
HL scaling is attainable in principle by preparing an entangled “cat” state of N probes12. Due to decoherence,
precision usually scales like 1/

√
N in practice, called the standard quantum limit (SQL), which can be achieved
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ABSTRACT

Quantum metrology has many important applications in science and technology, ranging from frequency spec-
troscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement 
precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achiev-
able in general for systems subject to noise. Here we study how measurement precision can be enhanced through 
quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. 
We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to 
Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum process-
ing can be performed. When the sufficient condition is satisfied, the quantum error-correcting code achieving 
the best possible precision can be found by solving a semidefinite program. We also show that noiseless ancilla 
are not needed when the signal Hamiltonian and the error operators commute. Finally we provide two explicit, 
archetypal examples of quantum sensors: qubits undergoing dephasing and a lossy bosonic mode.

1. INTRODUCTION

Quantum metrology concerns the task of estimating a parameter, or several parameters, characterizing the 
Hamiltonian of a quantum system1–3. It is of great importance in science and technology, with wide applications 
including frequency spectroscopy, magnetometry, accelerometry, gravimetry, gravitational wave detection, and 
other high-precision measurements4–13. However, as with most quantum technologies, the performance of quan-
tum sensors is limited by decoherence. Typically, a quantum sensor acquires a signal as a relative phase between 
two states in coherent superposition. Its sensitivity therefore depends both on how quickly this phase accumu-
lates, and on how long the superposition remains coherent. The fundamental strategy to enhance sensitivity is 
then to increase the rate of signal acquisition (e.g., by exploiting entanglement) without reducing the coherence 
time by an equal amount14. These competing demands pose a familiar dilemma in quantum engineering: a 
quantum sensor must couple strongly to its environment without being rapidly decohered by it.

The Heisenberg limit (HL) constrains how the precision of parameter estimation improves as the total probing 
time t increases. According to HL, the scaling of precision with t can be no better than 1/t; equivalently, precision 
scales no better than 1/N with the total number of probes N used in an experiment. For a noiseless system,

by using N independent probes14–19. The quest for measurement schemes surpassing the SQL has inspired
a variety of clever strategies, such as squeezing the vacuum4, optimizing the probing time20, monitoring the 
environment21–23, and exploiting non-Markovian effects24–26.

Quantum error correction (QEC) is a method for reducing noise in quantum channels and quantum proces-
sors27–29. In principle, it enables a noisy quantum computer to simulate faithfully an ideal quantum computer, 
with reasonable overhead cost, if the noise is not too strong or too strongly correlated. Recently, quantum error 
correction (QEC) has emerged as a particularly powerful tool for enhancing the precision in quantum metrol-
ogy30–41. When a signal and a noise source are coupled to a sensor in orthogonal directions, e.g., through σz and



σx, it was shown that HL scaling could be restored asymptotically (in the sense that recoveries are performed 
with sufficiently high frequency) via a two-qubit code utilizing one probing qubit and one noiseless ancillary 
qubit30–33.

QEC has found its application in several important sensing scenarios, but its potential value in quantum 
metrology has not yet been fully  eshed  out, even as a matter of principle. As is the case for quantum computing, 
we should expect positive (or negative) statements about improving metrology via QEC to be premised on suitable 
assumptions about the properties of the noise and the capabilities of our quantum hardware. A serious obstacle 
for applications of QEC to sensing is that it may in some cases be exceedingly hard to distinguish the signal 
arising from the Hamiltonian evolution of the probe system from the effects of the noise acting on the probe.

In this paper, we summarize our results in Refs. 38, 41, revealing how and when QEC codes could restore 
HL scaling in quantum sensing. Let us first state our assumptions about the physical system. We assume that 
the probes used for parameter estimation are subject to noise described by a Markovian master equation42,43, 
where the strength and structure of this noise is beyond the experimentalist’s control. Aside from the probe 
system, the experimentalist also has noiseless ancilla qubits at her disposal, and the ability to apply noiseless 
quantum gates which act jointly on the ancilla and probe; she can also perform perfect ancilla measurements, 
and reset the ancillas after measurement. Later on, we will also see that noiseless ancillas are not needed when 
the signal Hamiltonian and the error operators commute: a practically relevant type of decoherence in quantum 
sensors. Furthermore, we assume that a quantum gate or measurement can be executed in an arbitrarily short 
time (though the Markovian description of the probe’s noise is assumed to be applicable no matter how fast the 
processing).

We endow the experimentalist with these powerful tools because we wish to address, as a matter of principle, 
how effectively QEC can overcome the deficiencies of the noisy probe system. Our scenario may be of practical 
interest as well, in hybrid quantum systems where ancillas are available which have a much longer coherence 
time than the probe. For example, sensing of a magnetic field with a probe electron spin can be enhanced by 
using a quantum code which takes advantage of the long coherence time of a nearby (ancilla) nuclear spin in 
diamond44. In cases where noise acting on the ancilla is weak but not completely negligible, we could use QEC 
to enhance the coherence time of the ancilla, thus providing a justification for our idealized setting in which the 
ancilla is effectively noiseless38. Recent experimental progress also indicates that fast quantum error correction 
is applicable in at least some realistic settings. For example, in superconducting devices QEC has reached the 
break-even point where the lifetime of an encoded qubit exceeds the natural lifetime of the constituents of the 
system45; one- and two-qubit logical operations have also been demonstrated46,47. Moreover, if sensing could 
be performed using a probe encoded within a noiseless subspace or subsystem48 or protected by autonomous 
quantum error correction49,50, then active error correction would not be needed to protect the probe, making 
the QEC scheme more feasible using near-term technology.

In accord with our assumptions, in Sec. 2 we first state a necessary and sufficient condition for achieving 
HL scaling in a finite-dimensional system, which we call the HNLS condition, or simply HNLS, an acronym 
for “Hamiltonian not in Lindblad span”. The condition is formulated as an algebraic relation between the 
signal Hamiltonian whose coefficient is to be estimated and the Lindblad operators {Lk} which appear in the 
master equation describing the evolution of the probe. For the case where our sufficient condition is satisfied, 
we explicitly construct a QEC code which achieves HL scaling.

We also show that the problem of finding the QEC code achieving the best possible precision can be formulated 
as a semidefinite program that can be efficiently solved numerically in Sec. 3. Furthermore, when the signal 
Hamiltonian and the error operators commute, the semidefinite program can be modified to find the optimal 
QEC code which does not use noiseless ancilla. In Sec. 4, we present the optimal code in two explicit, archetypal 
examples of quantum sensors: qubits undergoing dephasing and a lossy bosonic mode.

In Sec. 5, we consider the case when HNLS is not satisfied, for example when the noise channel is full rank, the 
HL scaling cannot be achieved. However, for noise which is ε-close to meeting our criterion, using the QEC code 
ensures that HL scaling can be maintained approximately for a time O(1/ε), before crossing over to asymptotic 
SQL scaling. In addition, we calculate the precision limit beyond HNLS for qubits under correlated dephasing 
noise.



Figure 1. Metrology schemes. (a) The sequential scheme. One probe sequentially senses the parameter for time t, with
quantum controls applied every dt. (b) The parallel scheme. N probes sense the parameter for time t/N in parallel. The
parallel scheme can be simulated by the sequential scheme.

2. THE HNLS CONDITION

To derive the HNLS condition, we adopt the sequential scheme for quantum metrology36,51,52 (see Fig. 1a). In
this scheme, a single noisy probe senses the unknown parameter for many rounds, where each round lasts for
a short time interval dt, and the total number of rounds is t/dt, where t is the total sensing time. In between
rounds, an arbitrary (noiseless) quantum operation can be applied instantaneously, which acts jointly on the
probe and the noiseless ancillas. The rapid operations between rounds empower us to perform QEC, suppressing
the damaging effects of the noise on the probe. The sequential scheme is one of the most general metrology
scheme, as it can simulate a parallel scheme (Fig. 1b), in which N probes simultaneously sense the parameter
for time t/N36,51.

We denote the d-dimensional Hilbert space of our probe by HP , and we assume the state ρP of the probe
evolves according to a time-homogeneous Lindblad master equation of the form (with ~ = 1),42,43

dρP

dt
= −i[ωH, ρP ] +

r∑
k=1

(LkρP L†k −
1
2
{L†kLk, ρP }), (1)

where ωH is the Hamiltonian from which ω is to be estimated, {Lk} are the Lindblad jump operators, and r
is the “rank” of the noise channel acting on the probe (the smallest number of Lindblad operators needed to
describe the channel). We denote by HA another d-dimensional Hilbert space of a noiseless ancilla system. Over
the small time interval dt, during which no controls are applied, the ancilla evolves trivially, and the joint state
ρ of probe and ancilla evolves according to the quantum channel

Edt(ρ) = ρ− i[ωH, ρ]dt +
r∑

k=1

(LkρL
†
k −

1
2
{L†kLk, ρ})dt + O(dt2), (2)

where ρ ∈ HP ⊗HA and H, Lk are shorthand for H ⊗ I, Lk ⊗ I respectively. We assume that this time interval 
dt is sufficiently small that corrections higher order in dt can be neglected. In between rounds of sensing, each 
lasting for time dt, control operations acting on ρ are applied instantaneously.

We denote by S the real linear subspace of Hermitian operators spanned by the operators I, Lk, L
†
k, L

†
kLj 

(for all k and j ranging from 1 to r), and say that the Hamiltonian H obeys the HNLS condition if H is not 
contained in the Lindblad span S. Now we state our main conclusion about parameter estimation using fast 
and accurate quantum controls as Theorem 137,38 and sketch the proof in the following two subsections.

Theorem 1 (HNLS) Consider a finite-dimensional probe with Hamiltonian ωH, subject to Markovian noise 
described by a Lindblad master equation with jump operators {Lk}rk=1. Then ω can be estimated with HL 
(Heisenberg-limited) precision if and only if H and {Lk} obey the HNLS condition.



2.1 Non-achievability of HL when HNLS fails

The necessary condition for HL scaling can be derived from the quantum Cramér-Rao bound53–55

δω̂ ≥ 1√
Nexpr · F (ρω(t))

. (3)

Here ω̂ denotes any unbiased estimator for the parameter ω, and δω̂ is that estimator’s standard deviation, or
precision of parameter estimation. F (ρω(t)) is the quantum Fisher information (QFI) of the state ρω(t); this
state is obtained by preparing an initial state ρin of the probe, and then evolving this state for total time t, where
the evolution is governed by Eq. (1) and our fast quantum controls. For a scheme in which the measurement
protocol is repeated many times in succession, Nexpr denotes the number of such repetitions.

We show that F (ρω(t)) is at most asymptotically linear in t when the Hamiltonian H ∈ S, which means that
SQL scaling cannot be surpassed in this case. Though it is challenging to compute the maximum attainable QFI
for arbitrary quantum channels, useful upper bounds on QFI can be derived, which provide lower bounds on
the precision of quantum metrology16–19,36,51,56. The quantum channel describing the joint evolution of probe
and ancilla has a Kraus operator representation Edt(ρ) =

∑
k KkρK

†
k, and in terms of these Kraus operators we

define
αdt =

∑
k

K̇k
†
K̇k = K̇†K̇, βdt = i

∑
k

K̇k
†
Kk = iK̇†K, (4)

where we express the Kraus operators in vector notation K := (K0,K1, · · · )T , and the over-dot means the
derivative with respect to ω. If ρin is the initial joint state of probe and ancilla at time 0, and ρω(t) is the
corresponding state at time t, then the upper bound on the QFI

F (ρω(t)) ≤ 4
t

dt
‖αdt‖+ 4

(
t

dt

)2

‖βdt‖
(
(‖βdt‖+ 2

√
‖αdt‖

)
(5)

(‖ · ‖ denotes the operator norm) derived by the “channel extension method” holds for any choice of ρin even
when fast and accurate quantum controls are applied during the evolution36. This upper bound on the QFI
provides a lower bound on the precision δω̂ via Eq. (3).

Kraus representations are not unique — for any matrix u satisfying u†u = I, K′ = uK represents the same
channel as K. Hence, we can tighten the upper bound on the QFI by minimizing the RHS of Eq. (5) over all such

valid Kraus representations. We see that K̇′ = u
(
K̇− ihK

)
,K̇′
†

=
(
K̇− ihK

)†
u† where h = iu†u̇. Therefore,

to find αdt and βdt providing the tightest upper bound on the QFI, it suffices to replace K̇ by K̇− ihK and to
optimize over the Hermitian matrix h. To evaluate the bound for asymptotically large t, we expand αdt, βdt, h
in powers of

√
dt:

αdt = α(0) + α(1)
√

dt + α(2)dt + O(dt3/2), (6)

βdt = β(0) + β(1)
√

dt + β(2)dt + β(3)dt3/2 + O(dt2), (7)

h = h(0) + h(1)
√

dt + h(2)dt + h(3)dt3/2 + O(dt2). (8)

It can be shown that the first two terms in αdt and the first four terms in βdt can all be set to zero by choosing
a suitable h, assuming that HNLS is violated37,38. We therefore have αdt = O(dt) and βdt = O(dt2), so that the
second term in the RHS of Eq. (5) vanishes as dt→ 0:

F (ρω(t)) ≤ 4‖α(2)‖t, (9)

proving that SQL scaling cannot be surpassed when HNLS is violated (the necessary condition in Theorem 1).
We require the probe to be finite dimensional in the statement of Theorem 1 because otherwise the norm of αdt

or βdt could be infinite.



2.2 QEC code for HL scaling when HNLS holds

To prove the sufficient condition for HL scaling, we show that a QEC code achieving HL scaling can be explicitly
constructed if H /∈ S. We first consider the QEC condition such that a unitary channel could be recovered. Let
ΠC denote the projection onto the code space,

[1] ΠCLkΠC = λkΠC , ∀k, (10)

[2] ΠCL†kLjΠC = µkjΠC , ∀k, j, (11)

must be satisfied for some complex numbers λk and µkj
38,57. We say the code corrects the Lindblad span S if

Eq. (10) and Eq. (11) are satisfied. Then the error-corrected joint state of probe and ancilla evolves according
to the unitary channel (asymptotically)38

dρ

dt
= −i[ωHeff , ρ], (12)

where Heff = ΠCHΠC . There is a code state for which the evolution depends nontrivially on ω provided that

[3] ΠCHΠC 6= constant×ΠC . (13)

For this noiseless evolution with effective Hamiltonian ωHeff , the QFI of the encoded state at time t is

F (ρω(t)) = 4t2
[
Tr(ρinH2

eff)−
(
Tr(ρinHeff)

)2]
, (14)

where ρin is the initial state at time t = 0. The QFI is maximized by choosing the initial pure state

| in〉 =
1√
2
(|λmin〉+ |λmax〉), (15)

where |λmin〉, |λmax〉 are the eigenstates of Heff with the minimal and maximal eigenvalues; with this choice the
QFI is

F (ρω(t)) = t2
(
λmax − λmin

)2
. (16)

By measuring in the appropriate basis at time t, we can estimate ω with a precision that saturates the Cramér-
Rao bound in the asymptotic limit of a large number of measurements, hence realizing HL scaling.

To prove the sufficient condition in Theorem 1, we will now show that a code with properties [1]–[3] can
be constructed whenever HNLS is satisfied. To see how the code is constructed, note that the d-dimensional
Hermitian matrices form a real Hilbert space where the inner product of two matrices A and B is defined to be
Tr(AB). Then H has a unique decomposition into H = H + H⊥, where H ∈ S and H⊥ ⊥ S⊥, the orthogonal
complement of S. If HNLS holds, then H⊥ is nonzero. It must also be traceless, in order to be orthogonal to I,
which is contained in S. Therefore, using the spectral decomposition, we can write H⊥ = 1

2 (Tr |H⊥|) (ρ0 − ρ1),
where ρ0 and ρ1 are trace-one positive matrices with orthogonal support and |H⊥| :=

√
H2
⊥.

We can choose our QEC code to be the two-dimensional subspace of HP ⊗ HA spanned by |0l〉 and |1l〉,
which are normalized purifications of ρ0 and ρ1 respectively, with orthogonal support in HA. (If the probe
is d-dimensional, a d-dimensional ancilla can purify its state.) Properties [1]-[3] could be verified directly. In
particular, we have

〈0l|H|0l〉 − 〈1l|H|1l〉 =
2Tr(H2

⊥)
Tr|H⊥|

. (17)

3. CODE OPTIMIZATION

When HNLS is satisfied, we can use our QEC code, along with fast and accurate quantum control, to achieve
noiseless evolution of the error-corrected probe, governed by the effective Hamiltonian. Because the optimal



initial state Eq. (15) is a superposition of just two eigenstates of Heff , a two-dimensional QEC code suffices for
achieving the best possible precision. For a code with basis states {|0l〉, |1l〉}, the effective Hamiltonian is

Heff = |0l〉〈0l|H⊥|0l〉〈0l|+ |1l〉〈1l|H⊥|1l〉〈1l|. (18)

To search for a better code, with basis states {|0l〉, |1l〉}, define

ρ̃0 = TrA(|0l〉 〈0l|), ρ̃1 = TrA(|1l〉 〈1l|), (19)

and consider
H̃ = ρ̃0 − ρ̃1. (20)

Properties [1]–[2] on the code imply
Tr(H̃O) = 0, ∀O ∈ S, (21)

and we want to maximize

λmax − λmin = Tr(Heff(|0l〉 〈0l| − |1l〉 〈1l|)) = Tr(H⊥H̃), (22)

over matrices H̃ of the form Eq. (20) subject to Eq. (21). H̃ is the difference of two normalized density operators,
and satisfies Tr(|H̃|) ≤ 2. In fact, though, if H̃ obeys the constraint Eq. (21), the constraint is still satisfied if
we rescale H̃ by a real constant greater than one, which increases Tr(H⊥H̃); hence the maximum of Tr(H⊥H̃)
is achieved for Tr(|H̃|) = 2, which means that the optimal ρ̃0 and ρ̃1 should have orthogonal support.

3.1 Code optimization as a semidefinite program

Optimization of the QEC code can be formulated as the following optimization problem:

maximize Tr(H̃H⊥)

subject to Tr(|H̃|) ≤ 2 and Tr(H̃S) = 0, ∀S ∈ S.
(23)

This optimization problem is convex (because Tr(| · |) is convex) and can be solved by solving its Lagrange dual
problem58. The optimal QFI has a geometrical interpretation. We find that, for the optimal QEC code, the QFI
is38,58

Fopt(ρω(t)) = 4t2 min
H̃ ∈S

‖H − H̃ ‖2 ≡ 4t2 ‖H −S‖2 , (24)

In this sense, the QFI is determined by the minimal distance between H and S. The optimal code could be
found by the following procedure. We denote by H̃� the choice of H̃ ∈ S that minimizes Eq. (24), and we
define

H̃� := H − H̃�. (25)

Then H̃∗ which maximizes Eq. (22) has the form

H̃∗ = ρ̃�0 − ρ̃�1, (26)

where ρ̃�0 is a density operator supported on the eigenspace of H̃� with the maximal eigenvalue, and ρ̃�1 is a density
operator supported on the eigenspace of H̃� with the minimal eigenvalue. The minimization in Eq. (24) ensures
that H̃∗ of this form can be chosen to obey the constraint Eq. (21). The optimal code would be purifications of
ρ̃�0 and ρ̃�1 with orthogonal support in HA.



3.2 Ancilla-free quantum error-correcting code

The above construction of QEC sensing code relies on the noiseless ancilla system. It is yet not clear (i) under
what conditions HL scaling can be restored with an ancilla-free QEC code; (ii) whether such code can achieve
the same optimal QFI in Eq. (24). These questions can be partially answered in terms of a sufficient condition
on the signal Hamiltonian and the Lindblad jump operators41.

Theorem 2 (Ancilla-free code under commuting noise) Suppose H /∈ S and [H,Li] = [Li,Lj ] = 0, ∀i, j.
Then there exists a QEC sensing code without noiseless ancilla that asymptotically recovers the Heisenberg limit
in t. Moreover, it achieves the same optimal asymptotic QFI [Eq. (24)] offered by noiseless ancillas.

Proof. Without loss of generality, we consider only a 2-dimensional code

|0(1)l〉 =
d∑

k=1

√
β

0(1)
k |k〉 , (27)

where {|k〉}dk=1 is an orthonormal basis under which H and Li’s are diagonal. Define d-dimensional vectors
1,h, `i, and `ij such that (1)k = 1, (h)k = 〈k|H|k〉, (`i)k = 〈k|Li|k〉 and (`ij)k = 〈k|L†iLj |k〉. Define the real
subspace Sdiag = span{1,Re[`i], Im[`i],Re[`ij ], Im[`ij ], ∀i, j} ⊆ Rd. The optimal code can be identified from
the optimal solution β∗ = β0∗ − β1∗ of the following SDP58,

maximize 〈β,h〉 (28)
subject to ‖β‖1 ≤ 2, and 〈β, `〉 = 0, ∀` ∈ Sdiag. (29)

Here ‖x‖1 =
∑d

i=1 |xi| is the one-norm in Rd and 〈x,y〉 =
∑d

i=1 xiyi the inner product. Choosing the optimal
input quantum state | 0〉 = 1√

2
(|0l〉 + |1l〉), the QFI is F (ρω(t)) = t2

∣∣〈β0 − β1,h〉
∣∣2. Moreover, the optimal

value of Eq. (28) is 2 min`∈Sdiag
‖h+ `‖∞ with the argument of the minimum denoted by `�. Here ‖·‖∞ denotes

the infinity/max norm, defined as the largest absolute value of elements in a vector. The optimal solution
β0(1)∗ can be obtained from the constraint that it is in the span of vectors v such that 〈v,h+ `�〉 is the largest
(smallest).58 In this case,

F (ρω(t)) = 4t2 ‖h−Sdiag‖2∞ (30)

is the same as Fopt in Eq. (24) for noiseless ancilla. Therefore, we can conclude that β0(1)∗ gives the optimal
code.

4. EXAMPLES

Now we present two explicitly constructed ancilla-free quantum error correcting codes, where the code is defined
only in the probe system HP

41.

4.1 Qubits under correlated dephasing noise

A common sensing scenario involves a quantum sensor composed of N probing qubits with energy gaps propor-
tional to ω3. For such a sensor to be effective, the qubits’ energy gaps must depend strongly on ω, which in turn
makes them vulnerable to rapid dephasing due to  uctuations in their energies from a noisy environment59–64.
Assuming for simplicity that each qubit has the same dephasing time T2, the generic Markovian dynamics for
the sensor is

dρP

dt
= −i[ωH, ρP ] +

1
2T2

N∑
j,k=1

cjk

(
ZjρP Zk −

1
2
{ZjZk, ρP }

)
. (31)

Here, H = 1
2h · Z where h ∈ RN and Z = (Z1, . . . ,ZN ) is a vector of Pauli-Z matrices on each site. Qubit j

has an energy gap ωhj . The correlation matrix C = (cjk)N
j,k=1 describing the spatial structure of the noise can

be quite general, e.g. depending on their coupling to a nearby  uctuator or a common resonator. In particular,
cjk ∈ [−1, 1] describes the correlation between the  uctuations on qubits j and k, with cjk = 1,−1 and 0
signifying full positive, full negative, and the absence of correlations, respectively.



Eq. (31) can be converted to the form of Eq. (1) by diagonalizing C (Cvj = λjvj) with an orthonormal
eigenbasis. Concretely, Lj =

√
λjvj ·Z can be viewed as normal modes of the phase noise. The HNLS condition

then translates to h /∈ col(C), the column space of C, which occurs when one normal mode u overlapping with
H (i.e., vu · h 6= 0) has a vanishing amplitude, λu = 0. This occurs generically in the limit of strong spatial
noise correlations, provided the noise is not uniformly global39. Observe that [H,Lj ] = [Lj ,Lk] = 0 here, so
Theorem 2 guarantees a QEC code without noiseless ancillas saturating the optimal bound in Eq. (24). One
such code, for N ≥ 2, is given by

|0l〉 =
N⊗

j=1

(
cos θj |0j〉+ i sin θj |1j〉

)
, |1l〉 = X⊗N |0l〉 , (32)

where θ = 1
2 arccosb�, defined element-wise, and b� is the solution of the following SDP:

maximize 〈b,h〉 , subject to ‖b‖∞ ≤ 1, b ⊥ col(C). (33)

For N = 1, HNLS is not satisfiable for non-zero noise. It is straightforward to show that the code in Eq. (32),
with this choice of b�, satisfies properties Eqs. (10)-(11) and Eq. (13). It works by correcting all non-vanishing
noise modes, but leaving a vanishing mode with the maximum overlap with H uncorrected, through which H
affects the logical state. Moreover, it achieves the optimal asymptotic QFI [Eq. (24)], in this case:

Fopt(t) = t2 ‖h− col(C)‖21 . (34)

Remarkably, while the domain of the SDP in Eqs. (28)-(29) has dimension O(2N ), that of Eq. (33) only has
dimension O(N): our ansatz in Eq. (32) renders the QEC code optimization efficient. Note that when

b̃
�

=  projker(C)h, (35)

where  = ‖projker(C)h‖−1
∞ . The code using θ = 1

2 arccos b̃
�

always satisfies properties Eqs. (10)-(11) and
Eq. (13), although it needs not saturate the optimal QFI in Eq. (34). In the important case of a single vanishing
noise mode [i.e., rank(C) = N − 1], however, b̃

�
achieves the optimal QFI.

4.2 Lossy bosonic channel

Boson loss is often the dominant decoherence mechanism in a bosonic mode65, described by the master equation

dρP

dt
= −i

[ s∑
i=1

ζi(a†a)i, ρP

]
+ κ
(
aρP a† − 1

2
{a†a, ρP }

)
, (36)

where a is the annihilation operator and κ the boson loss rate. We only consider Hamiltonians that are a function
of the boson number a†a, applying a cutoff at the s-th power, where s > 1 is a positive integer. We also truncate
the boson number at M , to keep the system dimension finite. According to the HNLS condition, while ζ1 cannot
be sensed at the Heisenberg limit, ω := ζs asymptotically can.

To sense ω, it is important to filter out all lower-order signals
∑s−1

i=1 ζi(a
†a)i using the QEC code. Therefore,

we should use the following modified Lindblad span:

S = span{I, a, a†, (a†a)i, 1 ≤ i ≤ s− 1}. (37)

Note that the boson loss noise is not commuting because [a, (a†a)i] 6= 0. Still, this type of off-diagonal noise can
be tackled by simply ensuring the distance of the supports (non-vanishing terms) of |0l〉 and |1l〉 is at least 3.

To obtain the optimal code, we could solve the SDP in Eqs. (28)-(29). However, when M is sufficiently large,
we obtain a near-optimal solution analytically by observing that for large M , minimizing ‖(a†a)s−

∑s−1
i=0 χi(a†a)i‖

over all {χi}s−1
i=0 is equivalent to approximating a s-th degree polynomial using an (s − 1)-degree polynomial.



The optimal polynomial is the Chebyshev polynomial66 and the near-optimal code, that we call the s-th order
Chebyshev code, is supported by its max/min points:

|0l〉 =
[0,s]∑

k even

c̃k

∣∣∣∣⌊M sin2

(
kπ

2s

)⌋〉
, |1l〉 =

[0,s]∑
k odd

c̃k

∣∣∣∣⌊M sin2

(
kπ

2s

)⌋〉
, (38)

where bxc denotes the largest integer ≤ x, and |c̃k|2 can be obtained from solving a linear system of equations
of size O(s2). |c̃k|2 is approximately equal to 2

s −
1
sδks − 1

sδk0 for sufficiently large M . It is also interesting to
note that the supports of |0l〉 and |1l〉 bears a resemblance to the optimal time intervals in Uhrig dynamical
decoupling67.

The s-th order Chebyshev code corrects the Lindblad span (Eq. (37)) and provides a near optimal asymptotic
QFI for ω

F (ρω(t)) ≈ Fopt(ρω(t)) ≈ 16t2
(

M

4

)2s

, (39)

for sufficiently large M .

5. BEYOND THE HNLS CONDITION

Generic Markovian noise is full rank, which means that the span S is the full Hilbert space HP of the probe;
hence the HNLS criterion of Theorem 1 is violated for any probe Hamiltonian H, and asymptotic SQL scaling
cannot be surpassed. Therefore, for any Markovian noise model that meets the HNLS criterion, the HL scaling
achieved by our QEC code is not robust against generic small perturbations of the noise model.

We should therefore emphasize that a substantial improvement in precision can still be achieved using a QEC
code even in cases where HNLS is violated38. Consider in particular a Markovian master equation with Lindblad
operators divided into two sets {Lk} (L-type noise) and {Jm} (J-type noise)

dρP

dt
= −i[ωH, ρP ] +

∑
k

(LkρP L†k −
1
2
{L†kLk, ρP }) +

∑
m

(JmρP J†m −
1
2
{L†mLm, ρP }), (40)

where the J-type noise is parametrically weak, with noise strength defined by

εJ :=
∥∥∥∑

m

J†mJm

∥∥∥ (41)

If we use the optimal code that protects against L-type noise, then the joint logical state of probe and ancilla
evolves according to a modified master equation, with Hamiltonian Heff = ΠCHΠC , and effective Lindblad
operators Jm,j acting within the code space (the subscript j denotes different error syndromes), where∥∥∥∑

m,j

J†m,jJm,j

∥∥∥ ≤ εJ . (42)

The state of the error-corrected probe only deviates by a distance O(εJ t) (in the L1 norm) from the (effectively 
noiseless) evolution in the absence of J-type noise. Therefore, using this code, the QFI of the error-corrected 
probe increases quadratically in time (and the precision δω̂ scales like 1/t) up until an evolution time t ∝ 1/εJ , 
before crossing over to asymptotic SQL scaling.

When εJ is not infinitesimally small, it is still possible that QEC could enhance estimation precision41. To 
show how, we generalize the dephasing qubits example Sec. 4.1 to this more realistic setting. When HNLS is 
satisfied, the code in Eq. (32) corrects noise modes with non-zero amplitude λj > 0, but leaves a mode with 
λu = 0 uncorrected. In experiments, the noise correlation matrix C is generically full-rank, meaning that the 
HNLS condition is not satisfied. Yet, non-trivial noise correlations will generally cause C to have a non-uniform 
spectrum, yielding some subdominant eigenvalues and corresponding Lj ’s. It is thus possible to design a code 
that still accumulates signal at the cost of leaving uncorrected just one subdominant noise mode (λu ≈ 0) 
through



an appropriate choice of θ in Eq. (32). To reach a closed-form expression for the resulting sensitivity, we use b̃
�

[Eq. (35)] as a starting point rather than an SDP formulation, setting

θ =
1
2

arccos( vu), (43)

defined element-wise, where  = ‖vu‖−1
∞ .

The natural figure of merit for a sensor with uncorrected noise is not the Fisher information: decoherence
eventually causes F (ρω(t)) to decrease, rather than grow unbounded as in Eq. (24). Instead, it is sensitivity,
defined as the smallest resolvable signal per unit time3. For a single qubit with an energy gap Aω and dephasing
time T2/B, the best achievable sensitivity is39,41

η = min
t>0

1√
F (ρω(t))/t

=
√

B

A

√
2e

T2
. (44)

Taking hj = 1 in Eq. (31), each physical qubit (A = B = 1) gives η1 =
√

2e/T2. N such qubits operated in
parallel give ηpar = η1/

√
N , while for entangled states one could reach A = N , often at the cost of an increased

B. For example, a Greenberger-Horne-Zeilinger (GHZ) sensing scheme with the same N qubits gives

ηGHZ =
‖D1/2

C V >h‖2
N

√
2e

T2
, (45)

where V = (v1, . . . , vN ) and DC = diag(λ1, . . . , λN ) .68 Note that for uncorrelated noise we have ‖D1/2
C V >h‖2 =√

N , thus negating any gains from entanglement.

To find the sensitivity offered by the QEC code described above, we compute the sensor’s effective Liouvillian,
Leff = R◦L◦P, under frequent recoveries R, where P(ρ) = PρP 39. The usual QEC recovery (i.e., the transpose
channel) results in population leakage out of the codespace due to the uncorrected error Lu which complicates
the analysis27,69. To prevent such leakage at the first order, we modify the usual recovery so that the state is
returned to the codespace after an error Lu, though perhaps with a logical error. This modification results in a
Markovian, trace-preserving effective dynamics over the two-dimensional codespace, given by Leff. Specifically,
the sensor’s effective dynamics becomes that of a dephasing qubit with A =  |vu · h| and B =  2λu, giving
η
(u)
QEC = η1

√
λu/|vu · h|. The optimal choice of u is the one that minimizes this quantity, giving:

ηQEC =
1

‖D−1/2
C V >h‖∞

√
2e

T2
, (46)

valid for arbitrary noise correlation profile C∗. Eq. (46) identifies the C’s for which this QEC scheme provides
enhanced sensitivity over parallel and GHZ sensing. Notice that while HNLS is satisfied only in a measure-
zero set of C’s, QEC can enhance sensitivity over a much larger set, regardless of whether it can approach the
Heisenberg limit in t. It admits a broad range of ηQEC vs. N scalings due to the critical dependence of ηQEC on
C = C(N). The same is true of the Fisher information in the HNLS limit as we show in.

6. DISCUSSION

Noise limits the precision of quantum sensing. Quantum error correction can suppress the damaging effects
of noise, thereby improving the fidelity of quantum information processing and quantum communication, but
whether QEC improves the efficacy of quantum sensing depends on the structure of the noise and the signal
Hamiltonian. Unless suitable conditions are met, the QEC code that tames the noise might obscure the signal
as well, nullifying the advantages of QEC.

∗D
−1/2
C is undefined when C is singular. In this case, Eq. (46) should be regularized by replacing DC → DC + εI,

evaluating the norm, then taking ε→ 0.



Our study of quantum sensing using a noisy probe has focused on whether the precision δ of parameter
estimation scales asymptotically with the total sensing time t as δ ∝ 1/t (Heisenberg limit) or δ ∝ 1/

√
t (standard

quantum limit). We have investigated this question in an idealized setting, where the experimentalist has access
to noiseless (or correctable) ancillas and can apply quantum controls which are arbitrarily fast and accurate, and
we have also assumed that the noise acting on the probe is Markovian. Under these assumptions, we have found
the general criterion for HL scaling to be achievable, the Hamiltonian-not-in-Lindblad span (HNLS) criterion.
If HNLS is satisfied, a QEC code can be constructed which achieves HL scaling, and if HNLS is violated, then
SQL scaling cannot be surpassed. Nonetheless, when HNLS is approximately satisfied, the coherence time of the
probe could still be substantially extended under QEC.

The problem of finding the optimal QEC code with the best estimation precision can be formulated as
a semidefinite program, which is numerically tractable70. The optimal QFI has a pleasing geometrical inter-
pretation, determined by the distance between the Hamiltonian and the Lindblad span under operator norm.
Furthermore, using the SDP fomalism we show that when the Hamiltonian and the noise operators all commute,
there exist an optimal ancilla-free QEC code, providing a sufficient condition to remove the noiseless ancilla
requirement in a realistic setting. We also present two explicit examples of ancilla-free QEC codes: qubits
undergoing dephasing and a lossy bosonic mode, which is of practical interest.

Many questions merit further investigation. We have focused on the dichotomy of HL vs. SQL scaling, but
it is also worthwhile to characterize constant factor improvements in precision that can be achieved using QEC
in cases where HNLS is violated71. We should also clarify the role of noiseless ancilla in error-corrected quantum
sensing. Commuting noise is sufficient, but not necessary for ancilla-free codes32,33,49 and it is an interesting
open problem to refine Theorem 2 into a necessary and sufficient condition. Finally, it is interesting to consider
probes subject to non-Markovian noise, in which case, tools such as dynamical decoupling59,67,72,73 can mitigate
noise. Just as for QEC, we need to balance desirable suppression of the noise against undesirable suppression of
the signal in order to formulate the most effective sensing strategy.
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