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This article presents experimental measurements involving immersed collisions
between a rigid impactor and a deformable target for a wide range of Reynolds
and Stokes numbers. Three aluminium alloys are used as solid targets submerged in
seven different fluids covering a wide range of viscosity and density. The collision
and rebound velocities as well as the depth and diameter of the crater produced
by the collisions are measured with high resolution. Most of the experiments in this
study occur at velocities for which the deformation is within the elastic—plastic regime.
Results of the experiments in air are analysed by elastic, plastic and elastic—plastic
theories, and demonstrate the complexities of modelling elastic—plastic collisions. For
collisions in a liquid, the measurements show that the size of the crater is independent
of the fluid characteristics if the Stokes number is beyond a critical value. The
normal coefficient of restitution can be estimated by including both viscous losses
and plasticity effects and assuming that the collision time scale is significantly shorter
than the hydrodynamic time scale. The results of the crater dimensions are also used
to develop an analytical expression for the volume of deformation of the material as
a function of material properties and the impact and critical Stokes numbers.

Key words: granular media, particle/fluid flow, sediment transport

1. Introduction

Particle-laden fluid flows arise in a diverse range of industrial and geophysical
problems including slurry pipelines for transporting oil or coal, mining and milling
operations, stimulation of unconventional geo-energy resources (e.g. use of proppants
in hydraulic fracturing), fluidized beds, abrasive water jet machining, debris flows,
landslides and sediment transport. In some of these flows, solid-phase impacts may
deform or erode a solid surface, like a pipe wall, a rock surface or a stream
bed (e.g. Clark (1991), Sklar & Dietrich (2001)). The wear can lead to failure
of equipment, leaks in pipelines or changes in stream beds and rock masses. Within
these applications, there is often a need to predict the erosion or wear rate for
a given flow, where the erosion rate is typically defined in terms of the mass or
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volume change in a given time or for a given mass of particle moving along or
towards a surface.

Some erosion models are based on the plasticity theory that predicts the size
of a crater formed from an individual particle impact, either normal or oblique
(e.g. Finnie (1960, 1972), Bitter (1963a,b), Hutchings (1981)). In these plasticity
studies, the volume of material removed due to particle impacts depends on the
impact angle and the kinetic energy of the impacting particle and on the material
properties. Other factors, such as the relative hardness of the surface to the impactor,
surface treatments or work hardening effects, also affect the erosion process (Bitter
1963a,b). Models have been developed to predict the erosion rate of a surface
given the flow characteristics by using plasticity analysis to compute the volume
removed during a single impact and then multiplying it by a representative number
of collisions in a given time and area (Sklar & Dietrich 2004; Lamb, Dietrich &
Sklar 2008; Chatanantavet & Parker 2009). The representative number of collisions
depends on characteristics of the flow, such as the flow Reynolds numbers, shear
stress along the bed, particle concentration, grain size distribution and the flow rate.
Other models use an empirical approach to relate the mass or volume loss to the
velocity of solid particles, mean particle diameter, impact angle and the hardness
of materials. As described in Desale, Gandhi & Jain (2011), the parameters used in
erosion correlations vary widely because of the range of materials, fluids properties
and flow conditions under which the correlations have been developed. The recent
review by Parsi et al. (2014) on slurry erosion in oil and gas wells and pipelines lists
approximately 30 different parameters that have been used to predict the material loss
for a wide range of impact conditions.

The focus of the current work is to measure the coefficient of restitution and the
crater dimensions for normal particle-wall impacts over a range of impact speeds,
different interstitial fluids and impacted metals. In addition, the paper develops models
that are compared with the measurements to predict the size of the craters and the
rebound speeds. In debris or slurry flows, the speeds of the particles can be of the
order of centimetres to several metres per second. For metal surfaces, used in this
study, these speeds correspond to impacts within the elastic—plastic range, which is
more complex to model than the pure elastic or pure plastic collisions because of
the uncertainty regarding the relationship between force and material deformation
(Thornton 1997; Jackson, Green & Marghitu 2010; Wang, Geubelle & Lambros
2013; Burgoyne & Daraio 2014). The experiments conducted in this work fall in the
elastic and elastic—plastic ranges. The particle Reynolds numbers vary from 5 to 2500,
where Re =2Rpsu,/; R is the particle radius, p; and p are the density and dynamic
viscosity of the fluid and u, is the particle velocity just before the impact. The Stokes
numbers vary from 2 to 3 x 10°, where St=2Rpu,/(9u) and p is the particle density.
In this range, both viscous and inertial effects are important in considering the
approach and rebound of the particle. These impact conditions were also considered
by Ruiz-Angulo & Hunt (2010); different from this prior study, however, the current
work includes measurements of the crater dimensions. Also, an analytical relation
is developed for the coefficient of restitution in terms of the properties of the fluid
and solid, which agrees well with the experimental data acquired in this study. The
crater dimensions are used to validate the analytical relations developed here based
on elastic and plastic theories and energy balance considerations.

As background, the next section describes the impact and rebound process for
elastic, plastic and mixed elastic—plastic collisions, and the effect of a viscous
fluid on the collision process. Additional details on the analysis of elastic—plastic
deformations are given in appendix A.
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2. Theory

2.1. Models of a particle impacting a surface

2.1.1. Pure elastic collisions

The analysis based on the Hertz (1881) theory of elasticity is briefly summarized
here. Consider an elastic sphere with modulus of elasticity E;, Poisson’s ratio v; and
radius R impacting normal to a smooth elastic half-plane with modulus of elasticity
E, and Poisson’s ratio v,. From elasticity theory, the elastic contact radius, a,, and the
indentation depth, &, are

_TEP(,

.= ——R, 2.1

a > B (2.1a)
n P,

Sp = ——a,, (2.1b)
2 E*

where E* =[(1 —v})/E; + (1 —v3)/E,]"", and P, is the maximum stress at the contact.
The normal stress distribution during contact with respect to the radial distance from
the crater centre r is P(r) = P,(1 — r*/a?)"/?, from which the mean elastic force
acting during the deformation, F,, is calculated as F,=2/ 3Tra§Po. Note that for elastic
contact, 8, = a?/R, which accounts for the deformation of both the impactor and the
half-space. By eliminating P,, the force can also be written in terms of §, as F, =
4/3E*R"28%/?, which shows that the force increases with 8, to the 3/2 power. The
work during compression W, can be computed by integrating the imposed force from
the surface to the maximum indentation depth, &, i.e. W.(§) = fog F(8)ds, where §
is measured from the undeformed surface. For a particle impacting an undeformed
surface at speed u;, the compression work is equal to the impact kinetic energy. For
purely elastic impact, the compression work is

8¢ 2
W, =/ Yerrsras = Sppisr = Lyp = 2 Lo
‘)0 3 15 ¢ 27" 10E*a,

(2.2)

Equation (2.2) provides an expression for the elastic force as a function of the
impact kinetic energy; by combining that expression with (2.1a) and (2.1b) the
dimensionless radius and depth of deformation are

@ (Smo) " (2.3a)
R \4E) e
Se 51 pu? 3

S (2P 2.3b
e -

The maximum velocity for an elastic impact, or yield velocity, occurs when the
maximum contact stress equals the yield stress, P, = o,;, which is proportional to the
yield strength of the material as captured in the von Mises yield criterion, o, = C,Y.
The constant C, depends on the Poisson’s ratio, v. Using this yield criterion and the
expression for F,, equation (2.2) can be used to determine the impact velocity at
which the onset of yielding begins,

2 5/2
1, = % T 2.4)

E2\/10p
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Using the above equations, the dimensionless indentation depth and radius at yield

are
o\ 15
4 _ (Smem ) Toa (2.5a)
R \4F 2B
5\ 2/5
5 _ (3mem =(E(Lj)2, (2.5b)
R\ 4E 2E

Note that (2.5a) and (2.5b) are simplified using pui/E* =1*c)/(40E*); hence, the
dimensionless characteristic lengths a,/R and 6,/R depend only on the material
properties, o, /E* = C,Y/E*. Moreover, using U* = u;/u, and normalizing the
indentation depth and area by the values at yield results in the following expressions:

L —us, (2.6a)
a,
8
= =UP. (2.6b)
8,

For the unloading process after collision, the work stored in the elastic deformation
is converted into the kinetic energy to rebound the particle with velocity u,, i.e.
—W,=( /2)muf. For an elastic collision without losses, the work during compression
equals the work during unloading, W, = —W,. The coefficient of restitution, defined
as the ratio of the rebound velocity to impact velocity, therefore, is unity for elastic
collisions, u; < u,: e = —u,/u; = (—W,/W,)"/* = 1. The negative signs are used to
account for the opposite directions of impact and rebound velocities and of the work.

The collision time, 7., can also be estimated for an elastic collision,

2 1/5
m
T = 2.87 <Iw*2u> . (27)

2.1.2. Pure plastic collisions

The analysis for pure plastic impacts, based on the work by Johnson (1985),
assumes that the mean contact stress is constant and equal to the dynamic stress P,
over a contact area with radius a,. The force during plastic deformation is computed
as, F, = J'calz,Pd. The dynamic stress is assumed to depend on the yield strength,
P, =vY, where ¢ =[2.83.0] for the fully plastic condition. The total indentation
depth in the plastic phase, §,, approximates the geometry of the spherical indentor
with §, ~ aﬁ/ZR. For plastic impacts, the force increases linearly with indentation
depth, F, = 2nRP,5, and the incoming kinetic energy is related to the plastic
compression work as follows:

T Pda2
2% . 28
4 R M (2.8)

5[’
W.= / na Py ds =
0

Based on quasi-static behaviour, the onset of fully plastic behaviour occurs
when F,/F, ~ 400 with a, = ea,, where the value of ¢ is in the range of 13-20
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(Johnson 1985). The impact velocity at the onset of fully plastic deformation, u,, can

be estimated as
3P\ "2 2 3P\ "2 o\ 2
W= (204 (@> — (2 (38(’*’) . (2.9)
8 p R 8 p 2 E

For impact speeds beyond u,, the resulting crater diameter at the onset of fully
plastic phase is found from (2.9): a,/R = [2mu?/(nP,R?)]"*. Furthermore, from the
definition of u, (equation (2.4) and assuming 4§, :a;/ (2R)), results in

2\ 1/4 2\ /4
G _ (2 ) (BP par (2.10a)
R T PdR 3 Pd

8, 1 2 AN
1=,<‘Lp) _ [P o (2.10b)
R 2\R P,

Given P, =Y, the indentation radius and depth during fully plastic deformation,
scaled by the values at yield, are found as

1/4 1/4
G _ (100aN T iy _ (TOCNT e 2.11a)
a, \15P, 15
5 1o, "2 c, \ "
i (mpl) U = (10} ) v, 2.11b)
y d

The characteristic dimensions of the deformation, radius and indentation depth,
increase faster with U* for plastic impacts than those for elastic impacts, as shown
by (2.6a), (2.6b) and (2.11a), (2.11b).

After the deformation the particle comes to rest and the unloading process begins,
which is assumed to be fully elastic. Using the relation for elastic work,

3 F
o EE*ap'

(2.12)

u

The work associated with unloading, W,, or restitution, equation (2.12), is equated
to the rebound kinetic energy, —W, = (1/2)mu?, and the rebound velocity is obtained,

3 PN\ 32
y= VT ( e > (@) . (2.13)
22/5 \E*p R

Using (2.9), (2.10a), (2.10b) and (2.13), the coefficient of restitution for plastic
deformations can be found as

1/8
u, 6w P,R\ ' 3\ /2 pS 5/8

e=——= —75 == 6!/8 _- d > U4 =K, K U4,
U; 5 E*a, 5 E* pu; C,

(2.14)

where the constant K; =240"%,/3/(5m) ~ 0.867.
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2.1.3. Elastic—plastic collisions

For collisions with impacts at speeds between the elastic and plastic regimes,
uy, < u; < u,, the elastic—plastic indentation process can be modelled by establishing
a relationship between the mixed impact force F,, and the indentation depth &,
where §, < § < §,. Recent studies of elastic—plastic contact models incorporate
strain-rate dependence and work hardening into the quasi-static relation between
force and displacement (Wang et al. 2013; Burgoyne & Daraio 2014; Ma & Liu
2015). By assuming a relation for F,,(§), the input kinetic energy can be related to
the compression work, as done in the pure elastic and pure plastic analyses. Because
the unloading process is assumed to be elastic, the elastic relations can also be used
to estimate the elastic reversible indentation, §’, which is defined as the difference
between the total indentation § and the residual crater depth §,, i.e. ' =8 — §,. The
residual crater is permanent after the collision due to plastic deformation. Because
the restitution is considered elastic, the force and work are computed using the Hertz
solution by replacing § by § and R by R, where R¢ is the effective radius of the
contact curvature after deformation. Hence, the unloading normal force and work are

F,= %E* (R%)\12553/2, (2.15a)
—Wu — %E*(RE)I/Z(S/S/Z- (215b)

Stronge (2000) argues that the changes in the geometry of the contact region during
elastic unloading are geometrically similar to the elastic loading, i.e. §,/R=4'/R¢. The
rebound kinetic energy, therefore, is

1 8 8 R\'"?
—W,=—mu?= —E*R"?§?= —F* [ —) §". 2.16
2" =15 157\, (210)

Recent work by Ma & Liu (2015) models the force-indentation relation in the mixed
elastic—plastic regime as follows:

8
F,=6 [cl + ¢y In <8)] + c3, 2.17)

y

where the coefficients ¢, ¢, and c¢3 can be determined by ensuring force continuity at
the end of elastic phase and at the beginning of the plastic phase. These conditions
introduce two dimensionless parameters, ¥ and &, that are defined at the onset of
fully plastic deformation as ¥ = P,/Y and € =a,/a,. The authors also assumed that
a, = [(28 — 8,)R]"?, which corresponds to the elastic result at § = 8, where a, =
(8,R)'* and with the plastic result when § =6, where a, = (2§,R)'/* using §, > §,.
Appendix A contains the details on the determination of these coefficients along with
the computation of the residual depth and area based on the work by Ma & Liu
(2015).

2.2. Viscous losses during particle—wall collisions

The problem of a particle falling in a viscous liquid towards a wall has been studied
extensively for low Reynolds number particle sedimentation processes (e.g. Brenner
(1961), Cox & Brenner (1967a,b)). As a rigid spherical particle approaches a flat rigid
wall, the drag force increases because of the increase in the pressure between the
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surfaces (Brenner 1961). The drag force is F, = 6muu,R?/x, where x is the distance
between the surfaces, and u, is the particle velocity before the impact at distance x,.
For perfectly smooth, rigid surfaces, the particle does not reach the surface because
the kinetic energy is dissipated by the drag force. Davis, Serayssol & Hinch (1986)
examined a similar problem but allowed for elastic deformations in both the sphere
and the impacted surface. For small deformations, they used a momentum balance on
the particle to find a logarithmic variation of the particle velocity as a function of
distance between the surfaces, u(x),

2
u@ _ | omuR® <£> _q_nGo/0) (2.18)

u, mu, X St

The distance x, from the wall is typically taken as 0.01 of the particle radius
(Joseph et al. 2001; Zhao & Davis 2002; Yang & Hunt 2008). The Stokes number at
X, is St = mu,/(6TuR?) is the ratio of the inertia of the particle prior to hitting the
surface to the inelastic work expended in squeezing the fluid out of the gap; as St
increases the normalized velocity approaches 1. Davis et al. (1986) also considered
elastohydrodynamic conditions in which the smooth surfaces deform due to the
increase in fluid pressure in the gap between the surfaces. Because of the elasticity
of the materials, some of the incoming kinetic energy is converted to elastic strain
energy, which can result in a particle rebound. By including the elasticity of the
solid objects, they showed that the rebound of a particle is possible provided that
the Stokes number was greater than a critical value, St.. The magnitude of St.
depends on the elasticity parameter &,, which is a ratio of the inelastic work in
squeezing the fluid film and the elastic work stored in the compression of the solid,
&, = 4pu,R¥*/(nE*x)/*). For St > St., the particle rebounds from the surface back to
position x, with velocity u,. The coefficient of restitution is calculated as e = —u,/u,,
and it accounts for the viscous losses in the thin layer near the wall as the particle is
colliding with the surface. The particle and the surface are never in physical contact
because of the thin liquid layer between them. From their analysis, this minimum
gap during collision and rebound, x,,, can be estimated as x,, ~ (1/4)x,e*/> for St > 8.

In terms of experimental measurements, the work by Joseph et al. (2001) found
that the critical Stokes number below which the particle did not rebound from
the surface ranged from 10 to 20. For Stokes numbers greater than approximately
1000, the coefficient of restitution is approximately one, and the kinetic energy
during impact velocity is not diminished by the viscous losses. Joseph et al. (2001)
also showed that surface roughness can have significant impact on the rebound
speed for Stokes numbers between 10 and 100. Although they used a range of
materials, the elastic properties of the materials had a minimal effect on the particle
rebound because their target was a hard, non-deformable, glass-like material. To
compare their results with theoretical predictions, they used the expression for u(x)
from (2.18) at the critical distance x., where the lubrication approximation breaks
down due to surface roughness, ie. u./u, =1 — In(x,/x.)/St,. At x., the particle
rebounds instantaneously with velocity —e,u., where e, accounts for losses due to
the inelasticity of the materials. The rebound velocity as the particle returns to the
position, x,, then becomes, u, = e,u, — u, In(x,/x.)/St. Using the earlier expression
for u,., the coefficient of restitution can be determined as

In (x,/x.)

e=e,— (1+e,) — (2.19)
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FIGURE 1. Schematic representation of the experimental apparatus (after Ruiz-Angulo &
Hunt (2010)).

Joseph et al. (2001) assumed a value of 1000 for the ratio of x,/x. corresponding to
a roughness of 0.1 wm on a 1 cm radius particle and using x, =0.01R. Based on that
assumption, the critical Stokes number at which e =0 is St.~2In(x,/x.) =~ 14. In their
experiments, the value of e, did not vary with impact speed and was approximately
0.98 for the tested materials.

Ruiz-Angulo & Hunt (2010) explored the combined effects of inelasticity and
viscous dissipation for a rigid particle impacting a deformable surface in a liquid. For
collisions in which the inelasticity of the materials are neglected, the coefficient of
restitution was modelled using the following expression, e = 1 — 8.75/8t%75 resulting
in a critical Stokes number at which e = 0 of S7. &~ 18. For conditions involving
viscous dissipation and inelasticity, the coefficient of restitution depends on both the
Stokes number and the velocity ratio, U*. Their work, however, did not provide an
expression for the coefficient of restitution that combines these effects, and it did not
include results for the crater dimensions. These topics are addressed in the current
work.

3. Experimental set-up, materials and test procedure

The experimental set-up shown in figure 1 is similar to that used by Ruiz-Angulo
& Hunt (2010). The experiments are designed to measure the surface deformation
(residual crater diameter and depth) and rebound velocity of a single particle impacting
a wall. The collisions occur in air and in six different water—glycerol mixtures. A
glass tank contains the fluid, the particle release mechanism, the impact sample and
the pressure bar.

The impact speed is varied by changing the particle release angle ¢; the particle
follows a pendulum-like trajectory with negligible rotation impacting perpendicular to
the impact surface. The impact velocities range from approximately 1 cm s™' in the
most viscous fluid up to approximately 45 ¢cm s~! in air. The particle trajectory is
recorded with a high-speed camera with recording rates ranging from 500 to 1000
frames per second. The images are post-processed to track the particle trajectories
and estimate the impact and rebound velocities (u; and u,) for each collision, which
are used to compute the coefficient of restitution, e = —u,/u;. As a note, the velocity
variation due to particle impact can occur over time scales that are smaller than can
be resolved by the camera.
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Properties Target Al 6061 Target Al 2024 Target Al 7075 SS* impactor
o (kg m™3) 2700 2768 2796 7780
E (GPa) 68.95 73.08 71.70 190
Y (MPa) 275 324 503 1896
v 0.33 0.33 0.33 0.27
Y/E* 0.00491 0.00553 0.00871 —
Roughness (pm) 0.029 0.029 0.029 —
u, (ms7") 0.0246 0.0341 0.105 —
8, (m) 1.02 x 10°° 1.31 x 107° 3.23 x 1076 —
8,/R 1.61 x 10~ 2.06 x 107* 5.09 x 107* —
a, (m) 8.06 x 1073 9.10 x 1073 1.43 x 107 —
ay,/R (m) 1.27 x 1072 1.43 x 1072 2.26 x 1072 —
o /dy 0.028 0.022 0.009 —
Tolly /X, 0.048 0.061 0.15 —
u, (m s 543 9.66 23.21 —

TABLE 1. Mechanical properties of target surfaces, the spherical impactor, the r.m.s. height
of surface roughness for impacted surface and calculated properties at yield and the onset
of plastic deformation; *SS stands for stainless steel.

The impact particle is a highly spherical, hard stainless steel sphere with diameter
12.7 mm. Relative to the impactor, the three impact surfaces are softer aluminium
alloys (6061, 2024 and 7075). Table 1 lists properties of the particle and impact
surfaces (p, E, Y and v) and the root mean square (r.m.s.) surface roughness. The
values of the yield speeds for each alloy and the corresponding depth and radius
of the indentation at yield (§, and a,) are found in table 1, as well as their values
normalized by the particle radius (§,/R and a,/R). Yielding is assumed to occur
when o, = C,Y, where C, is a constant determined from von Mises yield criterion;
here, C, = 1.65 for three alloys with v = 0.33 (Jackson & Green 2005). The yield
speed is the largest for the 7075 alloy, which has the largest ratio of Y/E* as found
in table 1. Also listed is an estimate of the impact velocity that corresponds to the
onset of plastic deformations, u,, assuming that P, = 2.8Y and ¢ = a,/a, = 13. In
addition, table 1 includes the ratio of the surface roughness to 8, for each of the
alloys, showing that the roughness is much smaller than the indentation depth at the
critical yield speed.

The elastic collision time can be estimated from (2.7) and ranges from 19 x 107°
to 26 x 107% s for u; = u, for the 7075 and 6061 alloys, respectively. Table 1 lists
the elastic collision time normalized by a hydrodynamic transit time, ,/(x,/u,), using
the yield speed. The transit time is estimated from the time required for a particle to
move a distance x, at a constant speed. This time is considerably shorter than the fluid
contact times that include fluid inertia or viscous drag as proposed by Legendre et al.
(2006) and Kempe & Frohlich (2014); hence, the transit time provides a lower bound
for the time constant associated with the fluid effects. As found in the table for the
6061 and 2024 alloys, the elastic collision time is significantly shorter than the transit
time; for the 7075 alloy the two times are closer because of the larger value of u,.

The experiments involve a split-Hopkinson—-Kolsky pressure bar arrangement in
which a cylindrical impact specimen (2.54 cm diameter and 12.7 mm thickness) is
attached to a long pressure bar. The bar (approximately 30 cm) is long enough that
the contact time between the particle and the specimen is shorter than the time an
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FIGURE 2. Three-dimensional contours and their respective x—y projections for the
indentation corresponding to a 6061 aluminium alloy specimen impacted at a speed of
0.179 m s~! by the stainless steel particle while submerged in fluid WG6. The thick black
curves represent the best-fitted contours.

elastic wave takes to travel the bar length back and forth (propagation and reflection)
to the point of impact. Prior to each experiment, the samples are firmly attached to
the transmission bar using a glycerin-based lubricant between the sample and the
transmission bar to mechanically couple the two. The plane wave propagates without
distortion through the sample and the bar. In preliminary experiments, a force sensor
was used to monitor the contact force and contact time between the particle and the
bar with and without the sample. Those experiments showed that the collision time
did not change with the presence of the sample (Ruiz-Angulo & Hunt 2010).

Before running each experiment, the impact sample is ground and polished using
water-based suspensions of polycrystalline diamond. The impact surfaces have a mirror
finish with roughness of 0.029 pm and root mean square variation of 0.028 um, as
measured with the profilometer. Each experiment uses a new impact sample. After
each collision, the sample is removed from the pressure bar and the deformed surface
is analysed using a WYKO optical profilometer. The three-dimensional surface profiles
are low pass filtered to remove the roughness. The indentations are then fitted with
curves to determine the residual crater diameter d, and the residual crater depth §,.
The errors in the measurements of the indentation parameters are associated with the
difference between the filtered contours and the idealized geometry to which the crater
diameter was optimally fitted. Figure 2 shows an example of the three-dimensional
contours that are fitted to the crater formed after the sphere impacted the 6061 alloy
at a speed of 0.179 m s~! in the WG6 fluid. For this case, the measured depth is
0.584 pm, the diameter is 260 pwm and the corresponding coefficient of restitution is
0.32.

The collision experiments were performed in air and in six different aqueous—
glycerol solutions ranging from 24 % glycerol and 76 % water (based on mass and
labelled WG1) to 82 % glycerol and 18 % water (labelled WG6). Table 2 includes
the values of density and dynamic viscosity of these fluids along with the Stokes
number at the yield speed, St, = 2Rpu,/(9u), for all alloys in each of the fluids.
Also included in table 2 is the minimum distance of approach to the wall normalized


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.349

Downloaded from https://www.cambridge.org/core. Caltech Library, on 13 Aug 2019 at 20:48:13, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2019.349

1054 A. Ruiz-Angulo, S. Roshankhah and M. L. Hunt

Properties Air WG1 WG2 WG3 WG4 WG5S WG6
% Glycerine 0 24 54 62 75 78 82
or (kg m~?) 1.2 1050 1130 1150 1190 1200 1210
u (mPa s) 0.0182 1.823 6.77 10.7 31.1 41.6 61.4
St, for 6061 14 800 148 399 25.4 8.67 6.49 4.39
St, for 2024 20600 205 55.3 35.1 12.0 9.00 6.09
St, for 7075 63400 633 170.5 108.4 37.1 27.8 18.8
g, for u, 1.52x 1071 1.53 x 10~® 5.65 x 1072 8.89 x 1073 2.60 x 1077 3.47 x 10~7 5.15 x 1077
X/ Sy 0.00182 0.0115 0.0194 0.0233 0.0358 0.0402 0.0469
St, 20.9 17.2 16.1 15.7 14.9 14.7 144

TABLE 2. Physical properties for the fluids used in this study and the Stokes number
at the yield speed for all alloys. The value of ¢,, the minimum distance between the
impacting particle and the surface and an estimate of the critical Stokes number based
on the minimum distance of approach are evaluated for the 6061 alloy.

by the yield crater depth, as estimated from x, ~ (1/4)x,¢>° using x, = R/100 and
u, = u, for aluminium 6061. For this case and other collisions, the minimum distance
of approach is considerably smaller than §,; hence, the thickness of the lubrication
layer is small relative to the indentation depth for the 6061 alloy as well as the 2024
and 7075 alloys. The table also includes an estimate for the critical Stokes number
for the 6061 alloy using St. = 2 In(x,/x,,). The estimated values for Sz. for all of
the alloys are in the range from 14 to 20 and are consistent with prior experimental
measurements (Joseph et al. 2001).

4. Experimental results and discussion
4.1. Results of collisions without viscous losses (in air)

Before examining collisions with a liquid, it is useful to examine the collision process
in air with negligible viscous loss. Figure 3 shows the coefficient of restitution for all
alloys as a function of U* = u;/u,. For each alloy, the impact speed varies over a
similar range (roughly 0.02 m s=!' to 0.5 m s!). Because of the different values of
uy, the range of U* is lower for the harder 7075 aluminium alloy than for the softer
6061 aluminium alloy.

The coefficient of restitution decreases from unity (elastic collisions) with increasing
U*. Ruiz-Angulo & Hunt (2010) report the estimated errors in measuring the
coefficient of restitution. As shown in figure 3, the fully plastic model (dashed
black), e = 1.2U* '/#, overestimates the drop in e for most of the impact speeds.
The factor 1.2 is obtained from (2.13) with ¢ =2.8 and C, =1.65. It is noteworthy
that the ratio of u,/u, is roughly 250 for all alloys; hence, the impact speeds in
these experiments (with U* < 20) are in the elastic and elastic—plastic regimes and
correspond to impact speeds considerably smaller than those required for fully plastic
impacts.

The coefficient of restitution based on the elastic—plastic models of Ma & Liu
(2015) is also shown in figure 3 for five different combinations of parameters
e = {18, 38} and ¢ = {1.75, 2.4, 2.8}. The experimental results fit best by the
curve associated with ¢ =18 and = 1.75. These values correspond to large areas
(¢ =ap/a, : [13 — 20]) and lower hardness (¢ = 1.75 « 2.8-3) than typically used
to model elastic—plastic behaviour. The work by Ma & Liu (2015) also used larger
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FIGURE 3. (Colour online) Coefficient of restitution versus impact velocity normalized
by the yield velocity in air. Data points are from this study on three aluminium alloys.
Curves are the model suggested by Ma & Liu (2015) with five sets of ¢ and e. Trends
for collisions involving elastic (e = 1), plastic (e = 1.2U*~"/*) and the best fit curve (e =
0.9-0.012U*) are shown. The size of error bars is smaller than the size of symbols on
the majority of data points.

values for ¢ when the two bodies had very different yield strengths, as is the case in
the present experiments. Note that the yield strength of the impactor is 4—7 times large
than that of the target alloys. Although not shown, the results were also compared to
the elastic—plastic model by Stronge (2000), which assumed a fully plastic collision
equivalent to € = 13 and ¥ = 2.8; these results did not capture the variation in the
coefficient of restitution as a function of U* as measured in this study.

Figures 4 and 5 show the measured residual indentation depth and diameter
normalized by the values at the onset of yielding, respectively, in terms of the
normalized impact velocity, U*, for the three alloys colliding in air. As shown in
both figures, the measurements for 6061 and 7075 alloys collapse along similar trends
with slightly higher values for the 2024 alloy, especially, for the residual indentation
depth. From the figures, the lowest impact speed for a measurable crater is at U* & 2,
which is at a speed roughly twice the yield speed. This onset of an observable crater
formation agrees with the elastic—plastic numerical simulations by Jackson & Green
(2005), showing that the onset of plastic deformation initiates below the surface at
U* =~ 1 and appears at the surface for U* > 2.

The Ma & Liu (2015) prediction for v = 2.4 and ¢ = 18 is closer to the
experimental data in figure 4. However, that combination of parameters did not
adequately capture the variation for the coefficient of restitution (figure 3). It is unclear
why different parameters are needed to fit these two different sets of experiments.
The Ma & Liu (2015) study was used to predict coefficients of rebound; this study
did not compare predictions with residual crater dimensions from experiments. Other
recent studies on elasto—plastic behaviour of materials suggest that other factors
(such as strain-rate-dependent properties and work hardening) may need to be
incorporated in elasto—plastic contact laws to adequately predict experimental data
(Wang et al. 2013; Burgoyne & Daraio 2014). In figure 4, the elastic line corresponds
to 8./8, — 1 =U*"> — 1, which extrapolates the scaling from the elastic regime into
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FIGURE 4. (Colour online) Residual crater depth normalized by the yield depth versus
impact velocity normalized by the yield velocity (2.4). Data points are from this study
corresponding to collisions against three different aluminium alloys in air. Coloured curves
correspond to the model developed by Ma & Liu (2015) labelled with five sets of
parameters & = {18, 38} and ¢ = {1.75, 2.4, 2.8}. Solid and dashed black lines show the
elastic and plastic deformations resulting from equations (2.6) and (2.10), respectively. The
size of error bars is smaller than the size of symbols on the majority of data points.

the elastic—plastic regime and forces 8,/6, =1 (or §, =0) at U*=1. The plastic curve
corresponds to §,/8, =[C,/(10y)]"?U* with ¢ =2.8 and C,=1.65. Both the elastic
and plastic scalings overestimate the measured residual crater depth.

In figure 5, the normalized crater diameters are captured best by the curve that
extrapolates the linear elasticity results beyond U* = 1 with d,/(2a,) = U**/. The
curve for plastic behaviour corresponding to d,/(2a,) = [16C,/(15y)]"*U*'/* (with
Y =2.8 and C, = 1.65) overestimates the experimental data. Ma and Liu assumed
the relation, a, = [(28 — &,)R]"/*. Using this expression, the predicted crater diameter
does not correspond well with the experimental measurements in figure 5(a) using
the same set of parameters, ¥ and ¢, as used in figures 3 and 4. A second set of
curves is also shown using a, =[(28, — &,)R]"/%. Note that in the second set of curves
(plotted lower in the graph), the residual crater depth is used to obtain the residual
crater diameter, but in the first set (upper plots in the graph), the total depth is used.
Both sets of curves fall outside the elastic and plastic trends and off the experimental
data acquired in this study for collisions in air.

Figure 5(b) shows the residual crater depth multiplied by the particle radius RS,
versus the residual crater radius squared a?. The measured values for collisions in air
follow neither the elastic (slope of 1) nor the plastic (slope of 1/2) trends. Instead,
the measurements show lower slopes with a slope of 1/10 for 7075, 1/5 for 6061,
and 1/3.7 for 2024. A line fitted to all the data has a slope of 1/4. If the craters
are assumed to result from a spherical impactor, the effective radius of the impactor,
R;, can be estimated as R; = (8% + a?)/26,. Using RS, = Aa> where A is the slope
found in figure 5(b), the effective radius of the impactor is R;/R = 1/(2A), which
gives R;/R =5 for the 7075 alloy, 2.5 for the 6061 alloy and 1.85 for the 2024
alloy. Hence for these elastic—plastic collisions the steel impactor produces craters
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FIGURE 5. (Colour online) (a) Residual crater diameter (d,) normalized by the yield
diameter (2a,) versus impact velocity (u;) normalized by the yield velocity (u,). Data
points are from this study for three different aluminium alloys collided with by the
particle while surrounded by air. Coloured curves correspond to the model proposed by
Ma & Liu (2015) labelled accordingly with the sets of parameters ¢ = {18, 38} and
Yy ={1.75,2.4,2.8} shown in the legend. The lower set of curves located are calculated
with the residual crater depth; the upper set of curves are calculated with the total crater
depth. Trends for collisions involving elastic and plastic deformations, equations (2.6a)
and (2.11a), are the solid and dashed black curves, respectively. The size of error bars is
smaller than the size of symbols for the majority of data points. (b) Elastic and plastic
expressions for residual crater depth (§,) times the particle radius (R) as a function of the
residual crater radius squared and experimental measurements for collisions in air. The
slopes of the lines are 1/3.7, 1/4 and 1/10.

significantly shallower than expected from pure plasticity theory or extrapolated from
Hertz theory. As a note the experiments by Wang et al. (2013) also found that the
residual crater depth increases linearly with the residual crater area; the slope of the
data varied with material and was also significantly smaller than predicted by a Hertz
model. As described in Johnson (1985) for a hard impactor hitting a softer target,
the indentation under load can have a higher effective radius because of the elastic
compression of the impactor; when the load is removed the indentation shallows due
to elastic recovery so the curvature of the residual crater is greater than the radius of
the impactor.

The uncertainly in the measured depth and diameter are determined from the quality
of the fit of the measured shape to the idealized form including a threshold that could
underestimate the measurement. The deviation of the fitted shape to a spherical surface
could be up to ten per cent of the reported diameter of the crater and approximately
five per cent of the reported depth.

4.2. Results of collisions with viscous losses (in a liquid)

As described earlier, the experiments were also conducted with six different glycerin—
water mixtures (labelled WG1 to WG6) to provide a range of fluid properties as found
in table 2. Figure 6(a) shows the measurements for the normalized residual depth of
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FIGURE 6. (Colour online) (a) Normalized crater depth versus normalized impact velocity,
U*, for collisions in seven different fluids. (b) Normalized crater depth plotted as a
function of reduced velocity U* — U? using St. = 18. Note: in the legend, the alloys are
represented by the first number in their names: 7 for 7075, 2 for 2014 and 6 for 6061.

the crater as a function of U* for all alloys in the six different liquids. For comparison,
the data for collisions in air are also shown. The results show that the viscous fluid
does not have a significant effect on the crater dimensions as all the data follow a
similar trend. As mentioned earlier, the minimum approach distance at the yield speed
and the surface roughness compared to the yield crater depth, x,,/8, and o/, (table 2),
are much less than 1. Although the current experiments do not determine whether
there is direct solid-to-solid impact between the surfaces, these length scales suggest
that the fluid volume between the particle and the wall at the closest approach or at
the roughness height is significantly smaller than the volume of the indentation. As a
result, the surrounding fluid has minimal impact on the size of the crater.

Figure 7(a) shows the measured normalized crater diameters for all alloys versus U*.
Consistent with figure 6(a), the trends do not vary significantly with the surrounding
fluid. At these speeds, the crater diameters are slightly smaller than that calculated
from Hertz theory. Like the collisions in air, the diameters increase with impact speed
at approximately U**> (similar to the elastic trend), especially at the higher speeds. At
the lower speeds, the collisions for alloys 6061 and 2024 in the more viscous fluids
(WG5S and WG6) have slightly smaller diameters than found for the less viscous fluids.
For the harder 7075 alloy, there were no measurable craters for the WG6 experiments
and only one experiment produced a crater in WGS.

The speed at which a permanent crater first appears depends on the combination
of materials. For the hardest material (Al-7075), cratering begins at U* & 2, consistent
with the results for air. Cratering begins at U* =~ 3 for the 2024 alloy and at U* =4 for
6061 alloy. The differences for the onset is linked to the impact velocity and the yield
velocity. Using U*, the Stokes number for a given experiment can be calculated from
the value of St, (found in table 2) as St=St,U*. As previously discussed, the critical
Stokes number, Sz. has been used to determine when a particle has sufficient incoming
kinetic energy to overcome viscous losses during an elastic collision and rebound from
the surface. Moreover, if St < St., the particle does not have sufficient kinetic energy
to cause plastic deformation. In the prior work by Ruiz-Angulo & Hunt (2010), they
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FIGURE 7. (Colour online) (@) Normalized crater diameter versus normalized impact
velocity, U*, for all the collisions in the different fluids. (b) Normalized crater diameter
plotted as a function of reduced velocity U* — U} using St. = 18.

assumed that the critical Stokes number was St. =~ 18 for all three alloys. For the 7075
alloy and the WG6 fluid, the Stokes number at yield is St,=18.8 (see table 2). Hence,
for U* =2, St = 37.6, which is greater than St.; as a result, a particle at U* =2
has enough kinetic energy to overcome viscous losses during impact and potentially
enough to leave a crater on the 7075 alloy. For the 6061 and the 2024 alloys at U* =2,
the corresponding Stokes numbers for WG6 are St = 8.8 and St = 12.2, respectively,
both below S7.. As a result, these impacts are not expected to generate a crater during
impact, and they did not. With these considerations, the data found in figures 6(a)
and 7(a) are represented in terms of U* — U = U* — §t./St, in figures 6(b) and 7(b).
The re-scaling brings the data closer together, such that the experiments without crater
formation correspond to U* — Uf <2 or as St — St. < 25t,; this scaling demonstrates
that the impact kinetic energy is reduced because of the viscous losses during the
approach of the particle to the surface. The value of U for all three alloys and all
fluid uses Sz. = 18.

Figure 8(a) presents the measured coefficients of restitution as a function of Stokes
number for the Al-6061 alloy in all fluids. The coefficient of restitution increases with
Stokes number up to a maximum value that depends on the fluid and then decreases
due to plasticity effects. The size of the symbols is proportional to the crater volume
normalized by the particle volume, V* =V, /V,. The thick black solid and dash-dotted
lines correspond to e =1 — St./St and using Sz, = 14 and 18, respectively. The thick
dashed line represents the expression developed by Ruiz-Angulo & Hunt (2010) that
also neglects the particle inelasticity: e = 1 — 8.75/St%7. For relatively high Stokes
numbers, the experimental data points fall away from these curves, especially as the
plasticity effects become important, as quantified by the size of the crater. The thin
coloured dash-dotted curves in figure 8(a) include the inelasticity of the impacting
objects, using a modified version of (2.19) and allowing the value of e, to depend on
the value of U*,

St.
e=e,—(14+e,)—. 4.1
i’ PIoSt
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FIGURE 8. (Colour online) Coefficient of restitution versus Stokes number for (a) 6061
aluminium alloy. (b) 2024 and 7075 alloys. Experimental data points are represented with
triangles for 6061, squares for 2024 and circles for 7075. The size of data symbols is
proportional to the crater volume normalized by the particle volume. The colour code is
consistent in all alloy—fluid combinations as summarized in the legend. Curves correspond
to different fits and proposed models using St. = 18.

The value of 2 is included in the denominator so that e=0 when St =S¢, and e, =1.
For each fluid, the value of e, can be calculated based on the measurements in air,
which depend on the value of U* = St/St,. To simplify the evaluation of e,, a linear
curve was fit to the data of e, for the three alloys colliding in air as found in figure 3
with e, =0.9-0.012U*. As shown in figure 8, the curves roughly capture the data for
each fluid, especially for the less viscous fluids such as WGI1, WG2 and WG3. The
Stokes number that corresponds with the maximum coefficient of restitution can be
estimated by using the equation, e = (0.9 — 0.012U%) — (1.9 — 0.012U%) St/ (25t,U"),
differentiating with respect to U* and setting the derivative equal to 0. The maximum
coefficient of restitution occurs at St = 8.9(St. x St,)°3, which is approximately 460
for WGI1, 240 for WG2, 190 for WG3, 110 for WG4, 96 for WG5S and 79 for
WG6. As a note, the value of e, was also calculated using U* — U, rather than U*;
this method slightly improves the correspondence with the experimental data. This
analysis, which assumes that the plastic deformation occurs instantaneous relative to
the viscous dissipation (Birwa et al. 2018), works well at the higher Stokes numbers
(corresponding with WGI1, WG2 and WG3) but does not capture all of the plastic
losses for Stokes numbers near 100 (corresponding with WG4, WG5S and WG6)
where the viscous and plasticity effects may be harder to separate.

Figure 8(b) shows corresponding data for the 2024 and 7075 alloys using (4.1). Also
shown are the predictions for e for these alloys. The results for these alloys are similar
to those found for the 6061 alloy and the predictions of the measurements correspond
best with the results for the higher Stokes numbers.

4.3. Applications to erosion studies

As described in the introduction, the erosion rate is measured in either the volume or
the mass lost per unit time or per the number of particle impacts. For a single normal
collision, Bitter (1963a,b) proposed the following expression for the wear, W,, which
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is the volume loss per particle impact involving a particle of mass m colliding with

a deformable surface and E, is the amount of energy needed to remove one unit of
volume: 5
m(u; — uy)

W, = B 4.2)

Here, Bitter argued that E, depends on the properties of the impacted surface and
reflects the amount of energy per volume required for elastic—plastic deformation.
The experiments by Bitter (1963a) used hardened steel balls impacting both ductile
(low-carbon steel) and brittle (plastics and glass) materials. Bitter (1963a,b) argued
that E, should be proportional to o3/E* with o, = C,Y and C, being between
1.6 to 3.2 depending on the work hardening of the material. Sklar & Dietrich
(2004) modified Bitter’s wear model by writing the right-hand side of (4.2) as
((1 /Z)mu? —E,)/E,, where E, accounts for the threshold energy that must be exceeded
for material detachment to occur. In comparing with experiments involving sediment
and water in an abrasion mill, they neglect the E, term and experimentally determine
appropriate values of E,. In the recent studies by Lamb er al. (2008) and Scheingross
et al. (2014), the authors used modelling based on Bitter’s analysis and included the
effects of viscous damping by selecting a cutoff Stokes number below which erosion
did not occur.

In the analysis below, expressions are developed for the residual crater volume
normalized by the particle volume based on elastic and plastic theories and from
the experimental measurements. By considering a spherical shape for the indentation,
its volume can be computed from V, = 18,(3/4d> + §%)/6 ~ ns,a*/2. For a plastic
collision, 4, =aﬁ/ (2R); the residual deformed volume, V,, normalized by the volume
of a sphere, V,, is V*=V,/V,~3/4(5,/R)*. For a plastic collision, the volume ratio
can be estimated using (2.10b) as follows:

V. 3/8\* 3 (2pu 3t C Y\ Y\*
T2 (%) 2 (P el S (L) pesiso (L) v @3
V. 4\R 4\ P, 80 v \E* E*

A similar expression can be found using the scaling for an elastic collision by
estimating the normalized volume as V*=1V,/V,~ 3/8(5,/R)*, which uses §, = a’/R;
the volume ratio can be rewritten using (2.3b) as

4/5
Ve 3 (8N 3 (smpw\T_wC (YN gs (X s (4.4)
VS 8 R 8 4 E* 4 E* . E* . .

As found in both (4.3) and (4.4), the scaled volumes from both elasticity and
plasticity theories depend on (Y/E*)*, which is a stronger dependence on these
material parameters than suggested in the erosion studies by Bitter. Based on elasticity
theory, the scaled volume depends on U*¥/3, while for plasticity theory, the scaled
residual volume shows a dependence on U*?. The numerical factors on the right-hand
sides of (4.2) and (4.3) are computed with C; =1.65 and  =2.8.

Figure 9(a) presents the normalized crater volume as a function of U*. Here, the
normalized volume is written as, V*=V,/V, = (3A/8)(8,/R)?, which uses the results
of figure 5, RS, =Aaf and the value of A taken from the experimental measurements.
The elastic—plastic model developed by Ma & Liu (2015) is used to compute (8,/R)?
using the model parameters that fit best to the experimental data and shown on
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FIGURE 9. (Colour online) (a) Crater volume normalized by the particle volume versus
the normalized velocity, U*. Coloured curves correspond to the model proposed by Ma
& Liu (2015) labelled accordingly with the sets of parameters ¢ = {18, 28, 38} and ¢ =
{1.75, 2.4} shown in the legend. (b) Normalized crater volume versus reduced velocity
(using St. = 18) raised to the 8/5 power multiplied by (Y/E*)* as suggested by (4.6).
Note: in the legend, alloys are represented by the first number in their names: 7 for 7075,
2 for 2024 and 6 for 6061.

the curves. Using this approach, the predicted scaled volumes correspond to the
experimental measurements.

Figure 9(b) presents the normalized crater volumes, V* in terms of (U* — U¥)%° x
(Y/E*)* x 10°. This scaling comes from using V,/V, = 38,a*/(8R%), substituting §, =
Aa,?/R, writing V* = (3A/8) x (a,/R)*, taking a,/a,= U**" as suggested by the elastic
scaling in (2.6a), and a,/R from (2.5a). Hence,

4
Vo ﬁ( )4=% Gn Y U*8/5 1694 ( L pess. (4.5)
V. 8 \R 8 \ 2 F E

As noted earlier, the value of A is 1/10 for the 7075 alloy, 1/5 for the 6061 alloy
and 1/3.7 for the 2024 alloy; over all of the materials A=~ 1/4. If U* is replaced by
U* — U.”*, the normalized residual volume can be estimated in terms of U* or in terms

of St,
v, Y\* St —St.\*°
=42 U= UM =42 . (4.6)
Vi E* E* Sty

This expression is plotted in figure 9(b) and shows a reasonable correspondence
with the experimental data. As noted earlier, the variation in the value of A for
the different alloys may be due to the work hardening or dynamic loading of the
material. In addition, the expressions above assume a constant value for C,. Prior
studies, including the original work by Bitter (1963a,b), have suggested that the yield
stress may depend on additional parameters and may differ between dynamic and
static tests. Hence, it may be possible to improve the predictions by providing a
better understanding of dynamic elastic—plastic transition.
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5. Conclusions

The experimental measurements, reported in this article, demonstrate the importance
of three non-dimensional parameters, the velocity ratio, U* = u;/u,, the Stokes number
based on the yield velocity, St,, and the critical Stokes number, St., in determining the
mechanics of particle-wall collisions in a fluid. Note that the impact Stokes number
can be calculated as, St= U*St,. Most prior studies involving particle-wall collisions
in a liquid have involved cases in which there is negligible plastic deformation,
U* < 1. Those studies showed that the coefficient of restitution increases from 0 at
St. to a value close to one as St approaches 1000. For cases in which Ux > 1, an
energy balance that assumes that the plastic deformation is instantaneous predicts that
the coefficient of restitution reaches a maximum at an intermediate Stokes number
because the plastic losses increase as U* and St increase. This maximum can be
estimated algebraically as a function of U*. The results agree reasonably well with
the experimental measurements.

In terms of the crater dimensions, the surrounding fluid does not have a significant
effect, except for collisions in which the Stokes number is close to the critical Stokes
number. The results show that craters occur when St — St. > 25t,. For these conditions,
the impacting particle has sufficient kinetic energy to overcome viscous losses and
cause permanent damage to the target surface. For St — St. < 2St,, the impact does
not cause damage but it may have enough kinetic energy to rebound from the surface.
If the Stokes number is less than St., the particle does not rebound from the surface.
In the current experiments, the value of Stz. is taken as 18; however, there may be
some variation between alloys.

The experimental results are also useful in developing an understanding of the
surface deformation that occurs when a hard sphere collides with a softer wall in air
or in a liquid. An expression is developed analytically to predict the dimensionless
crater volume, V*, as a function of St, S¢. and the material properties; the analytic
expressions developed from elastic and plastic theories provide similar expressions in
terms of U* and Y/E*. In the current experiments, most of the collisions are beyond
the elastic regime and into the elastic—plastic regime, which was modelled using
the work of Ma & Liu (2015). This model depends on two parameters to transition
between the regimes, which are fit to the experimental data. The parameters fit to the
rebound velocity did not adequately capture the data for the crater dimensions. These
results suggest the need for more efforts in modelling dynamic elasto—plastic impacts.
As a note, the current experiments involve ductile materials; as a result, the analysis
is not directly applicable to brittle materials, such as rocks or glasses. However, the
methodology presented here could be extended to these other materials, provided that
there is a suitable method to model the impact behaviour of the material. Future
experiments should include oblique collisions.
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Appendix A

The extended derivation for the proposed formulation by Ma & Liu (2015) is
presented in this section. The mixed elastic—plastic regime is the one that governs
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most of our experiments. The corresponding force-indentation constitutive relation
valid for §, <6 <4, can be expressed as

8
Fm:8 |:C1+C21Il <8>:|+C3, (AI)

y

where ¢y, ¢, and c; are constants to be determined. The major assumption from this
theory relies on the C' continuity providing four conditions to determine the interval.
For both the lower bound 6 =4, (yield point) and the upper bound é =4, (the onset
of plastic deformations) of the mixed regime, the corresponding forces (F, and F),)
and the slope of the force-deflection curves (F| and F,) must match. By combining

with (A 1) and the relations a, =¢a, and §, =a§ /(2R), relations for the forces and the
derivatives of the forces can be written as follows:

Fvy — %E*R1/283/2 :cl(sy +C3,
dr,
Fi="2 =2E8"R =c + o

F, +18p+828”+182+
=6, |[ci1+cln | — a=—|a+cln| = cs,
» =0, |c1+ 5, = |ata > 3
. dF 8 &’

F, = —dép =27nRP, =2nRYY =c;+ ¢, [ln((gj) + 1} =c1+c {ln <2> + 1} .

(A2)

The derivatives from the set of equations (A 2) could be set as F; =nRo,,=TnRC,Y
and F]; =2nRP,; =2nRyY. Then the coefficients become

F,—F, TRYQy —C)

P y
g’ g’ ’
In| — In| —
(z) »(3) a9
I — Co,

C]:Fy

C3 :Fy - 015y.

Cy =

This method differs from that elaborated by Stronge (2000) by allowing the onset
of plasticity to be set by the choices of ¢ and . The analysis by Stronge fixed the
conditions for plastic collision. The Ma and Liu method enables the determination of
the force-indentation curve and predictions of the residual crater diameter and depth
along with the coefficient of restitution (COR) for any value of ¢ and . The COR
then could be obtained for the three different regimes. The work presented in this
manuscript is mainly associated with the mixed elastic—plastic regime, for which the
compression work based on Ma & Liu (2015) can be written as

C

W, =W, (
)+ 2

[65) 2 2 C2 é
Z) @ -+ 58 m (&) +es(5—8y). (A4)

The compression work is equivalent to the contact force at the end of the loading
phase: W, =1/2mu?. For the restitution work, Ma & Liu (2015) suggest

W, = LE'RV* (5 —35,)". (A5)
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Finally, for the elastic—plastic regime, the coefficient of restitution could be
estimated as a function of the compression and restitution phases:

(A6)

The impact and rebound velocities and the diameter and depth of craters measured
in this study can be found at https://doi.org/10.22002/D1.1151.
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