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ABSTRACT

Quantum metrology has many important applications in science and technology, ranging from frequency spec-
troscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement
precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achiev-
able in general for systems subject to noise. Here we study how measurement precision can be enhanced through
quantum error correction, a general method for protecting a quantum system from the damaging effects of noise.
We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to
Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum process-
ing can be performed. When the sufficient condition is satisfied, the quantum error-correcting code achieving
the best possible precision can be found by solving a semidefinite program. We also show that noiseless ancilla
are not needed when the signal Hamiltonian and the error operators commute. Finally we provide two explicit,
archetypal examples of quantum sensors: qubits undergoing dephasing and a lossy bosonic mode.

1. INTRODUCTION

Quantum metrology concerns the task of estimating a parameter, or several parameters, characterizing the
Hamiltonian of a quantum system' 3. It is of great importance in science and technology, with wide applications
including frequency spectroscopy, magnetometry, accelerometry, gravimetry, gravitational wave detection, and
other high-precision measurements* '3, However, as with most quantum technologies, the performance of quan-
tum sensors is limited by decoherence. Typically, a quantum sensor acquires a signal as a relative phase between
two states in coherent superposition. Its sensitivity therefore depends both on how quickly this phase accumu-
lates, and on how long the superposition remains coherent. The fundamental strategy to enhance sensitivity is
then to increase the rate of signal acquisition (e.g., by exploiting entanglement) without reducing the coherence
time by an equal amount'*. These competing demands pose a familiar dilemma in quantum engineering: a
quantum sensor must couple strongly to its environment without being rapidly decohered by it.

The Heisenberg limit (HL) constrains how the precision of parameter estimation improves as the total probing
time ¢ increases. According to HL, the scaling of precision with ¢ can be no better than 1/t; equivalently, precision
scales no better than 1/N with the total number of probes N used in an experiment. For a noiseless system,
HL scaling is attainable in principle by preparing an entangled “cat” state of N probes'?. Due to decoherence,
precision usually scales like 1/ VN in practice, called the standard quantum limit (SQL), which can be achieved
by using N independent probes'* 9. The quest for measurement schemes surpassing the SQL has inspired
a variety of clever strategies, such as squeezing the vacuum®, optimizing the probing time?°, monitoring the
environment?! 23, and exploiting non-Markovian effects?* 26,

Quantum error correction (QEC) is a method for reducing noise in quantum channels and quantum proces-
sors?” 29, In principle, it enables a noisy quantum computer to simulate faithfully an ideal quantum computer,
with reasonable overhead cost, if the noise is not too strong or too strongly correlated. Recently, quantum error
correction (QEC) has emerged as a particularly powerful tool for enhancing the precision in quantum metrol-
ogy®?~4!, When a signal and a noise source are coupled to a sensor in orthogonal directions, e.g., through o, and



0z, it was shown that HL scaling could be restored asymptotically (in the sense that recoveries are performed
with sufficiently high frequency) via a two-qubit code utilizing one probing qubit and one noiseless ancillary
qubit30-33,

QEC has found its application in several important sensing scenarios, but its potential value in quantum
metrology has not yet been fully eshed out, even as a matter of principle. As is the case for quantum computing,
we should expect positive (or negative) statements about improving metrology via QEC to be premised on suitable
assumptions about the properties of the noise and the capabilities of our quantum hardware. A serious obstacle
for applications of QEC to sensing is that it may in some cases be exceedingly hard to distinguish the signal
arising from the Hamiltonian evolution of the probe system from the effects of the noise acting on the probe.

In this paper, we summarize our results in Refs. 38,41, revealing how and when QEC codes could restore
HL scaling in quantum sensing. Let us first state our assumptions about the physical system. We assume that
the probes used for parameter estimation are subject to noise described by a Markovian master equation®? 43,
where the strength and structure of this noise is beyond the experimentalist’s control. Aside from the probe
system, the experimentalist also has noiseless ancilla qubits at her disposal, and the ability to apply noiseless
quantum gates which act jointly on the ancilla and probe; she can also perform perfect ancilla measurements,
and reset the ancillas after measurement. Later on, we will also see that noiseless ancillas are not needed when
the signal Hamiltonian and the error operators commute: a practically relevant type of decoherence in quantum
sensors. Furthermore, we assume that a quantum gate or measurement can be executed in an arbitrarily short
time (though the Markovian description of the probe’s noise is assumed to be applicable no matter how fast the
processing).

We endow the experimentalist with these powerful tools because we wish to address, as a matter of principle,
how effectively QEC can overcome the deficiencies of the noisy probe system. Our scenario may be of practical
interest as well, in hybrid quantum systems where ancillas are available which have a much longer coherence
time than the probe. For example, sensing of a magnetic field with a probe electron spin can be enhanced by
using a quantum code which takes advantage of the long coherence time of a nearby (ancilla) nuclear spin in
diamond**. In cases where noise acting on the ancilla is weak but not completely negligible, we could use QEC
to enhance the coherence time of the ancilla, thus providing a justification for our idealized setting in which the
ancilla is effectively noiseless®®. Recent experimental progress also indicates that fast quantum error correction
is applicable in at least some realistic settings. For example, in superconducting devices QEC has reached the
break-even point where the lifetime of an encoded qubit exceeds the natural lifetime of the constituents of the
system®®; one- and two-qubit logical operations have also been demonstrated®:47. Moreover, if sensing could
be performed using a probe encoded within a noiseless subspace or subsystem?® or protected by autonomous
quantum error correction*®°?, then active error correction would not be needed to protect the probe, making
the QEC scheme more feasible using near-term technology.

In accord with our assumptions, in Sec. 2 we first state a necessary and sufficient condition for achieving
HL scaling in a finite-dimensional system, which we call the HNLS condition, or simply HNLS, an acronym
for “Hamiltonian not in Lindblad span”. The condition is formulated as an algebraic relation between the
signal Hamiltonian whose coefficient is to be estimated and the Lindblad operators {Lj} which appear in the
master equation describing the evolution of the probe. For the case where our sufficient condition is satisfied,
we explicitly construct a QEC code which achieves HL scaling.

We also show that the problem of finding the QEC code achieving the best possible precision can be formulated
as a semidefinite program that can be efficiently solved numerically in Sec. 3. Furthermore, when the signal
Hamiltonian and the error operators commute, the semidefinite program can be modified to find the optimal
QEC code which does not use noiseless ancilla. In Sec. 4, we present the optimal code in two explicit, archetypal
examples of quantum sensors: qubits undergoing dephasing and a lossy bosonic mode.

In Sec. 5, we consider the case when HNLS is not satisfied, for example when the noise channel is full rank, the
HL scaling cannot be achieved. However, for noise which is e-close to meeting our criterion, using the QEC code
ensures that HL scaling can be maintained approximately for a time O(1/¢), before crossing over to asymptotic
SQL scaling. In addition, we calculate the precision limit beyond HNLS for qubits under correlated dephasing
noise.
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Figure 1. Metrology schemes. (a) The sequential scheme. One probe sequentially senses the parameter for time ¢, with
quantum controls applied every dt. (b) The parallel scheme. N probes sense the parameter for time ¢/N in parallel. The
parallel scheme can be simulated by the sequential scheme.

2. THE HNLS CONDITION

To derive the HNLS condition, we adopt the sequential scheme for quantum metrology see Fig. 1a). In
this scheme, a single noisy probe senses the unknown parameter for many rounds, where each round lasts for
a short time interval dt, and the total number of rounds is t/dt, where ¢ is the total sensing time. In between
rounds, an arbitrary (noiseless) quantum operation can be applied instantaneously, which acts jointly on the
probe and the noiseless ancillas. The rapid operations between rounds empower us to perform QEC, suppressing
the damaging effects of the noise on the probe. The sequential scheme is one of the most general metrology
scheme, as it can simulate a parallel scheme (Fig. 1b), in which N probes simultaneously sense the parameter
for time t/N36:51,

We denote the d-dimensional Hilbert space of our probe by Hp, and we assume the state pp of the probe

36,51,52 (

evolves according to a time-homogeneous Lindblad master equation of the form (with 7 = 1),**%
dp - !
P . T T
dt Sttt Z(LkPPLk - §{LkL’f’pP})’ (1)

k=1

where wH is the Hamiltonian from which w is to be estimated, {Ly} are the Lindblad jump operators, and r
is the “rank” of the noise channel acting on the probe (the smallest number of Lindblad operators needed to
describe the channel). We denote by H 4 another d-dimensional Hilbert space of a noiseless ancilla system. Over
the small time interval dt, during which no controls are applied, the ancilla evolves trivially, and the joint state
p of probe and ancilla evolves according to the quantum channel

. " 1
En(p) = p — ilwH, pldt + Y (LypLj, — 5 {Li Ly, p})dt + O(dt?), (2)
k=1

where p € Hp ® Hsq and H, Ly are shorthand for H ® I, L ® I respectively. We assume that this time interval
dt is sufficiently small that corrections higher order in dt can be neglected. In between rounds of sensing, each
lasting for time dt, control operations acting on p are applied instantaneously.

We denote by & the real linear subspace of Hermitian operators spanned by the operators I, Ly, LL, LLLj
(for all k and j ranging from 1 to r), and say that the Hamiltonian H obeys the HNLS condition if H is not
contained in the Lindblad span &. Now we state our main conclusion about parameter estimation using fast
and accurate quantum controls as Theorem 13738 and sketch the proof in the following two subsections.

Theorem 1 (HNLS) Consider a finite-dimensional probe with Hamiltonian wH, subject to Markovian noise
described by a Lindblad master equation with jump operators {Ly}}_,. Then w can be estimated with HL
(Heisenberg-limited) precision if and only if H and {Lj} obey the HNLS condition.



2.1 Non-achievability of HL. when HNLS fails

The necessary condition for HL scaling can be derived from the quantum Cramér-Rao bound®3 %

50 > ! . (3)
Nexpr - F(Pw (t))

Here @ denotes any unbiased estimator for the parameter w, and dw is that estimator’s standard deviation, or
precision of parameter estimation. F(p,(t)) is the quantum Fisher information (QFT) of the state p,(t); this
state is obtained by preparing an initial state p;, of the probe, and then evolving this state for total time ¢, where
the evolution is governed by Eq. (1) and our fast quantum controls. For a scheme in which the measurement
protocol is repeated many times in succession, Nexpr denotes the number of such repetitions.

We show that F(p,,(t)) is at most asymptotically linear in ¢ when the Hamiltonian H € &, which means that
SQL scaling cannot be surpassed in this case. Though it is challenging to compute the maximum attainable QFI
for arbitrary quantum channels, useful upper bounds on QFI can be derived, which provide lower bounds on
the precision of quantum metrology!6-19:36:51:56 " The quantum channel describing the joint evolution of probe
and ancilla has a Kraus operator representation E4(p) = >, KippK ,i, and in terms of these Kraus operators we
define

Qg = Z KkTKk = KTK, ﬂdt = ZZ KkTKk = iKTK, (4)
k k
where we express the Kraus operators in vector notation K := (Ko, K1,---)T, and the over-dot means the
derivative with respect to w. If pi, is the initial joint state of probe and ancilla at time 0, and p,(t) is the
corresponding state at time ¢, then the upper bound on the QFI

Foult) < a lad +4 () 18] (13l + 2y Taa]) )

(|| - || denotes the operator norm) derived by the “channel extension method” holds for any choice of pi, even
when fast and accurate quantum controls are applied during the evolution®¢. This upper bound on the QFI
provides a lower bound on the precision dw via Eq. (3).

Kraus representations are not unique — for any matrix v satisfying ufu = I, K’ = uK represents the same
channel as K. Hence, we can tighten the upper bound on the QFT by minimizing the RHS of Eq. (5) over all such

. . . . T
valid Kraus representations. We see that K/ = u (K — th) ,K’T = (K — ihK) ut where h = iufu. Therefore,

to find ag¢ and B4 providing the tightest upper bound on the QFI, it suffices to replace K by K — ihK and to
optimize over the Hermitian matrix h. To evaluate the bound for asymptotically large ¢, we expand ag, Bat, h
in powers of V/dt:

ag = a® + oWVt + aPdt + O(dt??), (6)
Bar = BO + gOVAE + P dt + P dr®/? + O(dt?), )

It can be shown that the first two terms in ag; and the first four terms in B4 can all be set to zero by choosing
a suitable h, assuming that HNLS is violated3”™ 3%, We therefore have ag; = O(dt) and B4 = O(dt?), so that the
second term in the RHS of Eq. (5) vanishes as dt — 0:

F(po(t)) < 4lla®]t, (9)

proving that SQL scaling cannot be surpassed when HNLS is violated (the necessary condition in Theorem 1).
We require the probe to be finite dimensional in the statement of Theorem 1 because otherwise the norm of oy
or B4 could be infinite.



2.2 QEC code for HL scaling when HNLS holds

To prove the sufficient condition for HL scaling, we show that a QEC code achieving HL scaling can be explicitly
constructed if H ¢ &. We first consider the QEC condition such that a unitary channel could be recovered. Let
IIo denote the projection onto the code space,

1] Mo Lo = Ao, VE, (10)
2] Mo LiL;Tle = pugTle, Vk, j, (11)

must be satisfied for some complex numbers A, and px;%%57. We say the code corrects the Lindblad span & if
Eq. (10) and Eq. (11) are satisfied. Then the error-corrected joint state of probe and ancilla evolves according
to the unitary channel (asymptotically)3®

d
d—f = —i[wHe, p, (12)
where Heg = IIcHIl. There is a code state for which the evolution depends nontrivially on w provided that

[3] IIc HII # constant x I¢. (13)
For this noiseless evolution with effective Hamiltonian wHg, the QFI of the encoded state at time ¢ is
2 2 2
F(pu()) = 462 [ Tr(pin Hp) = (Tr(pinHer)) (14)

where py, is the initial state at time ¢ = 0. The QFI is maximized by choosing the initial pure state
1

V2

where [Amin), [Amax) are the eigenstates of Heg with the minimal and maximal eigenvalues; with this choice the
QFI is

| in> (|)\min> + |)\max>)7 (15)

F(pw(t)) =1 ()‘max - )\min)z' (16)

By measuring in the appropriate basis at time ¢, we can estimate w with a precision that saturates the Cramér-
Rao bound in the asymptotic limit of a large number of measurements, hence realizing HL scaling.

To prove the sufficient condition in Theorem 1, we will now show that a code with properties [1]-[3] can
be constructed whenever HNLS is satisfied. To see how the code is constructed, note that the d-dimensional
Hermitian matrices form a real Hilbert space where the inner product of two matrices A and B is defined to be
Tr(AB). Then H has a unique decomposition into H = Hy + H,, where H) € & and H, | &1, the orthogonal
complement of &. If HNLS holds, then H is nonzero. It must also be traceless, in order to be orthogonal to I,
which is contained in &. Therefore, using the spectral decomposition, we can write H, = 3 (Tr[H ) (po — p1),

where py and p; are trace-one positive matrices with orthogonal support and |H | := /H7.

We can choose our QEC code to be the two-dimensional subspace of Hp ® H 4 spanned by |0.) and |1.),
which are normalized purifications of py and p; respectively, with orthogonal support in H4. (If the probe
is d-dimensional, a d-dimensional ancilla can purify its state.) Properties [1]-[3] could be verified directly. In

particular, we have
_ 2Tx(H?)

<OL|H|0L> - <1L‘H|1L> - W (17)

3. CODE OPTIMIZATION

When HNLS is satisfied, we can use our QEC code, along with fast and accurate quantum control, to achieve
noiseless evolution of the error-corrected probe, governed by the effective Hamiltonian. Because the optimal



initial state Eq. (15) is a superposition of just two eigenstates of Heg, a two-dimensional QEC code suffices for
achieving the best possible precision. For a code with basis states {|0.),]1.)}, the effective Hamiltonian is

Heg = |0L><0L|HL|0L><OL‘ + |1L><1L|HJ_|1L><1L‘~ (18)

To search for a better code, with basis states {|0.),|1.)}, define

po = Tra(|00) (Ou]),  p1 = Tra(|lu) (1e])s (19)
and consider R
H = po— p1. (20)
Properties [1]-[2] on the code imply ~
Tr(HO) =0, YO € 6, (21)
and we want to maximize
Amax — Amin = Tr(Heg (|00) (O] — |10) (1.])) = Tr(H L H), (22)

over matrices H of the form Eq. (20) subject to Eq. (21). H is the difference of two normalized density operators,
and satisfies Tr(|H|) < 2. In fact, though, if H obeys the constraint Eq. (21), the constraint is still satisfied if
we rescale H by a real constant greater than one, which increases Tr(H  H); hence the maximum of Tr(H, H)
is achieved for Tr(|H|) = 2, which means that the optimal jy and j; should have orthogonal support.

3.1 Code optimization as a semidefinite program

Optimization of the QEC code can be formulated as the following optimization problem:

maximize Tr(HH )

~ ~ (23)

subject to Tr(|H|) < 2 and Tr(HS) =0, VS € 6.
This optimization problem is convex (because Tr(|-|) is convex) and can be solved by solving its Lagrange dual
problem®®. The optimal QFI has a geometrical interpretation. We find that, for the optimal QEC code, the QFI
{g38,58

Fop(pu(t)) = 4% min |H — H || = 46 |H - &|*, (24)
Hye6&
In this sense, the QFI is determined by the minimal distance between H and &. The optimal code could be
found by the following procedure. We denote by ffﬁ the choice of H, € & that minimizes Eq. (24), and we
define
H®:= H — H. (25)

Then H* which maximizes Eq. (22) has the form
H* = 55— f5, (26)

where pf is a density operator supported on the eigenspace of H® with the maximal eigenvalue, and g is a density
operator supported on the eigenspace of H? with the minimal eigenvalue. The minimization in Eq. (24) ensures
that H* of this form can be chosen to obey the constraint Eq. (21). The optimal code would be purifications of
pg and pY with orthogonal support in H 4.



3.2 Ancilla-free quantum error-correcting code

The above construction of QEC sensing code relies on the noiseless ancilla system. It is yet not clear (i) under
what conditions HL scaling can be restored with an ancilla-free QEC code; (ii) whether such code can achieve
the same optimal QFI in Eq. (24). These questions can be partially answered in terms of a sufficient condition
on the signal Hamiltonian and the Lindblad jump operators*!.

Theorem 2 (Ancilla-free code under commuting noise) Suppose H ¢ & and [H, L;| = [L;, L;] =0, Vi, j.
Then there exists a QEC sensing code without noiseless ancilla that asymptotically recovers the Heisenberg limit
in ¢. Moreover, it achieves the same optimal asymptotic QFI [Eq. (24)] offered by noiseless ancillas.

Proof. Without loss of generality, we consider only a 2-dimensional code

d
00 = > VB k), (27)
k=1

where {|k)}¢_, is an orthonormal basis under which H and L;’s are diagonal. Define d-dimensional vectors
1,h,%;, and £;; such that (1); =1, (h)r = (k|H|k), (€;)r = (k|L;|k) and (£;5)r = (k\LILJUﬁ) Define the real
subspace Ggiag = span{l, Re[¢;], Im[¢;], Re[;;], Im[€;;], Vi, j} C RY. The optimal code can be identified from
the optimal solution B8* = B%* — B* of the following SDP®8,

maximize (3, h) (28)
subject to  ||B]|; < 2, and (8,£€) =0, V€ € Ggiag. (29)

Here |||, = Z‘Ll |z;| is the one-norm in R¢ and (zx,y) = Z‘Ll x;y; the inner product. Choosing the optimal
input quantum state | o) = %(|0L> + |1.)), the QFIL is F(pu(t)) = t2[(B8° — ﬁl,h>|2. Moreover, the optimal
value of Eq. (28) is 2mingee ., ||k + £||, with the argument of the minimum denoted by £°. Here ||-|| , denotes
the infinity/max norm, defined as the largest absolute value of elements in a vector. The optimal solution
B9M* can be obtained from the constraint that it is in the span of vectors v such that (v, h + £°) is the largest
(smallest).>® In this case,

F(po(t)) = 4% | b — Saingl|2 (30)

is the same as Fopy in Eq. (24) for noiseless ancilla. Therefore, we can conclude that B°(M* gives the optimal
code. 0

4. EXAMPLES

Now we present two explicitly constructed ancilla-free quantum error correcting codes, where the code is defined
only in the probe system Hp*'.

4.1 Qubits under correlated dephasing noise

A common sensing scenario involves a quantum sensor composed of N probing qubits with energy gaps propor-
tional to w?. For such a sensor to be effective, the qubits’ energy gaps must depend strongly on w, which in turn
makes them vulnerable to rapid dephasing due to uctuations in their energies from a noisy environment®% %4,
Assuming for simplicity that each qubit has the same dephasing time T5, the generic Markovian dynamics for
the sensor is

N
dpp 3 1 1

PP _ _ilwH, =3 4(24 7, — ={Z; 7, ) 31
o iw pp}+2T2jk:1cjk iPPLk 2{ NI (31)

Here, H = %h - Z where h € RY and Z = (Zy,...,Zy) is a vector of Pauli-Z matrices on each site. Qubit j
has an energy gap wh;. The correlation matrix C' = (cjk)j-\szl describing the spatial structure of the noise can
be quite general, e.g. depending on their coupling to a nearby uctuator or a common resonator. In particular,
¢k € [—1,1] describes the correlation between the uctuations on qubits j and k, with ¢, = 1,—1 and 0
signifying full positive, full negative, and the absence of correlations, respectively.



Eq. (31) can be converted to the form of Eq. (1) by diagonalizing C' (Cv; = Ajv;) with an orthonormal
eigenbasis. Concretely, L; = \/)Tj'vj - Z can be viewed as normal modes of the phase noise. The HNLS condition
then translates to § ¢ col(C'), the column space of C, which occurs when one normal mode u overlapping with
H (ie., v, - h # 0) has a vanishing amplitude, A\, = 0. This occurs generically in the limit of strong spatial
noise correlations, provided the noise is not uniformly global®®. Observe that [H, L;] = [L;, Ly] = 0 here, so
Theorem 2 guarantees a QEC code without noiseless ancillas saturating the optimal bound in Eq. (24). One
such code, for N > 2, is given by

N
0,) = () ((cos6; 10;) +isinb;]15) ), [1) = X5 o,), (32)
j=1

1

5 arccos b°, defined element-wise, and b° is the solution of the following SDP:

where 0 =
maximize (b, h), subject to ||b]| <1, b L col(C). (33)

For N = 1, HNLS is not satisfiable for non-zero noise. It is straightforward to show that the code in Eq. (32),
with this choice of b°, satisfies properties Eqs. (10)-(11) and Eq. (13). It works by correcting all non-vanishing
noise modes, but leaving a vanishing mode with the maximum overlap with H uncorrected, through which H
affects the logical state. Moreover, it achieves the optimal asymptotic QFI [Eq. (24)], in this case:

Fopy(t) = 2 |[y = col(O)] 7. (34)

Remarkably, while the domain of the SDP in Eqgs. (28)-(29) has dimension O(2%), that of Eq. (33) only has
dimension O(N): our ansatz in Eq. (32) renders the QEC code optimization efficient. Note that when

o )
b = prOJker(C)ha (35)

where = [|projye, oy bllz- The code using 8 = 3 arccos b always satisfies properties Eqgs. (10)-(11) and
Eq. (13), although it needs not saturate the optimal QFI in Eq. (34). In the important case of a single vanishing
noise mode [i.e., rank(C') = N — 1], however, b° achieves the optimal QFI.

4.2 Lossy bosonic channel

Boson loss is often the dominant decoherence mechanism in a bosonic mode®, described by the master equation

R D R )} @)

where a is the annihilation operator and « the boson loss rate. We only consider Hamiltonians that are a function
of the boson number afa, applying a cutoff at the s-th power, where s > 1 is a positive integer. We also truncate
the boson number at M, to keep the system dimension finite. According to the HNLS condition, while {; cannot
be sensed at the Heisenberg limit, w := (s asymptotically can.

To sense w, it is important to filter out all lower-order signals Zfz_ll ¢i(ata)’ using the QEC code. Therefore,
we should use the following modified Lindblad span:

S =span{I,a,a’, (a'a)’, 1 <i<s—1}. (37)

Note that the boson loss noise is not commuting because [a, (aTa)?] # 0. Still, this type of off-diagonal noise can

be tackled by simply ensuring the distance of the supports (non-vanishing terms) of |0) and |1,) is at least 3.
To obtain the optimal code, we could solve the SDP in Egs. (28)-(29). However, when M is sufficiently large,

we obtain a near-optimal solution analytically by observing that for large M, minimizing ||(a'a)® —Zf;ol xi(ata)||

over all {x; fzé is equivalent to approximating a s-th degree polynomial using an (s — 1)-degree polynomial.
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The optimal polynomial is the Chebyshev polynomial®® and the near-optimal code, that we call the s-th order

Chebyshev code, is supported by its max/min points:

[0,5] . [0,5] .
_ ~ ) _ ~ 202
|0,) = ) egven Ck \‘M sin (%)J > , 1) = k%dd Cr {M sin <25>J > ) (38)

where |z] denotes the largest integer < z, and |ék|2 can be obtained from solving a linear system of equations
of size O(s?). |ék|2 is approximately equal to % — %51“ — %5k0 for sufficiently large M. It is also interesting to
note that the supports of |0,) and |1,) bears a resemblance to the optimal time intervals in Uhrig dynamical
decoupling®7.

The s-th order Chebyshev code corrects the Lindblad span (Eq. (37)) and provides a near optimal asymptotic
QFI for w

Flpult) ~ Fas ) ~ 168 () (39)

for sufficiently large M.

5. BEYOND THE HNLS CONDITION

Generic Markovian noise is full rank, which means that the span & is the full Hilbert space Hp of the probe;
hence the HNLS criterion of Theorem 1 is violated for any probe Hamiltonian H, and asymptotic SQL scaling
cannot be surpassed. Therefore, for any Markovian noise model that meets the HNLS criterion, the HL scaling
achieved by our QEC code is not robust against generic small perturbations of the noise model.

We should therefore emphasize that a substantial improvement in precision can still be achieved using a QEC
code even in cases where HNLS is violated?®. Consider in particular a Markovian master equation with Lindblad
operators divided into two sets {L} (L-type noise) and {J,,,} (J-type noise)

d , 1 1
L = —ifwH, pp) + Y (LippLl = SALLLi pp}) + Y (Jmprdly = S{LLLuns pr}). (40)
k m

where the J-type noise is parametrically weak, with noise strength defined by
€y = H Z JLJmH (41)
m

If we use the optimal code that protects against L-type noise, then the joint logical state of probe and ancilla
evolves according to a modified master equation, with Hamiltonian Heg = IIoHIlo, and effective Lindblad
operators J,, ; acting within the code space (the subscript j denotes different error syndromes), where

H > JL,ij,jH <ey. (42)
m’j

The state of the error-corrected probe only deviates by a distance O(est) (in the L' norm) from the (effectively
noiseless) evolution in the absence of J-type noise. Therefore, using this code, the QFI of the error-corrected
probe increases quadratically in time (and the precision §& scales like 1/t) up until an evolution time ¢ o< 1/¢7,
before crossing over to asymptotic SQL scaling.

When € is not infinitesimally small, it is still possible that QEC could enhance estimation precision*!. To
show how, we generalize the dephasing qubits example Sec. 4.1 to this more realistic setting. When HNLS is
satisfied, the code in Eq. (32) corrects noise modes with non-zero amplitude A; > 0, but leaves a mode with
Aw = 0 uncorrected. In experiments, the noise correlation matrix C' is generically full-rank, meaning that the
HNLS condition is not satisfied. Yet, non-trivial noise correlations will generally cause C' to have a non-uniform
spectrum, yielding some subdominant eigenvalues and corresponding L;’s. It is thus possible to design a code
that still accumulates signal at the cost of leaving uncorrected just one subdominant noise mode (A, == 0)
through



an appropriate choice of 8 in Eq. (32). To reach a closed-form expression for the resulting sensitivity, we use b’
[Eq. (35)] as a starting point rather than an SDP formulation, setting

1
6= 3 arccos( vy), (43)

defined element-wise, where = ||v, ||

The natural figure of merit for a sensor with uncorrected noise is not the Fisher information: decoherence
eventually causes F(p,(t)) to decrease, rather than grow unbounded as in Eq. (24). Instead, it is sensitivity,
defined as the smallest resolvable signal per unit time®. For a single qubit with an energy gap Aw and dephasing
time Ty /B, the best achievable sensitivity is?? 4!

, 1 VB |2
N S oo s o

Taking h; = 1 in Eq. (31), each physical qubit (A = B = 1) gives 1 = /2e/T>. N such qubits operated in
parallel give npar = 171/ VN, while for entangled states one could reach A = N, often at the cost of an increased
B. For example, a Greenberger-Horne-Zeilinger (GHZ) sensing scheme with the same N qubits gives

IDL*VThlls [2e
NGHZ N T, (45)
where V = (v1,...,vy) and Do = diag(\g, ..., Ax) .58 Note that for uncorrelated noise we have ||Dé/2VTf)||2 =

V/N, thus negating any gains from entanglement.

To find the sensitivity offered by the QEC code described above, we compute the sensor’s effective Liouvillian,
Lot = Ro LoP, under frequent recoveries R, where P(p) = PpP3°. The usual QEC recovery (i.e., the transpose
channel) results in population leakage out of the codespace due to the uncorrected error L, which complicates
the analysis®™59. To prevent such leakage at the first order, we modify the usual recovery so that the state is
returned to the codespace after an error L,, though perhaps with a logical error. This modification results in a
Markovian, trace-preserving effective dynamics over the two-dimensional codespace, given by L.g. Specifically,

the sensor’s effective dynamics becomes that of a dephasing qubit with A = |v, - b and B = 2\, giving
178%0 = 11V Au/|Vu - B|. The optimal choice of u is the one that minimizes this quantity, giving:

1 2e
/ 46
NQEC = H 51/2 T‘JH T, (46)

valid for arbitrary noise correlation profile C*. Eq. (46) identifies the C’s for which this QEC scheme provides
enhanced sensitivity over parallel and GHZ sensing. Notice that while HNLS is satisfied only in a measure-
zero set of C’s, QEC can enhance sensitivity over a much larger set, regardless of whether it can approach the
Heisenberg limit in ¢. It admits a broad range of nqrc vs. IV scalings due to the critical dependence of nqrc on
C = C(N). The same is true of the Fisher information in the HNLS limit as we show in.

6. DISCUSSION

Noise limits the precision of quantum sensing. Quantum error correction can suppress the damaging effects
of noise, thereby improving the fidelity of quantum information processing and quantum communication, but
whether QEC improves the efficacy of quantum sensing depends on the structure of the noise and the signal
Hamiltonian. Unless suitable conditions are met, the QEC code that tames the noise might obscure the signal
as well, nullifying the advantages of QEC.

*DEUQ is undefined when C' is singular. In this case, Eq. (46) should be regularized by replacing Dc — D¢ + €l,
evaluating the norm, then taking € — 0.



Our study of quantum sensing using a noisy probe has focused on whether the precision ¢ of parameter
estimation scales asymptotically with the total sensing time t as § oc 1/t (Heisenberg limit) or & oc 1/1/¢ (standard
quantum limit). We have investigated this question in an idealized setting, where the experimentalist has access
to noiseless (or correctable) ancillas and can apply quantum controls which are arbitrarily fast and accurate, and
we have also assumed that the noise acting on the probe is Markovian. Under these assumptions, we have found
the general criterion for HL scaling to be achievable, the Hamiltonian-not-in-Lindblad span (HNLS) criterion.
If HNLS is satisfied, a QEC code can be constructed which achieves HL scaling, and if HNLS is violated, then
SQL scaling cannot be surpassed. Nonetheless, when HNLS is approximately satisfied, the coherence time of the
probe could still be substantially extended under QEC.

The problem of finding the optimal QEC code with the best estimation precision can be formulated as
a semidefinite program, which is numerically tractable’®. The optimal QFI has a pleasing geometrical inter-
pretation, determined by the distance between the Hamiltonian and the Lindblad span under operator norm.
Furthermore, using the SDP fomalism we show that when the Hamiltonian and the noise operators all commute,
there exist an optimal ancilla-free QEC code, providing a sufficient condition to remove the noiseless ancilla
requirement in a realistic setting. We also present two explicit examples of ancilla-free QEC codes: qubits
undergoing dephasing and a lossy bosonic mode, which is of practical interest.

Many questions merit further investigation. We have focused on the dichotomy of HL vs. SQL scaling, but
it is also worthwhile to characterize constant factor improvements in precision that can be achieved using QEC
in cases where HNLS is violated”'. We should also clarify the role of noiseless ancilla in error-corrected quantum
sensing. Commuting noise is sufficient, but not necessary for ancilla-free codes®?3%4% and it is an interesting
open problem to refine Theorem 2 into a necessary and sufficient condition. Finally, it is interesting to consider
probes subject to non-Markovian noise, in which case, tools such as dynamical decoupling®® 677273 can mitigate
noise. Just as for QEC, we need to balance desirable suppression of the noise against undesirable suppression of
the signal in order to formulate the most effective sensing strategy.
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