

Remote, Diastereoselective Cobalt-Catalyzed Alkene Isomerization-Hydroboration: Access to Stereodefined 1,3-Difunctionalized Indanes

Nadia G. Léonard, W. Neil Palmer, Max R. Friedfeld, Máté J. Bezdek, Paul J. Chirik*

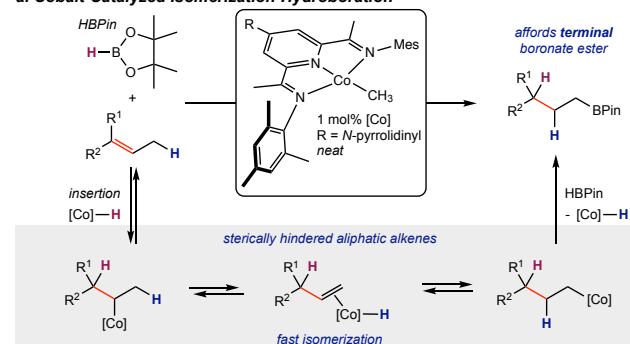
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States

ABSTRACT: The remote, diastereoselective hydroboration of 2- and 3-substituted indenes with a 2,2':6',2"-terpyridine cobalt alkyl precatalyst is described that maintains high regio- and stereoselectivity independent of the starting position of the alkene. Several 1,2- and 1,3-disubstituted indanyl boronate esters were obtained with exclusive (>20:1) selectivity for the *trans* diastereomer including synthetically versatile, stereodefined diboron derivatives. Alkene isomerization by a putative cobalt hydride intermediate precedes carbon–boron bond formation, leading to the observed regioselectivity for boron incorporation at the unsubstituted C(sp³)-H benzylic site. The regio- and diastereoselectivity of the transformation was maintained independent of the starting position of the alkene, as demonstrated by hydroboration of three isomers of methyl-substituted indene. Deuterium labeling experiments support rapid and reversible insertion and β -hydride elimination to isomerize 3-methylindene and 1-*exo*-methylene-indane, accounting for the isotopic distribution observed in the products. Mechanistic studies, including stoichiometric experiments, DFT calculations, and kinetic analysis, support a mechanism in which 2,3-alkene insertion into a cobalt hydride intermediate determines both the regio- and diastereoselectivity of the catalytic reaction. Synthetic applications of the indanyl boronate esters were demonstrated through elaboration of the products to several examples of 1,3-disubstituted indanes, important carbocyclic structural motifs in both pharmacological and bioactive molecules.

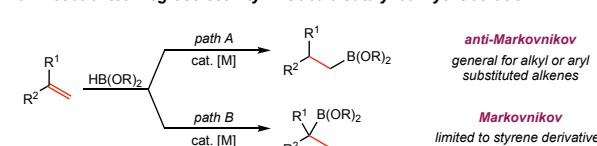
KEYWORDS: Diastereoselective, hydroboration, cobalt catalysis, chain-walking, indanes

INTRODUCTION

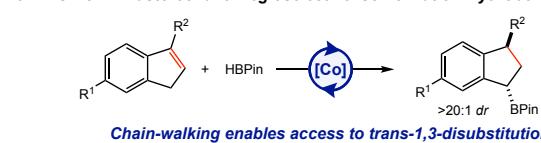
The synthetic utility of organoboron compounds continues to motivate the development of methods for the selective incorporation of boron into unique molecular scaffolds.¹ Transition metal-catalyzed alkene hydroboration reactions that exhibit high chemo-, regio- and stereocontrol are particularly valuable for accessing synthetically valuable and modular targets.² In particular, catalysts that promote alkene isomerization coupled to a subsequent carbon–element bond-forming sequence are enabling tools in synthesis for the functionalization of remote C–H bonds that are distal to the reactive C=C double bond.³ This tandem reaction pathway is well established in important catalytic processes such as alkene hydroformylation⁴ and polymerization.^{5,6} Application of this strategy to the construction of bonds in fine chemicals and more complex molecules is an emerging frontier in catalysis directed toward synthesis.⁷ Through insertion of an alkene into a transition-metal hydride bond followed by successive β -H elimination-reinsertion events, a remote carbon–element bond can be constructed site-selectively in the molecule without the need for a preinstalled directing group. Demonstration of stereo- and regioselective isomerization-hydroboration of alkenes is valuable for broadening the applicability of this method toward the synthesis of new organoboron compounds.


In 2013, our group reported pyridine(diimine) cobalt alkyl complexes that promote isomerization-hydroboration of tri- and tetrasubstituted alkenes with pinacolborane (HBPin) under neat conditions to generate terminal boronate esters (Scheme 1a).⁸

Isotopic labeling experiments supported rapid migration of the cobalt center along the alkyl chain with C–B bond formation occurring exclusively at primary carbon positions. α -Diimine-ligated cobalt precatalysts were later developed and exhibited unprecedented activity for tetrasubstituted alkenes, however sluggish reactivity was observed with styrene likely due to the formation of inactive η^3 -allyl complexes.⁹

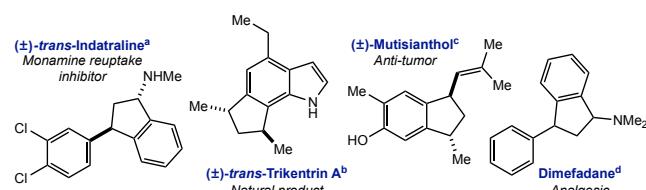

While isomerization-hydroboration was initially observed in rhodium-catalyzed alkene hydroboration,^{10,11} contemporary interest in the development of Earth-abundant metal catalysts¹² has demonstrated that this tandem process is frequently observed with first-row transition-metals to form terminal alkyl boronate esters from internal alkenes. Recently, Stradiotto, Turculet and coworkers reported a comprehensive experimental and computational study of (*N*-phosphinoamidinate) complexes based upon Mn, Fe, Co, and Ni for isomerization-hydroboration of octene isomers.¹³ Facile isomerization as well as significantly lower barriers for boron transfer to the terminal metal alkyl complex versus isomeric secondary metal alkyl intermediates are the origin of the terminal selectivity observed in the final *n*-octylboronate ester. This conclusion is further supported by the several well-established examples of cobalt-catalyzed anti-Markovnikov selective hydroborations of acyclic alkenes (Scheme 1b, path A)¹⁴ including the enantioselective hydroboration of 1,1-disubstituted aryl alkenes independently developed by Huang¹⁵ and Lu.¹⁶

Scheme 1. Strategies for Selectivity Control in Alkene Hydroboration.


a. Cobalt-Catalyzed Isomerization-Hydroboration

b. Precedent Regioselectivity in Cobalt-Catalyzed Hydroboration

c. This work: Diastereo- and Regioselective Isomerization-Hydroboration

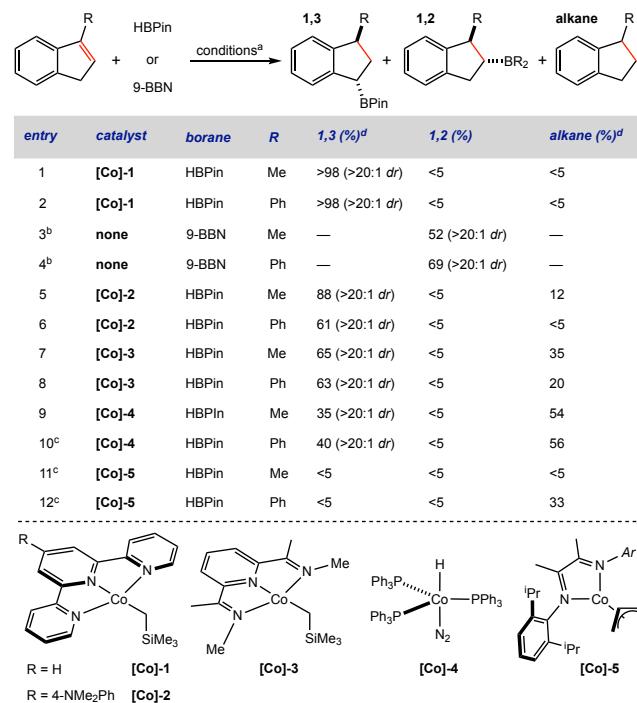


Chain-walking enables access to *trans*-1,3-disubstitution

The preference of transition metal catalysts to favor terminally selective C–B bond formation at primary sites has presented a challenge for the development methods for branched (Markovnikov) selective hydroboration.¹⁷ This particularly pronounced in cyclic alkenes where the absence of primary sites to drive C–B bond formation translate on to limitations with scope. In cobalt catalysis, achieving Markovnikov selectivity or more generally secondary C–B bonds is largely substrate dependent and typically limited to styrene derivatives (Scheme 1b, path B).^{18,19} Our laboratory has reported the synthesis of a 2,2':6',2"-terpyridine cobalt alkyl complex that promotes the selective hydroboration of styrene with 25:1 regioselectivity for the Markovnikov product.⁹ The regioselective hydroboration of 1,1-diborylalkenes was also effectively catalyzed, resulting in formation of the 1,1,1-triborionate ester, likely due to a stabilizing α -boryl effect on the cobalt alkyl intermediate.²⁰ Utilization of tandem isomerization-hydroboration to yield branched alkyl boronate esters is rarer, however and cyclic alkenes are an unexplored yet important class of substrates. Our group reported the isomerization-hydroboration of linear terminal alkenes to yield branched products with boron incorporation adjacent to π -systems.²¹ Employing a pre-isomerization step prior to HBPin addition, high regioselectivities were achieved. Lu and coworkers later expanded this mode of reactivity and developed a general method for the enantioselective synthesis of benzyl boronate esters with excellent enantioselectivity.²²

Extending catalytic alkene isomerization-hydroboration to the formation of secondary C–B bonds in cyclic alkenes is attractive for developing remote regio- and stereoselective reactions. Given the

observed preference for 2,2':6',2"-terpyridine cobalt-derived catalysts to yield branched alkyl boronate esters, application of this catalyst to the isomerization-hydroboration of 3-substituted indenes was explored (Scheme 1c). In addition to presenting a sterically challenging and unexplored carbocyclic core for cobalt-catalyzed hydrofunctionalization reactions, the indanyl unit is an important, recurring substructure in a variety of pharmaceuticals, bioactive compounds and natural products (Figure 1).^{23,24,25,26} Common methods to prepare indanes include Friedel-Crafts or Michael-type cyclizations, ring-expansion or contraction methods, and direct C–H activation.²⁷ However, competing side reactions can complicate these methods and prohibit modular incorporation of substituents around the indanyl ring.²⁸ Metal-catalyzed hydroboration of readily synthesized 3-substituted indenes is attractive as a complementary method owing to the versatility of boronate esters to be readily transformed to other groups with control of stereochemistry.²⁹

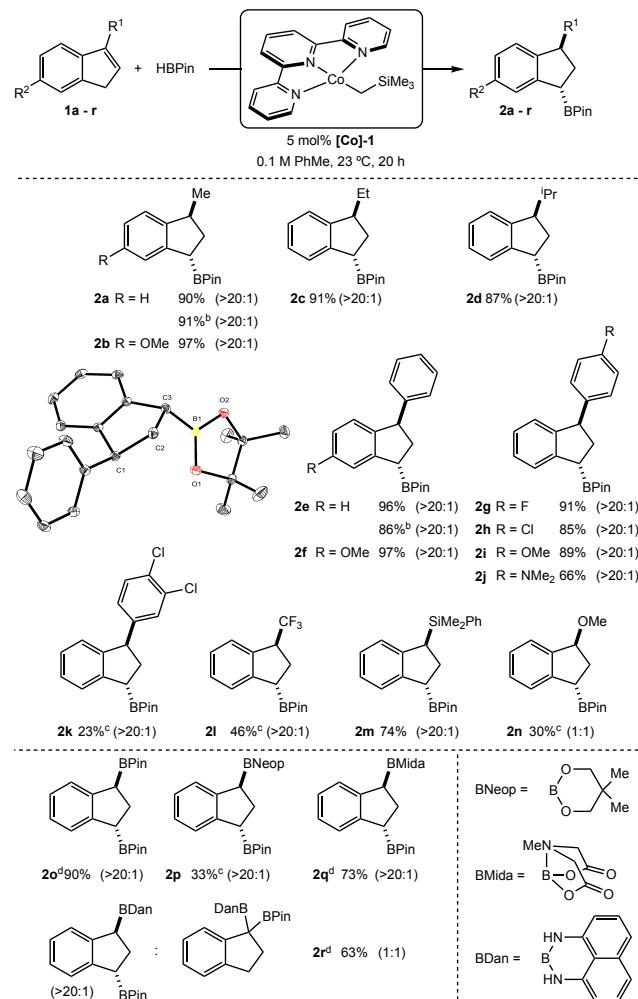

Figure 1. Examples of 1,3-disubstituted indanes in pharmaceuticals and bioactive molecules. ^aRef. 23. ^bRef. 24. ^cRef. 25. ^dRef. 26.

Here we describe the remote, diastereoselective cobalt-catalyzed hydroboration of 3-substituted indenes to selectively yield *trans*-1,3-disubstituted indanes. Comprehensive investigations into the mode of action for alkene isomerization and subsequent hydroboration are presented. Deuterium labeling studies provide insight into the regio- and facial preferences for alkene insertion with the cobalt catalyst. The synthetic utility of the *trans*-1,3-disubstituted indanyl boronate esters was demonstrated through a host of bond constructions from the boron group including vinylation and arylation.

RESULTS AND DISCUSSION

Initial method development employed 0.10 mmol of the indene substrate, and 1.05 equivalents of HBPin in the presence of 5 mol% of cobalt precatalyst at 23 °C for 20 h in 0.10 M toluene. Several cobalt alkyl complexes were examined (Scheme 2, see Supplemental Information for full details) with 2,2':6',2"-terpyridine cobalt alkyl ([Co]-1) exhibiting the highest yield of boronate ester for both the methyl and phenyl substituted indenes (entries 1 and 2, respectively), as determined by gas chromatography. Analysis of the products by ¹H, ¹³C and ¹H correlation NMR experiments established exclusive formation of 1,3-substituted products with an *anti* disposition of the boron substituent to the R group. Isolated yields of 96% and 90% were obtained for the phenyl and methyl substituted indanes, respectively. Complexes [Co]-3 and [Co]-4 exhibited similar regio- and diastereoselectivities (entries 7-10) however, a significant side reaction yielding alkane was observed with these precatalysts. The diimine cobalt η^3 -allyl complex ([Co]-5) yielded no hydroborated product, likely due to formation of a stabilized π -indanyl complex.⁹ By contrast, uncatalyzed hydroboration with 9-borabicyclo[3.3.1]nonane (9-BBN) resulted in 1,2-substituted products (entries 3 and 4), further highlighting the unique regioselectivity enabled by the cobalt-catalyzed method.

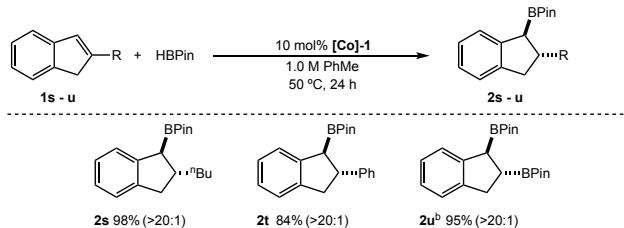
Scheme 2. Precatalyst Evaluation Studies.^a


^a Unless otherwise noted, reactions conducted with 0.10 mmol of indene, 0.105 mmol HBPin, 0.005 mmol precatalyst, in 1.0 mL toluene at 23 °C for 20 h. ^b Reactions conducted with 0.10 mmol of indene, 0.50 mmol 9-BBN at 75 °C for 48 h. Reported NMR yield of alcohol resulting from oxidation of trialkyl borane. See SI for full details. ^c Reactions conducted for 48 h. ^d Yield and dr was determined from the calibrated relative integrals of product and cyclooctane signals measured by gas chromatographic analysis of the unpurified reaction mixture.

The scope of the isomerization-hydroboration reaction was investigated and the results of these experiments are reported in Scheme 3. Standard conditions employed a 0.1 M solution of indene in toluene with 5 mol% of [Co]-1 and 1.05 equiv of HBPin. The cobalt-catalyzed isomerization-hydroboration of alkyl-substituted indenes (**1a**-**1d**) proceeded with high yields and diastereoselectivities, even for bulky isopropyl substituted **1d**, to the desired indanyl boronate esters with complete selectivity for the *trans* isomer in all cases. X-ray crystallography of the phenyl-substituted product **2e** provided further structural confirmation for the selective *anti* arrangement of the boron. Aryl substituents containing electron-withdrawing (**1g**-**1h**) or electron-donating (**1i** and **1j**) groups at the 4-position were also compatible with the catalytic protocol. For the 3,4-dichloroaryl substituted **1k**, hydroboration proceeded accompanied by significant competing protodeborylation, resulting in the desired indanyl boronate ester being isolated as a mixture. Trifluoromethyl substituted indene (**1l**) was tolerated, yielding 46% of the desired hydroborated product. Additionally, substrates containing methoxy-group substitution at the 6-position of the indene (**1b** and **1f**) underwent hydroboration with no loss in isolated yield of the desired indanes. Heteroatom-substituted indenes (**1m**-**1o**) were also tolerated, however in the latter case a 1:1

mixture of diastereomers was obtained, possibly due to a directing effect of the methoxy group overcoming the inherent selectivity of the reaction.

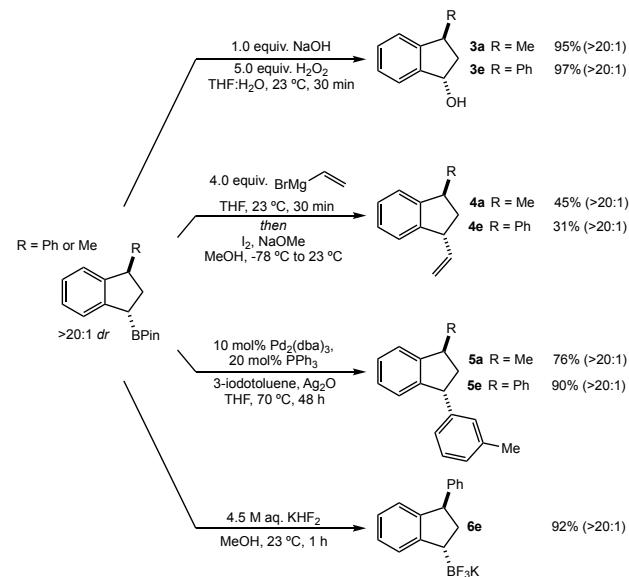
Boron-substituted indenes (**1p**-**1s**) were also explored. Given the synthetic versatility of the boron substituent, 1,3-disubstituted indanyl diboron compounds are interesting building blocks for the rapid construction of complex molecular structures. Examples with two different organoboron groups are particularly attractive for selective, sequential functionalization reactions made possible by the chemically differentiated boron groups.³⁰ Boron substituted indenes **1o** and **1p** underwent hydroboration to yield the corresponding 1,3-diboronate esters. However, for the neopentyl glycol boronate ester (BNeop, **1p**), significant exchange of the pinacolato and glycolato groups was observed, resulting in a 1:1 mixture of **2o** and **2p**. To suppress this process, the *N*-methyliminodiacetic acid (BMida, **1q**) and 1,8-diaminonaphthalene (BDan, **1r**) derivatives were hydroborated. Interestingly, hydroboration of **1r** resulted in a 1:1 mixture of regioisomers identified as the desired *trans*-1,3-diboron product and the 1,1-diboron indane. It is possible that the geminal regioisomer results from a combined electronic and steric effect of the BDan group in which the naphthyl ring can stabilize cobalt at the substituted position.³¹ To highlight the practicality of the method, products **2a** and **2e** were prepared on gram scale in 91% and 86% isolated yields, respectively (see SI for details).


Scheme 3. Diastereoselective Hydroboration of Substituted Indenes.^a

^aUnless indicated otherwise, reactions were run on 0.1 mmol scale with 5 mol% [Co] precatalyst. Percentages are isolated yields unless otherwise noted. Diastereomeric ratio as determined by GC and quantitative ¹³C{¹H} NMR analysis reported in parentheses. See SI for full experimental details. ^bYield for gram scale reaction. See SI for details. ^cYield determined by quantitative ¹³C{¹H} NMR spectroscopy due to overlapping signals in the ¹H NMR. ^dReaction conducted at 50 °C for 20 h in THF.

Regioisomeric 1,2-disubstituted boronate esters were prepared by hydroboration of symmetrical 2-substituted indenes (Scheme 4). *n*-Butyl (**1s**), phenyl (**1t**), and BPin (**1u**) variants proceeded with high yields and diastereoselectivities to yield the *trans*-1,2-disubstituted indane regioisomers, as confirmed by analysis of the products by ¹H, ¹³C and ¹H correlation NMR experiments.

Scheme 4. Access to *trans*-1,2-Disubstituted Indanes through Hydroboration.^a



^aUnless indicated otherwise, reactions were run on 0.1 mmol scale with 10 mol% [Co] precatalyst. Percentages are isolated yields. Diastereomeric ratio as determined by GC and quantitative ¹³C{¹H} NMR analysis reported in parentheses. See SI for full experimental details. ^bReaction conducted in THF.

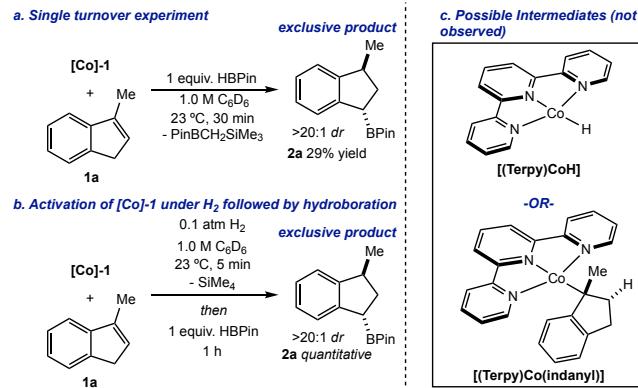
Synthetic Applications of Indanyl Boronate Esters

The synthetic utility of selected examples of indanyl boronate esters prepared in this study was investigated and the results of these studies are presented in Scheme 5. A host of stereospecific transformations are available to convert secondary boronate esters to other functional groups.³² The sterodefined indanyl boron compounds prepared by the cobalt-catalyzed method are attractive and versatile synthons for additional elaboration. Oxidation³³ of **2a** and **2e** was achieved using a NaOH/H₂O₂ solution to yield the *trans* alcohols, **3a** and **3e**, in 95% and 97% yield, respectively. Vinylation of **2a** and **2e**, using Zweifel olefination conditions,³⁴ afforded **4a** and **4e** in 45% and 31% yield, respectively. Using conditions for the palladium-catalyzed cross coupling of secondary organoboronate esters developed by Crudden and coworkers,³⁵ cross-coupled products **5a** and **5e** were isolated in 76% and 90% yields with retention of configuration. The trifluoroborate salt³⁶ **6e** was also isolated in 92% yield. These derivatization reactions demonstrate the high synthetic utility of the indanyl boronate esters formed from cobalt-catalyzed isomerization-hydroboration. Importantly, compounds **3a-6e** are not accessible directly via existing cyclization methods selectively,²⁸ further highlighting the utility of the products formed to yield disubstituted indanes with a high degree of stereocontrol.

Scheme 5. Representative Synthetic Applications of Indanyl Boronate Esters.^a

^aPercentages are isolated yields unless otherwise noted. Diastereomeric ratio as determined by quantitative ¹³C{¹H} NMR analysis reported in parentheses. See SI for full experimental details. dba = dibenzylideneacetone.

Mechanistic Studies


To gain insight into the mechanism of the catalytic hydroboration reaction and importantly, the origins of the regio- and diastereoselectivity, a series of additional studies were conducted. The hydroboration of 3-methyl-1*H*-indene (**1a**) was selected as a representative reaction and monitored by ¹H NMR spectroscopy in benzene-*d*₆. Immediately upon addition of HBPin to a 1.0 M solution of **1a** in benzene-*d*₆ with 5 mol% [Co]-1, complete consumption of [Co]-1 was observed. Additional monitoring over the course of the reaction by ¹H NMR spectroscopy demonstrated clean conversion of **1a** to product **2a**. No peaks corresponding to a new cobalt species were observed over the course of the transformation. An additional set of stoichiometric experiments was conducted in an attempt to determine the identity of the catalytically active cobalt intermediate or catalyst resting state (Scheme 6). First, addition of one equiv. HBPin to a 1:1 mixture of [Co]-1 and **1a** in benzene-*d*₆ resulted in the immediate formation of a dark solution (Scheme 6a). The ¹H NMR spectrum exhibited broad peaks corresponding to **1a** with no observable signals corresponding to [Co]-1. Vacuum transfer of the volatiles from this reaction and analysis by ¹H NMR spectroscopy established the generation of (trimethylsilyl)methylpinacolborane. Continued monitoring of the non-volatile components of the reaction revealed formation of small amounts of **2a**, implicating formation of a cobalt-hydride following activation of the corresponding alkyl with HBPin. In related cobalt-catalyzed asymmetric hydrogenation reactions of substituted indenes,³⁷ alkene insertion is slow and the resting state of the catalyst is the cobalt-hydride rather than a cobalt alkyl. In the present case, attempts to observe the cobalt-hydride by NMR

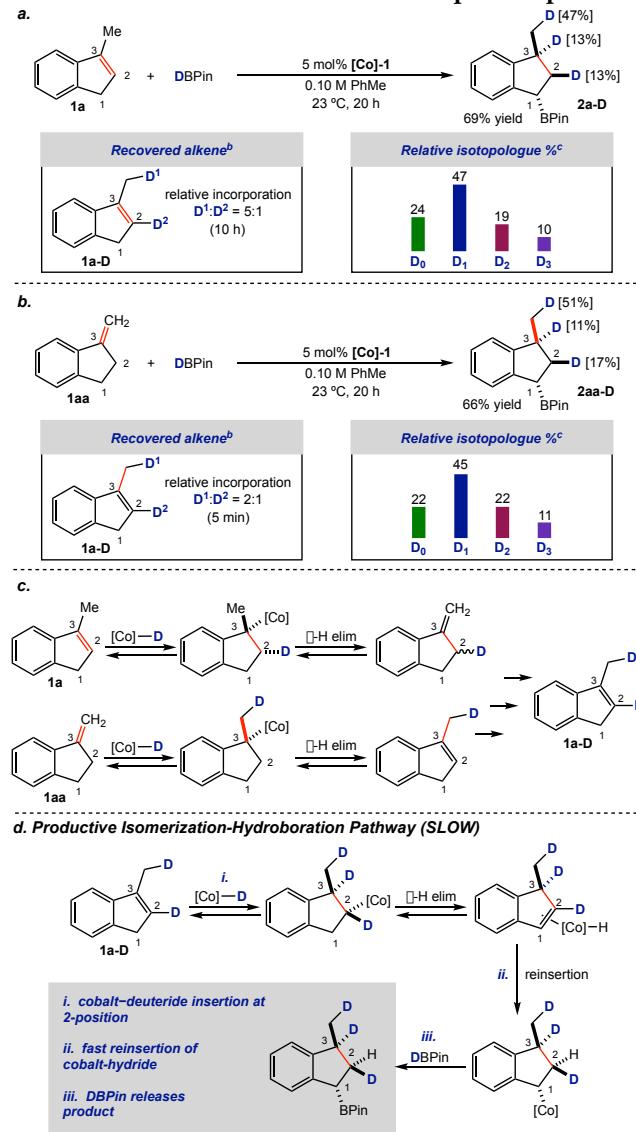
spectroscopy have been unsuccessful. DFT calculations³⁸ (B3LYP) on the putative $[(\text{Terpy})\text{CoH}]$ (Terpy = 2,2':6',2"-terpyridine) were conducted for both the spin restricted (RKS, Co(I), S = 0) and spin unrestricted (UKS, Co(II), S = 0 or S = 1) electronic structures.³⁹ The UKS solution for the S = 1 case was the lowest in energy and is best described as a low spin Co(II) with a ferromagnetically coupled ligand centered radical. Attempts to calculate a high-spin solution converged to the low-spin description. Nearly isoenergetic is the broken symmetry (1,1) electronic structure, which is 1 kcal/mol higher in energy. The small relative difference between the energies of the singlet and triplet states may contribute to the difficulty in spectroscopic observation of $[(\text{Terpy})\text{CoH}]$. However, additional experimental studies are required to distinguish these possibilities. The RKS solution was significantly higher in energy (+10 kcal/mol) than the spin unrestricted solutions consistent with ligand-centered radicals as important in potential catalytic intermediates.

The computational results support a similar electronic structure to that assigned to the cobalt alkyl derivatives, which are best described as a cobalt(II) center engaged in antiferromagnetic coupling with a terpyridine radical anion.⁹ This electronic structure parallels that of bis(imino)pyridine cobalt alkyl complexes.³⁷ Detailed computational studies by Hopmann on the mechanism of bis(imino)pyridine cobalt-catalyzed hydrogenation support broken symmetry electronic configurations throughout the catalytic cycle⁴⁰ and it is likely that a similar feature is conserved here.

To further support the intermediacy of a cobalt-hydride, 0.1 atm of H₂ was added to a J-Young NMR tube containing a benzene-*d*₆ solution of an equimolar mixture of **[Co]-1** and **1a** (Scheme 6b). Again, a dark solution immediately formed and broad ¹H NMR signals were observed. Subsequent addition of HBPin by vacuum transfer resulted in formation of the boronate ester product **2a** after 1 hour as judged by ¹H NMR spectroscopy, providing additional evidence for a catalytically competent cobalt hydride that likely forms but is unobservable by ¹H NMR spectroscopy.

Scheme 6. Stoichiometric Studies Probing the Catalyst Resting State.

a. Single turnover experiment with **[Co]-1**, HBPin, and **1a**. b. Activation of precatalyst **[Co]-1** under H₂ (0.1 atm) followed by hydroboration of **1a**. c. Possible catalytic intermediates.


Kinetic analysis using the method of variable time normalization developed by Burés⁴¹ was also conducted. Given the limited spectroscopic evidence for the cobalt intermediates formed under catalytic conditions, these experiments were used to provide information on the turnover-limiting step for the cobalt-catalyzed hydroboration-isomerization. Kinetic trials were conducted in a J-

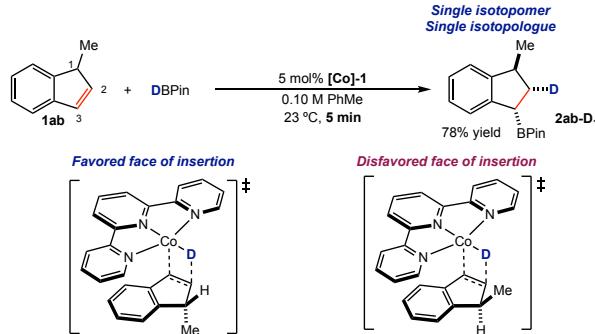
Young NMR tube and the reaction of **1b** with HBPin was monitored by ¹H NMR spectroscopy at 23 °C with **[Co]-1** as the precatalyst. Full experimental details are presented in the Supporting Information. These experiments established an overall second order rate law that is first order with respect to both alkene and **[Co]-1** but zero order with respect to HBPin. These findings are consistent with alkene insertion into a cobalt-hydride as turnover limiting step followed by fast C–B bond formation.⁴² This is distinct from turnover-limiting C–B bond formation commonly observed for *terminal-selective* hydroboration with acyclic alkenes^{8,12} and as calculated by Stradiotto, Turculet and Sydora.^{13a} Instead, the kinetic analysis supports a regime that is similar to that proposed for cobalt-catalyzed hydrogenation.^{37,40}

Deuterium Labeling Experiments

The regio- and diastereoselectivity of the cobalt-catalyzed hydroboration was investigated through a series of deuterium labeling experiments. Pinacolborane-*d*₁ (DBPin) was prepared by cobalt-mediated isotopic exchange of HBPin with D₂ gas (see SI for full details) and generated DBPin in 85% isotopic purity. Deuteroboronation of **1a** was achieved under standard catalytic conditions and produced the deuterated boronate ester in 69% isolated yield (Scheme 7a). For clarity, the numbering convention of the indenyl ring systems presented below and used throughout is based on placement of the substituents in the final product, regardless of the position of the starting alkene. Analysis of **2a-D** by ¹H, ²H, and ¹³C NMR spectroscopies established incorporation of deuterium at the 2-, 3-, and methyl positions. The total deuterium incorporation in the product is consistent with the isotopic purity of DBPin. Importantly, selective deuterium incorporation *syn* to the methyl group at the diastereotopic 2-position was observed. No deuterium was detected at the 1-position. Analysis of the boronate ester product by GC-MS revealed the formation of multiple deuterated isotopologues, with the *d*₁ derivative identified as the major product. Analysis of recovered alkene after 10 h of reaction time was consistent with preferential deuterium incorporation at the methyl position, with a 5:1 relative deuterium labeling observed for the methyl and 2-position, respectively. Spectroscopic data and complete assignments are reported in the Supporting Information.

Scheme 7. Deuterioboration of **1a and Isotopic Incorporation.^a**

^aReactions conducted with 0.10 mmol of substrate in 1.0 mL toluene at 23 °C for 20 h. Percentage yield of products are isolated yields. Percentage isotopic incorporation at the carbon positions determined by ²H and quantitative ¹³C{¹H} NMR spectroscopy included in brackets.


^bRecovered alkene from aliquot taken at partial conversion. Relative deuterium incorporation at methyl and 2-position determined by ²H and quantitative ¹³C{¹H} NMR spectroscopy. ^cRelative percentages of isotopologues determined by GC-MS. See SI for full details.

To rationalize the observation of the majority of the deuterium at the methyl position and to gain insight into the role of isomerization during catalysis, the deuteroboration procedure was conducted with 1-*exo*-methylene-indane, **1aa**. The boronate ester was obtained in 66% isolated yield with similar isotopic incorporation to that observed with **1a** (Scheme 7b). Analysis of an aliquot of the reaction mixture after 5 min revealed full conversion of **1aa** to **1a-D** with a 2:1 relative deuterium incorporation at the methyl position versus the 2-position of the alkene. These experiments support fast and reversible isomerization between **1a** and **1aa**, likely proceeding by preferential formation of a tertiary cobalt alkyl intermediate (Scheme 7c). Subsequent β -H elimination followed by alkene dissociation and reinsertion into a cobalt deuteride results in the ob-

served deuterated alkene, **1a-D**. This isomerization pathway is ultimately unproductive for hydroboration and instead, insertion at the 2-position followed by β -hydride elimination from the 1-position is necessary before hydroboration to the final observed product (Scheme 7d).

To test this hypothesis and probe the pathway depicted in Scheme 7d, **1ab** was independently evaluated for hydroboration (Scheme 8). Full conversion of indene to the labeled boronate ester **2ab-D** (78% isolated yield) was observed after 5 min as a single isotopomer and isotopologue, as determined by ¹H, ²H, quantitative ¹³C{¹H} NMR spectroscopy and GC-MS analysis. This labeling study supports the straightforward *syn* 1,2-addition of the cobalt-deuteride to **1ab** with no evidence for isomerization prior to carbon-boron bond formation. Further, observed boron incorporation on the face *anti* to the methyl substituent is consistent with alkene coordination and subsequent insertion being selective for a single face of the alkene, accounting for the diastereotopically pure deuterium incorporation and *trans* selective arrangement of the final boronate ester product.

Scheme 8. Deuterioboration of **1ab.^a**

^aReactions conducted with 0.10 mmol of **1ab** in 1.0 mL toluene at 23 °C. Percentage yield of product is isolated yield. Determination of isotopomer and isotopologue determined by ²H and quantitative ¹³C{¹H} NMR spectroscopy included in brackets. See Supporting Information for full spectroscopic data and complete assignments.

The cobalt-catalyzed deuteroboration-isomerization of additional alkenes was also investigated, the results of which are summarized in Scheme 9. Under standard catalytic conditions, reaction of **1c** or its *exo*-methylene isomer, **1ca**, with DBPin resulted in 78% and 92% isolated yield of the deuterated product, respectively. Analogous to the labeling observed with the methyl substituted indenes, deuterium was incorporated at the 2-, 3-, and methylene position of the ethyl group in the indane products **2c-D** and **2ca-D**. Again, selective deuterium incorporation at the 2-position *syn* to the ethyl substituent was observed, indicating a similar insertion pathway as depicted in Scheme 7c and d. Substrates **1e** and **1n**, selected specifically to confine chain-walking during catalysis to the indenyl ring, were also investigated through labeling experiments. In contrast to the alkyl substituted examples explored, analysis of the labeled boronate ester products **2e-D** by ¹H, ²H, and ¹³C NMR spectroscopies established incorporation of deuterium at the 3- and 2-positions in a *syn* relationship. This is consistent with the pathways outlined in Scheme 7. The cobalt-deuteride can insert into the 3- or 2-position. However, in the absence of an alkyl substituent, alkene isomerization and subsequent hydroboration can only occur in the latter case.

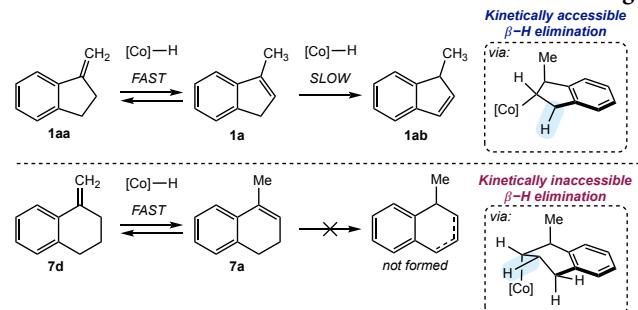
Scheme 9. Deuterium Labeling of a Selection of Substituted Indenes.^a

Entry	Substrate	Product ^b	Relative isotopologue % ^c
1			D ₀ 29, D ₁ 49, D ₂ 16, D ₃ 5
2			D ₀ 27, D ₁ 54, D ₂ 11, D ₃ 9
3			D ₀ 15, D ₁ 72, D ₂ 12, D ₃ 0
4 ^d			D ₀ 32, D ₁ 36, D ₂ 32, D ₃ 0

^aReactions conducted with 0.10 mmol of indene, 0.105 mmol DBPin, and 5 mol% [Co] in 1.0 mL toluene at 23 °C for 20 h. ^bPercentage isotopic incorporation at the carbon position determined by ²H and quantitative ¹³C{¹H} NMR spectroscopies. ^cRelative percentages of isotopologues determined by GC-MS. ^dReaction conducted with 0.10 mmol of indene, 0.105 mmol DBPin, and 5 mol% [Co] in 2.0 mL THF at 50 °C for 20 h.

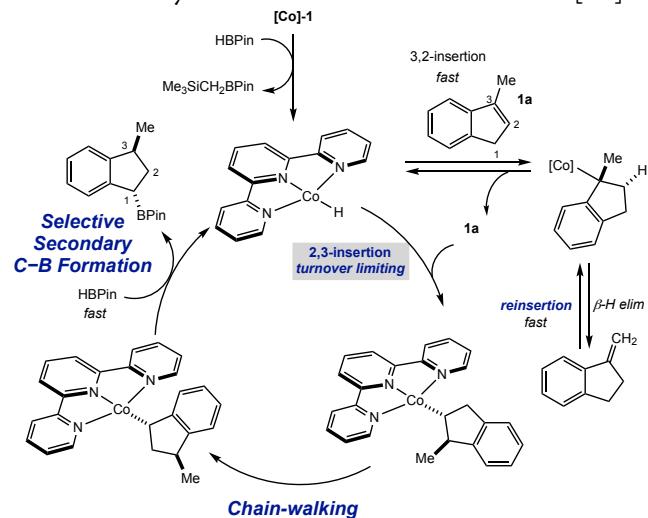
Having established a model for isomerization of the 5-membered ring system, the cobalt-catalyzed hydroboration analogous 6-membered ring substrates (dialins) were explored (Scheme 10). A 0.10 M solution of 1-methyl-3,4-dihydroronaphthalene (**7a**) in toluene was subjected to the standard catalytic conditions. The reaction was stirred at 23 °C and monitoring the reaction by ¹H NMR spectroscopy over 24 h showed no evidence for the hydroborated product. Other 1-substituted dialins explored, phenyl (**7b**) and benzyl (**7c**) substituted substrates, were similarly unreactive (entry 1). Increasing the temperature and reaction time to 80 °C and 72 h, respectively, produced no change in reactivity in all cases. The exocyclic-methylene substrate (**7d**) under standard catalytic conditions at 23 °C converted quantitatively to the endocyclic alkene (**7a**) in <5 min, as observed by ¹H NMR (entry 2). This is consistent with fast isomerization between exo- and endocyclic alkene isomers as observed with the 5-membered ring substrates. However, no evidence for further isomerization into the ring was observed for the 6-membered substrates. To rule out the possibility that 6-membered ring alkenes are inactive for the hydroboration catalyzed by [Co]-1, the hydroboration of isomer **7e** was carried out and proceeded to full conversion of the starting alkene in <5 min at 23 °C to furnish a 2:1 mixture of regio- and diastereoisomers (entry 3). Cooling the reaction to 0 °C did not change the regioselectivity, and the reaction still reached completion in <5 min. In contrast to the 5-membered ring analog, the methyl substituent for the 6-membered ring alkene had little to no influence on the diastereoselectivity of the reaction possibly due to smaller energy differences between different facially bound cobalt hydride(alkene) intermediates. In the absence of the methyl group, hydroboration of **7f** resulted in a slight increase in regioselectivity (2.8:1, entry 4). The marked difference in reactivity between the 5- and 6-membered

ring substrates may be a consequence of the lower degree of ring strain in the 6-membered ring systems.⁴³ Ring strain release may drive alkene insertion for trisubstituted indenes, whereas for the dialins, insertion is not as favorable. This may explain why reactivity is only observed for the disubstituted dialins **7e** and **7f**.


Scheme 10. Effect of Ring Substitution on the Cobalt-Catalyzed Hydroboration of Dialins.

Entry	Substrate	Product	Yield ^c
1 ^a		No reaction	Starting material recovered
2 ^a			>98%
3 ^b			70% (2:1)
4 ^b			97% (2.8:1)

^aReaction conducted with 0.10 mmol of dialin, 0.105 mmol HBPin, and 5 mol% [Co] in 1.0 mL toluene at 23 °C for 24 h. Heating at 80 °C for an additional 48 h produced no observable hydroborated product. ^bReaction conducted with 0.50 mmol of dialin, 0.505 mmol HBPin, and 1 mol% [Co] in 1.0 mL toluene at 0 °C for 5 min. ^cPercentage yield are isolated yields. ^dDiastereomeric ratio as determined by GC and quantitative ¹³C{¹H} NMR analysis. See SI for details.


Scheme 11 presents further insights for the differing reactivity between the 5- and 6-membered ring substrates. In both cases, isomerization from the exo- to the endocyclic isomers is facile under standard conditions. With the indene, an additional isomerization event is accessible, albeit slow, to furnish **1ab** (Scheme 11, top). The accessibility of this pathway can be explained by the relative planarity of the indenyl substrate, placing the ring β -hydrogens in the necessary *syn*-periplanar arrangement required for transfer to the cobalt center. In contrast, the 6-membered substrate only has one kinetically accessible site for β -hydrogen elimination from the methyl group. The necessary conformational inversion required to access the ring methylene hydrogens may be kinetically disfavored. Additionally, performing a mixing experiment in which a 1:1 mixture of **1a** and **7a** were subjected to the standard hydroboration conditions in the presence of 5 mol% of [Co]-1 showed full conversion of **1a** to **2a** in 20 h and no conversion of **7a**, indicating that while the 6-membered ring is not suitable for isomerization-hydroboration, it does not inhibit the reaction overall.

Scheme 11. Isomerization of 5- versus 6-Membered Rings.

The stoichiometric experiments, kinetic analysis, and isotopic labeling studies support the mechanistic picture for the cobalt-catalyzed diastereoselective hydroboration of substituted indenes presented in Scheme 12. Although the reactivity of the proposed cobalt intermediates has hindered their spectroscopic observation, insights have been gained on alkene insertion preferences and competitive isomerization pathways that are key to rationalizing the unique regioselectivity of this transformation. Alkene 2,3-insertion is the turnover-limiting step. For alkyl-substituted indenes, competitive 3,2-insertion is fast and reversible and ultimately unproductive for C–B bond formation. This presents a distinct mechanistic picture to that proposed for anti-Markovnikov selective hydroboration catalysts in which selectivity is controlled by favorable boron transfer to a terminal metal alkyl intermediate. The relatively open coordination environment imparted to the cobalt center by the terpyridine ligand may lower the barrier for secondary C–B bond formation, resulting in the observed regioselectivity.

Scheme 12. Proposed catalytic cycle for the diastereoselective isomerization-hydroboration of 1a with [Co]-1.

CONCLUDING REMARKS

The regio- and diastereoselective remote hydroboration of sterically hindered 2- and 3-substituted indenes by a terpyridine cobalt complex has been developed. This method provides remarkably selective access to *trans*-1,2- and 1,3-disubstituted indanyl boronate esters, the utility of which was demonstrated through a host of representative C–C, and C–O bond-forming reactions. Deuterium labeling studies allowed for rationalization

of the observed regioselectivity of the isomerization-hydroboration and provide insight on how alkene insertion preferences dictate chain walking for remote functionalization in ring systems and extend the synthetic utility of the transformation.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Crystallographic data for **2e** (CIF).

Additional experimental procedures, including general considerations, additional experimental details, full characterization data and complete NMR spectroscopic data (PDF).

AUTHOR INFORMATION

Corresponding Author

* E-mail: pchirik@princeton.edu

ORCID

Paul J. Chirik: 0000-0001-8473-2898

Nadia G. Léonard: 0000-0002-0949-5471

Max R. Friedfeld: 0000-0001-5693-3705

Máté J. Bezdek: 0000-0001-7860-2894

ACKNOWLEDGMENT

Financial support was provided by the National Science Foundation (NSF) Grant Opportunities for Academic Liaison with Industry (GOALI) grant (CHE-1564379). NGL thanks the National Science Foundation (NSF) for a Graduate Research Fellowship (DGE-1148900).

REFERENCES

- (a) Namirembe, S.; Morken, J. P. Reactions of organoboron compounds enabled by catalyst-promoted metalate shifts. *Chem. Soc. Rev.* **2019**, Advance Article. DOI: 10.1039/C9CS00180H. (b) Fyfe, J. W. B.; Watson, A. J. B. Recent developments in organoboron chemistry: old dog, new tricks. *Chem* **2017**, *3*, 31–55. (c) Collins, B. S. L.; Wilson, C. M.; Myers, E. L.; Aggarwal, V. K. Asymmetric synthesis of secondary and tertiary boronic esters. *Angew. Chem. Int. Ed.* **2017**, *56*, 11700–11733.
- (a) Geier, S. J.; Vogels, C. M.; Westcott, S. A. In *Boron Reagents in Synthesis*; Coca, A., Ed.; ACS Symposium Series, Vol. 1236; American Chemical Society: Washington, DC, **2016**; pp 209–225. (b) Vogels, C. M.; Westcott, S. A. Recent advances in organic synthesis using transition metal-catalyzed hydroborations. *Curr. Org. Chem.* **2005**, *9*, 687–699. (c) Crudden, C. M.; Edwards, D. Catalytic asymmetric hydroboration: recent advances and applications in carbon–carbon bond-forming reactions. *European J. Org. Chem.* **2003**, *2003*, 4695–4712.
- (a) Vasseur, A.; Bruffaerts, J.; Marek, I. Remote functionalization through alkene isomerization. *Nat. Chem.* **2016**, *8*, 209–219. (b) Sommer, H.; Juliá-Hernández, F.; Martin, R.; Marek, I. Walking metals for remote functionalization. *ACS Cent. Sci.* **2018**, *4*, 153–165.
- (a) Vilches-Herrera, M.; Domke, L.; Börner, A. Isomerization-hydroformylation tandem reactions. *ACS. Catal.* **2014**, *4*, 1706–1724.

(5) (a) Guo, L.; Dai, S.; Sui, X.; Chen, C. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. *ACS Catal.* **2016**, *6*, 428-441.

(6) Seminal reports on chain-walking/polymerization (a) Johnson, L. K.; Killian, C. M.; Brookhart, M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and α -olefins. *J. Am. Chem. Soc.* **1995**, *117*, 6414-6415. (b) Möhring, V. K.; Fink, G. Novel polymerization of α -olefins with the catalyst system nickel/aminobis(imino)phosphorane. *Angew. Chem. Int. Ed. Engl.* **1985**, *24*, 1001-1003.

(7) (a) Hartwig, J. F. Catalyst-Controlled Site-Selective Bond Activation. *Acc. Chem. Res.* **2017**, *50*, 549-555. (b) Goldberg, K. I.; Goldman, A. S. Large-Scale Selective Functionalization of Alkanes. *Acc. Chem. Res.* **2017**, *50*, 620-626. (c) Lio, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L. Site-selective and stereoselective functionalization of unactivated C–H bonds. *Nature* **2016**, *533*, 230-234. (d) Jia, X.; Huang, Z. Conversion of alkanes to linear alkylsilanes using an iridium-iron-catalysed tandem dehydrogenation-isomerization-hydrosilylation. *Nature Chem.* **2016**, *8*, 157-161.

(8) Obligacion, J. V.; Chirik, P. J. Bis(imino)pyridine cobalt-catalyzed alkene isomerization-hydroboration: a strategy for remote hydrofunctionalization with terminal selectivity. *J. Am. Chem. Soc.* **2013**, *135*, 19107-19110.

(9) Palmer, W. N.; Diao, T.; Pappas, I.; Chirik, P. J. High-activity cobalt-catalysts for alkene hydroboration with electronically responsive terpyridine and α -diimine ligands. *ACS Catal.* **2015**, *5*, 622-626.

(10) Lata, C. J.; Crudden, C. M. Dramatic effect of lewis acids on the rhodium-catalyzed hydroboration of olefins. *J. Am. Chem. Soc.* **2010**, *132*, 131-137.

(11) (a) Smith, J. R.; Collins, B. S.; Hesse, M. J.; Graham, M. A.; Myers, E. L.; Aggarwal, V. K. Enantioselective rhodium (III)-catalyzed Markovnikov hydroboration of unactivated terminal alkenes. *J. Am. Chem. Soc.* **2017**, *139*, 9148-9151. (b) Shoba, V.M.; Takacs, J.M. Remarkably facile borane-promoted, rhodium-catalyzed asymmetric hydrogenation of tri- and tetrasubstituted alkenes. *J. Am. Chem. Soc.* **2017**, *139*, 5740-5743. (c) Mazet, C.; Gérard, D. Highly regio- and enantioselective catalytic asymmetric hydroboration of α -substituted styrenyl derivatives. *Chem. Commun.* **2010**, *47*, 298-300. (d) Thomas, S. P.; Aggarwal, V. K. Asymmetric hydroboration of 1,1-disubstituted alkenes. *Angew. Chem. Int. Ed.* **2009**, *48*, 1896-1898. (e) Pereira, S.; Srebnik, M. Transition metal-catalyzed hydroboration of and CCl_4 addition to alkenes. *J. Am. Chem. Soc.* **1996**, *118*, 909-910. (f) Evans, D. A.; Fu, G. C.; Hoveyda, A. H. Rhodium(I)- and iridium(I)-catalyzed hydroboration reactions: scope and synthetic applications. *J. Am. Chem. Soc.* **1992**, *114*, 6671-6679. (g) Burgess, K.; Van der Donk, W. A.; Westcott, S. A.; Marder, T. B.; Baker, R. T.; Calabrese, J. C. Reactions of catecholborane with Wilkinson's catalyst: implications for transition metal-catalyzed hydroborations of alkenes. *J. Am. Chem. Soc.* **1992**, *114*, 9350. (h) Burgess, K.; Ohlmeyer, M. J. Transition-metal promoted hydroboration of alkenes, emerging methodology for organic transformations. *Chem. Rev.* **1991**, *91*, 1179-1191. (i) Männling, D.; Nöth, H. Catalytic hydroborations with rhodium complexes. *Angew. Chem. Int. Ed.* **1985**, *24*, 878-879.

(12) For selected recent reviews on transition-metal catalyzed hydrofunctionalizations using Earth-abundant metals see: (a) Chen, J.; Guo, J.; Lu, Z. Recent advances in hydrometallation of alkenes and alkynes via the first row transition metal catalysis. *Chin. J. Chem.* **2018**, *36*, 1075-1109. (b) Mukherjee, A.; Milstein, D. Homogeneous catalysis by cobalt and manganese pincer complexes. *ACS Catal.* **2018**, *8*, 11435-11469. (c) Obligacion, J. V.; Chirik, P. J. Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration. *Nat. Rev. Chem.* **2018**, *2*, 15-34. (d) Chen, J.; Lu, Z. Asymmetric hydrofunctionalization of minimally functionalized alkenes via Earth abundant transition metal catalysis. *Org. Chem. Front.* **2018**, *5*, 260-272. (e) Bezzanine-Lafollée, S.; Gil, R.; Prim, D.; Hannoudouche, J. First-row late transition metals for catalytic alkene hydrofunctionalization: recent advances in C–C, C–O and C–P bond formation. *Molecules* **2017**, *22*, 1901.

(13) (a) Macaulay, C. M.; Gustafson, S. J.; Fuller, J. T. III; Kwon, D.-H.; Ogawa, T.; Ferguson, M. J.; McDonald, R.; Lumsden, M. D.; Bischof, S. M.; Sydora, O. L.; Ess, D. H.; Stradiotto, M.; Turculet, L. Alkene isomerizatio-hydroboration catalyzed by first-row transition-metal (Mn, Fe, Co, and Ni) N-phosphinoamidinate complexes: origin of reactivity and selectivity. *ACS. Catal.* **2018**, *8*, 9907-9925. (b) Ogawa, T.; Ruddy, A. J.; Sydora, O. L.; Stradiotto, M.; Turculet, L. Cobalt- and iron-catalyzed isomerization-hydroboration of branched alkenes: terminal hydroboration with pinacolborane and 1,3,2-diazaborolanes. *Organometallics* **2017**, *36*, 417-423. (c) Ruddy, A. J.; Sydora, O. L.; Small, B. L.; Stradiotto, M.; Turculet, L. (N-Phosphinoamidinate)cobalt-catalyzed hydroboration: alkene isomerization affords terminal selectivity. *Chem. Eur. J.* **2014**, *20*, 13918-13922.

(14) (a) Peng, S.; Yang, J.; Liu, G.; Huang, Z. Ligand controlled cobalt catalyzed regiodivergent 1,2-hydroboration of 1,3-dienes. *Sci. China Chem.* **2019**, *62*, 336-340. (b) Agahi, R.; Challinor, A. J.; Carter, N. B.; Thomas, S. P. Earth-abundant metal catalysis enabled by counterion activation. *Org. Lett.* **2019**, *21*, 993-997. (c) Pang, M.; Wu, C.; Zhuang, X.; Zhang, F.; Su, M.; Tong, Q.; Tung, C.-H.; Wang, W. Addition of B–H bond across an amido-cobalt bond: Co^{II} -H-catalyzed hydroboration of olefins. *Organometallics* **2018**, *37*, 1462-1467. (d) Teo, W. J.; Ge, S. Cobalt-catalyzed diborylation of 1,1-disubstituted vinylarenes: a practical route to branched gem-bis(boryl)alkanes. *Angew. Chem. Int. Ed.* **2018**, *57*, 1654-1658. (e) Cruz, T. F. C.; Lopes, P. S.; Pereira, L. C. J.; Veiro, L. F.; Gomes, P. T. Hydroboration of terminal olefins with pinacolborane catalyzed by new mono(2-Iminopyrrolyl) cobalt(II) complexes. *Inorg. Chem.* **2018**, *57*, 8146-8159. (f) Teo, W.; Ge, S. Cobalt-catalyzed enantioselective synthesis of chiral gem-bis(boryl)alkanes. *Angew. Chem. Int. Ed.* **2018**, *57*, 12935-12939. (g) Cruz, T. F. C.; Veiro, L. F.; Gomes, P. T. Cobalt(I) complexes of 5-aryl-2-iminopyrrolyl ligands: synthesis, spin isomerism, and application in catalytic hydroboration. *Inorg. Chem.* **2018**, *57*, 14671-14685. (h) Docherty, J. H.; Peng, J.; Dominey, A. P.; Thomas, S. P. Activation and discovery of Earth-abundant metal catalysts using sodium *tert*-butoxide. *Nat. Chem.* **2017**, *9*, 595-600. (i) Ibrahim, A. D.; Entsminger, S. W.; Fout, A. R. Insights into a chemoselective cobalt catalyst for the hydroboration of alkenes and nitriles. *ACS Catal.* **2017**, *7*, 3730-3734. (j) Woo, H.; Park, J.; Kim, J.; Park, S.; Park, K. H. Hierarchical hybrid $MnO/Pd-Fe_3O_4$ and $CoO/Pd-Fe_3O_4$ nanocomposites as efficient catalysts for hydroboration of styrene. *Catal. Commun.* **2017**, *100*, 52-56. (k) Zhang, L.; Zuo, Z.; Leng, X.; Huang, Z. A Cobalt-catalyzed alkene hydroboration with pinacolborane. *Angew. Chem. Int. Ed.* **2014**, *53*, 2696-2700.

(15) Zhang, L.; Zuo, Z.; Wan, X.; Huang, Z. Cobalt-catalyzed enantioselective hydroboration of 1,1-disubstituted aryl alkenes. *J. Am. Chem. Soc.* **2014**, *136*, 15501-15504.

(16) (a) Zhang, H.; Lu, Z. Dual-stereocontrol asymmetric cobalt-catalyzed hydroboration of sterically hindered styrenes. *ACS Catal.* **2016**, *6*, 6596-6600. (b) Chen, J.; Xi, T.; Ren, X.; Cheng, B.; Guo, J.; Lu, Z. Asymmetric cobalt catalysts for hydroboration of 1,1-disubstituted alkenes. *Org. Chem. Front.* **2014**, *1*, 1306-1309.

(17) Fan, W.; Li, L.; Zhang, G. Branched-Selective Alkene Hydroboration Catalyzed by Earth-Abundant Metals. *J. Org. Chem.* **2019**, *84*, 5987-5996.

(18) For examples of Markovnikov selective hydroboration of styrene derivatives using first-row transition-metal catalysts: (a) Verma, P. K.; Sethulekshmi A. S.; Geetharani, K. Markovnikov-Selective Co(I)-Catalyzed Hydroboration of Vinylarenes and Carbonyl Compounds. *Org. Lett.* **2018**, *20*, 7840-7845. (b) Tamang, S. R.; Bedi, D.; Shafiei-Haghghi, S.; Smith, C. R.; Crawford, C.; Findlater, M. Cobalt-Catalyzed Hydroboration

of Alkenes, Aldehydes, and Ketones. *Org. Lett.* **2018**, *20*, 6695-6700. (c) Zhang, G.; Wu, J.; Li, S.; Cass, S.; Zheng, S. Markovnikov-Selective Hydroboration of Vinylarenes Catalyzed by a Cobalt(II) Coordination Polymer. *Org. Lett.* **2018**, *20*, 7893-7897. (d) Chen, X.; Cheng, Z.; Lu, Z. Iron-catalyzed, Markovnikov-selective hydroboration of styrenes. *Org. Lett.* **2017**, *19*, 969-971. (e) Peng, J.; Docherty, J. H.; Dominey, A. P.; Thomas, S. P. Cobalt-Catalysed Markovnikov Selective Hydroboration of Vinylarenes. *Chem. Commun.* **2017**, *53*, 4726-4729. (f) Zhang, G.; Wu, J.; Wang, M.; Zeng, H.; Cheng, J.; Neary, M. C.; Zheng, S. Cobalt-Catalyzed Regioselective Hydroboration of Terminal Alkenes. *Eur. J. Org. Chem.* **2017**, *38*, 5814-5818. (g) Guo, J.; Cheng, B.; Shen, X.; Lu, Z. Cobalt-Catalyzed Asymmetric Sequential Hydroboration/Hydrogenation of Internal Alkynes. *J. Am. Chem. Soc.* **2017**, *139*, 15316-15319. (h) MacNair, A. J.; Millet, C. R. P.; Nichol, G. S.; Ironmonger, A.; Thomas, S. P. Markovnikov-selective, activator-free iron-catalyzed vinylarene hydroboration. *ACS Catal.* **2016**, *6*, 7217-7221. (i) Zhang, G.; Zeng, H.; Wu, J.; Yin, Z.; Zheng, S.; Fettinger, J. Highly Selective Hydroboration of Alkenes, Ketones and Aldehydes Catalyzed by a Well-Defined Manganese Complex. *Angew. Chem. Int. Ed.* **2016**, *55*, 14369-14372. (j) Zuo, Z.; Yang, J.; Huang, Z. Cobalt-Catalyzed Alkyne Hydrosilylation and Sequential Vinylsilane Hydroboration with Markovnikov Selectivity. *Angew. Chem. Int. Ed.* **2016**, *128*, 10997-11001. (k) Touney, E. E.; Van Hoveln, R.; Buttké, C. T.; Freidberg, M. D.; Guzei, I. A.; Schomaker, J. M. Heteroleptic Nickel Complexes for the Markovnikov-Selective Hydroboration of Styrenes. *Organometallics* **2016**, *35*, 3436-3439. (l) Reilly, S. W.; Webster, C. E.; Hollis, T. K.; Valle, H. U. Transmetallation from CCC-NHC pincer Zr complexes in the synthesis of air-stable CCC-NHC pincer Co(III) complexes and initial hydroboration trials. *Dalton Trans.* **2016**, *45*, 2823-2828. (m) Dongwan, N.; Yoon, Su. K.; Won, J.; Lee, J. Y.; Yun, J. An Efficient Copper(I)-Catalyst System for the Asymmetric Hydroboration of β -Substituted Vinylarenes with Pinacolborane. *Chem. Asian J.* **2011**, *6*, 1967-1969. (n) Noh, D.; Chea, H.; Ju, J.; Yun, J. Highly regio- and enantioselective copper-catalyzed hydroboration of styrenes. *Angew. Chem. Int. Ed.* **2009**, *48*, 6062-6064.

(19) Markovnikov selective alkene hydroboration of aliphatic alkenes has been demonstrated with copper: (a) Cai, Y.; Yang, X.-T.; Zhang, S.-Q.; Li, F.; Li, Y.-Q.; Ruan, L.-X.; Hong, X.; Shi, S.-L. Copper-Catalyzed Enantioselective Markovnikov Protoboration of α -Olefins by a Buttressed N-Heterocyclic Carbene Ligand. *Angew. Chem. Int. Ed.* **2018**, *57*, 1376-1380. (b) Iwamoto, H.; Imamoto, T.; Ito, H. Computational design of high-performance ligand for enantioselective markovnikov hydroboration of aliphatic terminal alkenes. *Nat. Commun.* **2018**, *9*, 2290. (c) Xi, Y.; Hartwig, J. F. Mechanistic studies of copper-catalyzed asymmetric hydroboration of alkenes. *J. Am. Chem. Soc.* **2017**, *139*, 12758-12772. (d) Xi, Y.; Hartwig, J. F. Diverse asymmetric hydrofunctionalization of aliphatic internal alkenes through catalytic regioselective hydroboration. *J. Am. Chem. Soc.* **2016**, *138*, 6703-6706. (e) Iwamoto, H.; Kubota, K.; Ito, H. Highly selective markovnikov hydroboration of alkyl-substituted terminal alkenes with a phosphine-copper(I) catalyst. *Chem. Commun.* **2016**, *52*, 5916-5919. (f) Kerchner, H. A.; Montgomery, J. Synthesis of Secondary and Tertiary Alkylboranes via Formal Hydroboration of Terminal and 1,1-Disubstituted Alkenes. *Org. Lett.* **2016**, *18*, 5760-5763.

(20) Krautwald, S.; Bezdek, M. J.; Chirik, P. J. Cobalt-catalyzed 1,1-diboration of terminal alkynes: scope, mechanism, and synthetic applications. *J. Am. Chem. Soc.* **2017**, *139*, 3868-3875.

(21) Scheuermann, M. L.; Johnson, E. J.; Chirik, P. J. Alkene isomerization-hydroboration promoted by phosphine-ligated cobalt catalysts. *Org. Lett.* **2015**, *17*, 2716-2719.

(22) Chen, X.; Cheng, Z.; Guo, C.; Lu, Z. Asymmetric remote C-H borylation of internal alkenes via alkene isomerization. *Nature Commun.* **2018**, *9*, 3939.

(23) Froimowitz, M.; Wu, K.-M.; Moussa, A.; Haidar, R. M.; Jurayj, J.; George, C.; Gardner, E. L. Slow-onset, long-duration 3-(3',4'-Dichlorophenyl)-1-indanamine monoamine reuptake blockers as potential medications to treat cocaine abuse. *J. Med. Chem.* **2000**, *43*, 4981-4992.

(24) (a) Silva, L. F.; Craveiro, M. V. A diastereoselective total synthesis of *trans*-Trikentrin A: a ring contraction approach. *Org. Lett.* **2008**, *10*, S417-S420. (b) Boger, D. L.; Zhang, M. Total synthesis of (\pm)-*cis*- and (\pm)-*trans*-Trikentrin A: Diels-Alder reactions of heteroaromatic azadienes. *J. Am. Chem. Soc.* **1991**, *113*, 4230-4234.

(25) Bianco, G. G.; Ferraz, H. M. C.; Costa, A. M.; Costa-Lotufo, L. V.; Pessoa, C.; de Moraes, M. O.; Schrems, M. G.; Pfaltz, A.; Silva, L. F. (+)- and (-)-Mutisianthol: First total synthesis, absolute configuration and antitumor activity. *J. Org. Chem.* **2009**, *74*, 2561-2566.

(26) *The Organic Chemistry of Drug Synthesis*, Vol 2; Lednicer, D., Mitscher, L. A.; John Wiley & Sons, Inc., **1980**, 207-231.

(27) (a) Zhang, G.; Hu, Z.; Bertoli, G.; Gooßen, L. J. Iridium-Catalyzed Synthesis of Substituted Indanones from Aromatic Carboxylates and Unsaturated Ketones. *ACS Catal.* **2019**, *9*, 8153-8158. (b) Qin, X.; Lee, M. W. Y.; Zhou, J. S. Asymmetric Hydroarylation of Enones via Nickel-Catalyzed 5-Endo-Trig Cyclization. *Org. Lett.* **2019**, *21*, 5990-5994. (c) Borie, C.; Ackermann, L.; Nechab, M. Enantioselective synthesis of indanes: from organocatalysis to C-H functionalization. *Chem. Soc. Rev.* **2016**, *45*, 1368-1386. (d) Gabriele, B.; Mancuso, R.; Veltri, L. Recent advances in the synthesis of indanes and indenes. *Chem. Eur. J.* **2016**, *22*, 5056-5094. (e) Begouin, J.-M.; Capitta, F.; Wu, X.; Niggemann, M. Diastereoselective synthesis for indanes and tetralins via intramolecular Friedel-Crafts Reaction. *Org. Lett.* **2013**, *15*, 1370-1373. (f) Hong, B.-C.; Sarshar, S. Recent advances in the synthesis of indan systems. A review. *Org. Prep. Proced. Int.* **1999**, *31*, 1-86.

(28) (a) Cai, X.; Keshavarz, A.; Omaque, J. D.; Stokes, B. J. Brønsted Acid-Catalyzed Intramolecular Hydroarylation of β -Benzylstyrenes. *Org. Lett.* **2017**, *19*, 2626-2629. (b) Reddel, J. C. T.; Wang, W.; Koukounas, K.; Thomson, R. J. Triflimide-catalyzed allylsilane annulations of benzylic alcohols for the divergent synthesis of indanes and tetralins. *Chem. Sci.* **2017**, *8*, 2156-2160. (c) Johnston, C. P.; Kothari, A.; Sergeieva, T.; Okovyty, S. I.; Jackson, K. E.; Paton, R. S.; Smith, M. D. Catalytic enantioselective synthesis of indanes by a cation-directed 5-endo-trig cyclization. *Nat. Chem.* **2015**, *7*, 171-177.

(29) (a) Collins, B. S. L.; Wilson, C. M.; Myers, E. L.; Aggarwal, V. K. Asymmetric synthesis of secondary and tertiary boronic esters. *Angew. Chemie Int. Ed.* **2017**, *56*, 11700. (b) *Synthesis and Application of Organoboron Compounds*; Fernández, E., Whiting, A., Eds.; Springer: Berlin, **2015**. (c) *Boronic Acids*; Hall, D. G., Ed.; Wiley-VCH, Weinheim, **2011**. (d) Jana, R.; Pathak, T. P.; Sigman, M. S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. *Chem. Rev.* **2011**, *111*, 1417-1492. (e) Cradden, C. M.; Glasspoole, B. W.; Lata, C. J. Expanding the scope of transformations of organoboron species: carbon-carbon bond formation with retention of configuration. *Chem. Commun.* **2009**, *44*, 6704-6716. (f) Doucet, H. Eur. Suzuki-Miyaura cross-coupling reactions of alkylboronic acid derivatives or alkyltrifluoroborates with aryl, alkynyl or alkyl halides and triflates. *J. Org. Chem.* **2008**, *12*, 2013-2030. (g) Chemler, S. R.; Trauner, D.; Danishevsky, S. J. The B-alkyl Suzuki-Miyaura cross-coupling reaction: development, mechanistic study, and applications in natural product synthesis. *Angew. Chem. Int. Ed.* **2001**, *40*, 4544-4568. (h) Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. *Chem. Rev.* **1995**, *95*, 2457-2483.

(30) (a) Rygus, J. P. G.; Cradden, C. M. Enantiospecific and Iterative Suzuki-Miyaura Cross-Couplings. *J. Am. Chem. Soc.* **2017**, *139*,

18124-18137. (b) Gillis, E. P.; Burke, M. D. A Simple and Modular Strategy for Small Molecule Synthesis: Iterative Suzuki-Miyaura Coupling of B-Protected Haloboronic Acid Building Blocks. *J. Am. Chem. Soc.* **2007**, *129*, 6716-6717. (c) Noguchi, H.; Hojo, K.; Sugino, M. Boron Masking Strategy for the Selective Synthesis of Oligoarenes via Iterative Suzuki-Miyaura Coupling. *J. Am. Chem. Soc.* **2007**, *129*, 758-759.

(31) Feng, X.; Jeon, H.; Yun, J. Regio- and enantioselective copper(I)-catalyzed hydroboration of borylalkenes: asymmetric synthesis of 1,1-diborylalkanes. *Angew. Chem. Int. Ed.* **2013**, *52*, 3989-3992.

(32) Sanford, C.; Aggarwal, V. K. Stereospecific functionalization and transformations of secondary and tertiary boronic esters. *Chem. Commun.* **2017**, *53*, 5481-5494.

(33) Brown, H. C.; Zweifel, G. A Stereospecific Cis Hydration of the Double Bond in Cyclic Derivatives. *J. Am. Chem. Soc.* **1959**, *81*, 247-247.

(34) (a) Sanawane, R. P.; Jheengut, V.; Rabalakos, C.; Larouche-Gauthier, R.; Scott, H. K.; Aggarwal, V. K. Enantioselective Construction of Quaternary Stereogenic Centers from Tertiary Boronic Esters: Methodology and Applications. *Angew. Chem. Int. Ed.* **2011**, *50*, 3760-3763. (b) Evans, D. A.; Crawford, T. C.; Thomas, R. C.; Walker, J. A. Studies directed toward the synthesis of prostaglandins. Useful boron-mediated olefin syntheses. *J. Org. Chem.* **1976**, *41*, 3947-3953. (c) Zweifel, G.; Polston, N. L.; Whitney, C. C. A stereoselective synthesis of conjugated dienes from alkynes via the hydroboration-iodination reaction. *J. Am. Chem. Soc.* **1968**, *90*, 6243-6245. (d) Zweifel, G.; Arzoumanian, H.; Whitney, C. C. A convenient stereoselective synthesis of substituted alkenes via hydroboration-iodination of alkynes. *J. Am. Chem. Soc.* **1967**, *89*, 3652-3653.

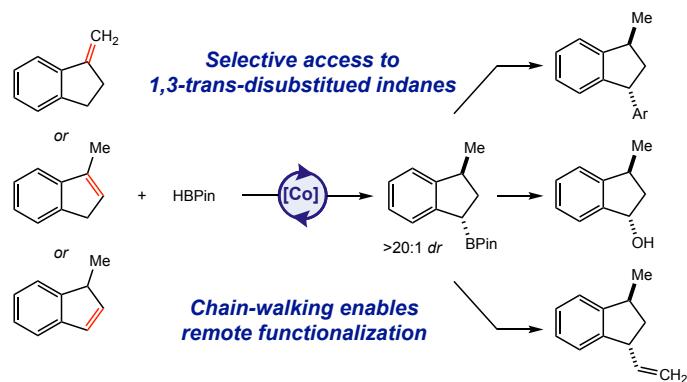
(35) Imao, D.; Glasspoole, B. W.; Lagerge, V. S.; Crudden, C. M. Cross Coupling Reactions of Chiral Secondary Organoboronic Esters With Retention of Configuration. *J. Am. Chem. Soc.* **2009**, *131*, 5024-5025.

(36) Bagutski, V.; Ros, A.; Aggarwal, V. K. Improved method for the conversion of pinacolboronic esters into trifluoroborate salts: facile synthesis of chiral secondary and tertiary trifluoroborates. *Tetrahedron* **2009**, *65*, 9956-9960.

(37) Friedfeld, M. R.; Shevlin, M.; Margulieux, G. W.; Campeau, L.-C.; Chirik, P. J. Cobalt-Catalyzed Enantioselective Hydrogenation of Minimally Functionalized Alkenes: Isotopic Labeling Provides Insight into the Origin of Stereoselectivity and Alkene Insertion Preferences. *J. Am. Chem. Soc.* **2016**, *138*, 3314-3324.

(38) Neese, F.; Becker, U.; Ganyushin, D.; Hansen, A.; Liakos, D.; Izsak, R.; Kollmar, C.; Kossmann, S.; Petrenko, T.; Reimann, C.; Römel, M.; Riplinger, C.; Sandhöfer, B.; Schapiro, I.; Sivalingham, K.; Wezisla, B.; Wennmohs, F. *Orca, an Ab Initio, Density Functional and Semiempirical Electronic Structure Program Package*, version 2.9.1; Max Planck Institute for Bioinorganic Chemistry: Mülheim an der Ruhr, Germany, **2012**.

(39) Noddeman, L. Valence bond description of antiferromagnetic coupling in transition metal dimers. *J. Chem. Phys.* **1981**, *74*, 5737-5743.


(40) Hopmann, K. H. Cobalt-Bis(imino)pyridine-Catalyzed Asymmetric Hydrogenation: Electronic Structure, Mechanism, and Stereoselectivity. *Organometallics* **2013**, *32*, 6388-6399.

(41) (a) Burés, J. A Simple Graphical Method to Determine the Order in Catalyst. *Angew. Chem. Int. Ed.* **2016**, *55*, 2028-2031. (b) Burés, J. Variable Time Normalization Analysis: General Graphical Elucidation of Reaction Orders From Concentration Profiles. *Angew. Chem. Int. Ed.* **2016**, *55*, 16084-16087.

(42) (a) Knijnenburg, Q.; Horton, A. D.; van der Heijden, H.; Kooistra, T. M.; Hetterscheid, D. G. H.; Smits, J. M. M.; de Bruin, B.; Budzelaar, P. H. M.; Gal, A. W. Olefin hydrogenation using diimine pyridine complexes of Co and Rh. *J. Mol. Catal. A: Chem.* **2005**, *232*, 151-159. (b) Gibson, V. C.; Tellmann, K. P.; Humphries, M. J.; Wass, D. F. Bis(imino)pyridine cobalt alkyl complexes and their reactivity towards ethylene: a model system for beta-hydrogen chain transfer. *Chem. Commun.* **2002**, *20*, 2316-2317

(43) Wiberg, K. B. The Concept of Strain in Organic Chemistry. *Angew. Chem. Int. Ed.* **1986**, *25*, 312-322.

TOC Graphic

