solution of ¢'(s*) =0 over the interval

[0,e7 1>, &

— @r]. Thus, solving for s* gives:
n
st = Z Le ®P-1 _gr. (56)
i=1

The corresponding optimal value g* = g(s*) is computed as:

qz —_ Z %e—¢;5(8r+s’)—l T (91_ + S*)6(€T 4 S*) _ ,83*

i=1 "¢

(37
@ Zn: %e—’i‘s.@—l + ﬁzﬂ: &e—@iﬁ—l
i=1 " i=1
-8 (Z Lie PPt — Br) (58)
i=1
-y %e—w—l + por, (59)
i=1 "

where in (a) we make use of the fact §(fr + s*) = 3 and
(56).
Summarizing cases (1), (2a) and (2b) gives the result in
Proposition 2.

C. Proof of Lemma 1

We distinguish three cases.
Case (i): T > po. In such a case, according to (29), we com-
pute:

E[w(8,)] (60)
1
= / w(6,r)df (61)
0
:/" (GIT]_ —|—,86'T—%)d€
/ l £1 —ti' d(ar)-1 +9TJ(€T} _ ll do
8 2
+/ Mg — — (62)
22
@, Tot2_or mm i

2 T 2r

i 8(u)— N i
f_e ¢:i0(p) ld,u-l-;/ po(p)dp,  (63)
H

1 22
4
r Hi
where in (a) we change the integral variable from 8 to p = fr.
With integration by parts, we obtain:

pa Mg .
/ Zf_je—wm—ld‘u
1

H1oi=1
—/ nd(Z R ) (64)
" .

i=1 *1

Ha

—F‘Z& ~6:8(s)-1

M1
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Making use of (28) and the definitions in (26), (27), we can
compute:

Ha
nZ N )
Hi
Taking derivatives of 3" | S-e¢:0()~1, we get:
(Z &i —gua(u)- 1)
- (Z &e—@*““’—‘) &' (p) (66)
i=1
= —pd'(p). (67)
Substituting (65) and (67) into (64) yields:
g M .
/ Z ‘E_“B—Gﬁsé(ﬂ)—ld“ (68)
M=y 7
(22 9
= pamy — pamy + / o0 (p)dp (69)
Hi
(a) 2 Ha
= pamy — pmy — piff —2 o (p)dp, (70)
Hi
where in (a) we use integration by parts. Furthermore,
Ha
[ nétwn 1)
Hi
(ﬂ) (Z&B G;r— ]) (Z& e—t,ﬁ'x 1) (?2)
e 2 Z &5}%/ re(@itéi)T g, (73)
i,j=1
L (74)

where in (a) we change the integral variable from p to z = §(p),
e, p=>1,&e %" in (b) we make use of the definition
of € in (30). Substituting (70) and (74) into (63), we obtain:

(75)
which is clearly concave over the interval r € [ug, +00).

Case (ii): 11 < r < po9. Insuch a case, according to (29), we
compute:

Ef[w(6,r)] (76)
I‘_‘_]._ arTr
:/ﬂ (m+,6’6‘r—?)d€
! &i
+ / Z L9801 4 grg(0r) — o (17)
Tl i=1
Lar  mm Bt
2 * T * 2r
LB LR ST
+- de +pé(p) | dp. (78)
H1fi=1 7t

Moreover,

" §i o 0r0() - 1) d
/ 0 (Z; b g

@ Z& —$:8(n)—1 ’ _/ (Z i e )

(79)

Hi
(80)
O3S0 iy 4 [ wswan 6
il m
©, N~ & o1 _ 25(r) —
= T‘Z—B pamy +reo(r)
i=1 1
~2 [ 8(udp, 82)
H1

where in (a) and (c) we use integration by parts; in (b) we
make use of the facts 7-(3°7, §—e —0:8(m)-1) = — 4§’ () and
d(p1) = 5. We want to transform the first summation in (82)
into a form more amenable to differentiation. To this end, we
derive:

6(p)dps 3
H1
&(r) n } 1
B /ﬁ wd| 2 b (84)
i=1
- 6
= Zfﬁﬁb«; [( ):t:e Pir=1dg] ®5)
i=1 a(r
Y 1
== &|Be Pt —b(r)e 90t 4 —em?if
> 6 s ()90 4 L
— ie—ﬂf‘eﬁ(r)—l] )
= —Bp1 +ré(r) —m + Z %e—m(r)_l &)
i=1 1"

Substituting (87) into (82) gives:

" s
—e % d,
/FIZ@ :

i=1

— B+ 7 — oy — 2B+ v [ S —2 [ S

351 H1
(88)
Substitiuting (88) into (78), we obtain:
Elw(6,r)]
T
=5 ’B’ul + B +m +/ S(p)dp — —/ 8(p)pdp.
H1
(89)
In addition, taking twice derivative, we get:
d? G
Efu(6, 1) =~ 25, (90)

d2
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where the function v(r) is defined as: three regimes based on the signs of < E[w(6, )] at the bound-

ary points g and po.

or) = B +2 [ Swpdu =501 O
H1
The derivative of v(r) is:

V() =
where we make use of the fact that § is a monotonically decreas-
ing function (and thus §’(r) < 0). So, v(r) is a monotonically in-
creasing function over the interval [ , o). Note that v(p; ) = 0.
Therefore, v(r) > Oforany v € [u1, pa]. So, di:g]E[w(G, )] <0
for any v € [u1, pa], which implies that E[w(#, )] is concave
over the interval [u1, pa].

Case (iii): 0 < 1 < p;. In such a case, according to (29), we
have:

&' (r)r? >0, 92)

E[w(8,r)] 93)
1

= A (m + Bor — %) do 94)

oy .

D. Proof of Proposition 3
We first study the derivative of E[w(#,r)] in the three cases

identified in Lemma 1.
(i) When 7 > 9, from (31), we have:

2
L g, = -2+ 24 (96)

which is monotonically decreasmg over the interval (po, +00).
2
In addition, we know LE[w(6,r)]| . = —% + 2% + % and
Hy 2p;5 M3

lim, ;00 =E[w(f, )] = —% < 0.
(ii) When py < 7 < ps, we have:
d 5;“1

glﬁl [w(8,r)] = +

St t e / o(updp. (97

I

LE[w(f,r)] is monotonically decreasing over the interval
[tt1,p2] as E[w(#, 7)] is concave over this interval (Lemma 1).
In addition, we have:

E[w(6,r)]

d -2 +1/F26()d
dr 2 22 d ), HIREH

Hy

@ d

= EE[W(& )]

. 98)

Hy

where in (a) we make use of (74). So, - E[w(6, )] is continuous

at T = . Furthermore, we know - E[w(6, r)]l =5

(iii) When 0 < 'r < p1, wehave LE[w(f,1)] = L , which
is a constant. So, -2 - E[w(#,7)] is continuous at r = p; as well.

Combining the aforementioned three cases, we see that
;T]El[w(é‘, r)] is continuous and monotonically decreasing over
the entire interval [0, +oc). Hence, E[w(#, )] is concave over
the entire interval [0, +00). Thus, in what follows, we find the
minimal point of E[w(é,r)] over [0,+occ) by distinguishing

1) In the Low RES Cost Regime of Proposition 3, we have
LE[w(8,r)] |JLIE > 0. In such a case, the optimal 7* is in
the interval [u9, +0c) and is determined by (according to

(96)):

5;“1 €
+ 2()? + — )2 =0, (99)

which leads to * = 1/ 2412¢ =

2) In the Medium RES Cost Regzme of Proposition 3, we
have LE[w(6, 'r)]| <0 and £E[w(6,7)] |JLII >0.In
such a case, the optlmal point r* is in the interval [p; , p2]
and is determined as the unique solution of the following
equation over [y, ps] (according to (97)):

5;“1
2R TP

With similar calculations as in achieving (74), we can
demonstrate that, for any r € [uy, po]:

2+ / S(u)udu = 0. (100)

/ﬂ (1)

— 2 $ fﬂ&jﬁbj[ F)e— (#1098 (
iy

ij=1

‘88_({{"' +éj).s

1 -
+ (e—(¢i+¢j)0(7') _ e—(¢‘s+¢‘j)ﬁ):|' (101)
bi + ¢

Substituting (101) into (100) and defining =* = §(r*), we
know that 7* =)"" | &e %% ! and z* is determined

as the unique solution of the following equation over the
interval z € [0, 3]:

§iéjdj (a:—i— 1
®i + @; i + &

) TR
ij=1

_ 1\ -i+s08
(o+ 553 ]

a [ & : Bu?
-2 (Zs¢) T
i=1

3) In the High RES Cost Regime of Proposition 3, %]E[w
(#,7)] <0 for any r > 0. Thus, the optimal point is r* = 0.

(102)
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