
Spatial Data Decomposition and Load Balancing on HPC
Platforms

Jie Yang
MSCS department

Marquette University
Milwaukee, Wisconsin
jie.yang@marquette.edu

Anmol Paudel
MSCS department

Marquette University
Milwaukee, Wisconsin

anmol.paudel@marquette.edu

Satish Puri
MSCS department

Marquette University
Milwaukee, Wisconsin

satish.puri@marquette.edu

ABSTRACT
We are in the era of Spatial Big Data. Due to the developments of
topographic techniques, clear satellite imagery, and various means
for collecting information, geospatial datasets are growing in vol-
ume, complexity and heterogeneity. For example, OpenStreetMap
data for the whole world is about 1 TB and NASA world climate
datasets are about 17 TB. Spatial data volume and variety makes
spatial computations both data-intensive and compute-intensive.
Due to the irregular distribution of spatial data, domain decompo-
sition becomes challenging. In this work, we present spatial data
partitioning technique that takes into account spatial join cost. In
addition, we present spatial join computation using Asynchronous
Dynamic Load Balancing (ADLB) library. ADLB is a software li-
brary designed to help rapidly build scalable parallel programs
using MPI. We evaluated the performance of ADLB-based MPI-GIS
implementation. In our existing work, spatial data movement cost
from ADLB server to worker MPI processes limited the scalability
of MPI-GIS.

CCS CONCEPTS
• Computing methodologies → Parallel algorithms; • Infor-
mation systems → Geographic information systems;

KEYWORDS
Message Passing Interface, Parallel IO, HPC, Spatial Join, Spatial
Data
ACM Reference Format:
Jie Yang, Anmol Paudel, and Satish Puri. 2019. Spatial Data Decomposition
and Load Balancing on HPC Platforms. In Practice and Experience in Ad-
vanced Research Computing (PEARC ’19), July 28-August 1, 2019, Chicago, IL,
USA. ACM, New York, NY, USA, 4 pages.

1 INTRODUCTION
With the increasing volume and complexity of spatial data, there
is an increasing demand for efficient geo-spatial techniques for
parallelizing spatial computations. This paper presents modeling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEARC 2019, July 28–Aug 01, 2019, Chicago, IL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00

of spatial join complexity, challenges encountered in spatial data
partitioning, and experience of using Asynchronous Dynamic Load-
balancing library (ADLB) [3] to build MPI-based GIS [4, 5]. Much
of our research on big spatial data has been done on a supercom-
puter named Bridges at the Pittsburgh Supercomputing Center.
Our implementations use Geometry Engine OpenSource (GEOS)
library which provides 1) spatial data indices such as R-Tree, 2)
computational geometry algorithms, and 3) parser for geometric
data.

The datasets used in this paper are in Well-Known Text (WKT)
format, which records geometry objects on a map as a text markup
language. For example, a polygon with 3 vertices is represented
as POLYGON((10 20, 30 40, 50 60, 10 20)). A geometry collection
can be represented as GEOMETRYCOLLECTION(POINT((12 17)),
LINESTRING((3 3, -10 10))).

Organization of this paper is as follows. In section 2, we model
polygon intersection costs and reveal one of the causes of load-
imbalance in parallel spatial join implementations. In section 3 and
4, we present two contributions of this paper which are 1) spatial
join cost-based partitioning and 2) asynchronous dynamic load
balancing for geospatial computations. Compared to our earlier
work on MPI-based spatial computations, these sections describe
new research contributions [2, 4–6].

Figure 1: The execution time of polygon intersection using
GEOS. In (a), all geometry collections are kept intact; in (b),
all geometry collections are broken down into single geome-
tries.

2 MODELING THE COSTS OF SPATIAL
COMPUTATIONS

The number of vertices in a polygon/polyline shape varies widely.
The number of vertices in the largest feature is about five orders of
magnitude higher than smaller features that contain few vertices.
Spatial operations like polygon overlay and spatial join where two
layers of GIS data are merged together to produce a third layer asDOI: 10.1145/3332186.3333266

https://doi.org/10.1145/3225058.3225105
https://doi.org/10.1145/3225058.3225105
https://doi.org/10.1145/3225058.3225105

PEARC 2019, July 28–Aug 01, 2019, Chicago, IL, USA Jie Yang, Anmol Paudel, and Satish Puri

output are specially challenging to model. Execution time depends
on the degree of overlap between the two input layers. Elementary
operations that include cross-layer geometric intersections need to
partitioned across MPI processes in balanced way in order to use
the processors efficiently. The worst case time complexity to check
if two geometric shapes with n and m vertices overlap or not is
O(n ∗m). However, a tighter bound on time complexity is dictated
by the number of actual segment-intersection points which is a
variable quantity depending on input shapes. This makes modeling
task harder.

We performed intersection operation on pairs of geometries
which are taken from Lakes (8.4 million polygons) and Sports (1.8
million polygons) datasets [1]. The execution times for different
pairs of geometries are distributed as shown in Figure 1 (a). After
analysis, we figured out that geometry collections cause the distri-
bution to be more scattered. We performed another intersection
operation on the same pairs of geometries with all geometry collec-
tions being split to single geometries. After geometry collections
are divided, the intersection time shows a better correlation with
the theoretical time complexity shown as Figure 1 (b).

3 ADAPTIVE SPATIAL DATA PARTITIONING
For domain decomposition, here we study the partitioning of a
layer of spatial data containing polygons/polylines. Similar to join
operation in databases, we have spatial join operation that is used in
spatial databases and Geographic Information System (GIS). Spatial
join finds all-to-all topological relationship between two geometry
layers based onwhether two shapes overlap or not.With partitioned
data, not only the join task is divided into many sub-tasks, but also
the spatial query for a single geometry becomes more efficient.

We have embedded our computational cost model inherent in
spatial join algorithms to do better partitioning on top of adaptive
grid partitioning. We split one grid cell into four grid cells if the
cost exceeds a threshold value. For both Quadtree partitioning
and uniform grid partitioning, two spatial datasets - Lakes (8.4 M
polygons) and Sports (1.8 M polygons), are partitioned into 8192
grid cells. MPI-GIS implementation performs the join tasks that are
scheduled in round robin manner to check the quality of different
partitioning techniques.

The implementation ran on regular Bridges computing nodes
with two E5-2695 v3 CPUs, i.e. 28 cores per node. Figure 2 shows
the performances of two partitioning techniques by comparing the
maximum execution times and the minimum execution times of
the MPI-GIS program. Maximum execution time determines the
overall job completion time. The maximum execution times for the
data partitioned based on Quadtree partitioning are 20% to 35%
lower than the maximum execution times for the data partitioned
based on uniform partitioning. With more processes, the minimum
execution times are closer to 0 for both partitioning methods.

4 DYNAMIC LOAD-BALANCING
First, we describe our system based on Asynchronous Dynamic
Load Balancing Library (ADLB) library [3]. We chose this library
because it allows multiple MPI processes to be server process using
master-slave strategy. Moreover, it supports asynchronous com-
munication and work stealing among MPI processes. Among P

28 56 84 112 140

0

10

20

30

40

Number of MPI processes

Ex
ec
ut
io
n
tim

e
in

se
co
nd

s

QuadMin QuadMax UniformMin UniformMax

Figure 2: Spatial Join time using Quadtree and Uniform grid
partitioning. Maximum and minimum spatial join execu-
tion time is shown for different MPI processes using Lakes
and Sports.

Figure 3: Architecture of ADLB library. The server(s) main-
tain distributed shared queue. Put and Get operations are
used by the workers to add tasks and retrieve tasks to/from
the queue. Data can migrate to arbitrary servers depending
on the load.

MPI processes, we employ few of them as ADLB servers and the
rest are employed as workers. Figure 3 shows the architecture of
ADLB. The workers read small input layer entirely in memory and
build an R-tree index with geometries in the file. However, only
a file split from the larger layer is read in parallel by the workers.
These geometries are parsed and enqueued in the distributed shared
queue provided by ADLB. The server processes are responsible for
load-balancing and do not participate in spatial computations. The

Spatial Data Decomposition and Load Balancing on HPC Platforms PEARC 2019, July 28–Aug 01, 2019, Chicago, IL, USA

Figure 4: Spatial Join Algorithm using ADLB library. The steps followed by each server and worker process is shown. The
input to this algorithm is a large spatial data file that gets split across workers and a smaller file.

0 4 8 12 16 20 24
0

20

40

60

Number of nodes (24 cores each node)

Ex
ec
ut
io
n
tim

e
(s
ec
on

d)

ADLB join time

Figure 5: Execution time of ADLB-based spatial join system
using two layers - 1) Sports (1.8 million polygons) and 2)
Roads (72 million polylines).

workers put all the polygons read from the larger file split in the
queue. Finally, geometries are retrieved from the queue and spatial
join is carried out. Figure 4 shows the multi-server, multi-worker
algorithm in more detail. In this algorithm, we follow a data-parallel
approach, where we partition the large file into smaller file splits.
However, there is no spatial partitioning done.

As we can see in Figure 5, the spatial join time decreases as
the number of workers increases upto twelve compute nodes. In
Figure 6, the overhead of adding tasks by the workers is shown.
The task here consists of polygons from the large layer. The size
of the polygons/polylines vary from few bytes to few megabytes.
In this experiment, as we increase the number of workers, we also
increase the number of servers from 10 to 20. We can observe a
sudden slowdown in task creation phase from Figure 6. This is due
to the overhead caused by queue maintenance in ADLB. Beyond
240 MPI processes, ADLB put operations take longer time to finish
even though the number of put operations decreases per process.

Inspite of the queue maintenance overhead, we observed that
ADLB does a good job of load balancing the tasks among work-
ers. However, the ADLB-based system takes almost double time
compared to the single-server multi-worker MPI-GIS system that
does not use ADLB (more details in the next paragraph). We found
that for ADLB-based spatial join implementation, transferring and
parsing data by put and get operations on the distributed queue are
the overheads that increase the end-to-end time considerably.

Load-balancing with partitioned data: In order to improve
the performance of parallel spatial computation in MPI-GIS, instead
of working directly with original datasets, nowwe first partition the
data adaptively among grid cells as described in the earlier section
and then use our own dynamic load balancing implementation. If
user selects 8192 grid cells for spatial partitioning, then the original
file is broken down into 8192 files i.e. one file for each grid cell data.
This version uses a single-sever multi-worker strategy to imple-
ment parallel spatial join. A single server works well in this case

PEARC 2019, July 28–Aug 01, 2019, Chicago, IL, USA Jie Yang, Anmol Paudel, and Satish Puri

Figure 6: Time taken due to workers adding tasks to the shared ADLB queue using put function.

because the message size is small and due to the coarse granularity
of partitions, the server does not become a point of contention.

In this version, a task is defined as a pair of cross-layer and over-
lapping grid cells. The server sorts these tasks in descending order
of computational cost generated by our model and schedules the
remaining tasks among workers as they become idle. The program
has been tested using two spatial datasets: Roads (72 million poly-
lines stored) and Sports (1.8 million polygons). The WKT file for
Roads is 24 GB and the WKT file for sports is 590 MB. We found
this implementation that leverages the partitioned data to be faster
than ADLB-based implementation.

ACKNOWLEDGMENTS
This work is partly supported by the National Science Foundation
Grant No. 1756000.

REFERENCES
[1] [n. d.]. SpatialHadoop, http://spatialhadoop.cs.umn.edu. Website. ([n. d.]). http:

//spatialhadoop.cs.umn.edu/
[2] Dinesh Agarwal, Satish Puri, Xi He, and Sushil K Prasad. 2012. A system for

GIS polygonal overlay computation on linux cluster-an experience and perfor-
mance report. In 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum. IEEE, 1433–1439.

[3] Ewing L Lusk, Steve C Pieper, Ralph M Butler, et al. 2010. More scalability, less
pain: A simple programmingmodel and its implementation for extreme computing.
SciDAC Review 17, 1 (2010), 30–37.

[4] Satish Puri. 2019. SpatialMPI: Message Passing Interface for GIS Applications.
Geographic Information Science & Technology Body of Knowledge 2019, Q2 (2019).

[5] Satish Puri, Anmol Paudel, and Sushil K Prasad. 2018. MPI-Vector-IO: Parallel I/O
and Partitioning for Geospatial Vector Data. In Proceedings of the 47th International
Conference on Parallel Processing, ICPP. 13.

[6] Satish Puri and Sushil K Prasad. 2015. A parallel algorithm for clipping polygons
with improved bounds and a distributed overlay processing system using mpi. In
2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.
IEEE, 576–585.

http://spatialhadoop.cs.umn.edu/
http://spatialhadoop.cs.umn.edu/

	Abstract
	1 Introduction
	2 Modeling the costs of spatial computations
	3 Adaptive Spatial Data Partitioning
	4 Dynamic Load-balancing
	Acknowledgments
	References

