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Abstract: Geographic information systems (GIS) provide accurate maps of terrain, roads, waterways,
and building footprints and heights. Aircraft, particularly small unmanned aircraft systems (UAS),
can exploit this and additional information such as building roof structure to improve navigation
accuracy and safely perform contingency landings particularly in urban regions. However, building
roof structure is not fully provided in maps. This paper proposes a method to automatically label
building roof shape from publicly available GIS data. Satellite imagery and airborne LiDAR data
are processed and manually labeled to create a diverse annotated roof image dataset for small to
large urban cities. Multiple convolutional neural network (CNN) architectures are trained and tested,
with the best performing networks providing a condensed feature set for support vector machine
and decision tree classifiers. Satellite image and LiDAR data fusion is shown to provide greater
classification accuracy than using either data type alone. Model confidence thresholds are adjusted
leading to significant increases in models precision. Networks trained from roof data in Witten,
Germany and Manhattan (New York City) are evaluated on independent data from these cities and
Ann Arbor, Michigan.

Keywords: geographical information system (GIS); LiDAR; machine vision; machine learning;
unmanned aircraft systems (UAS); drones; maps; safety

1. Introduction

Geographic information system (GIS) data are openly available for a variety of applications.
Data on terrain height and type have historically been available, with high-accuracy labeled data now
increasingly available, e.g., building footprints and heights. Systematic characterization of building
roof architecture and slope offers a new dimension to traditional terrain data. These data could be used
to rapidly identify building change or damage from the air, to improve in-flight localization capabilities
in GPS-denied areas, and to inform small Unmanned Aircraft Systems (UAS) of alternative ditching
sites, a problem previously investigated by the authors [1,2]. Databases such as OpenStreetMap
(OSM) [3] provide limited roof information, but such data have been manually entered to-date thus
is sparse.

This paper fuses satellite imagery and airborne Light Detection and Ranging (LiDAR) data
through multiple stages of machine learning classifiers to accurately characterize building rooftops.
With these results, roof geometries worldwide can be stored in an easily-accessible format for UAS
and other applications. Supervised training datasets are automatically generated by combining
building outlines, satellite, and LiDAR data. The resulting annotated dataset provides individual
satellite image and LiDAR (depth) image representations for each building roof. Roof shapes are
automatically categorized through a novel combination of convolutional neural networks (CNNs) and
classical machine learning. Transfer learning is employed in which multiple pre-trained CNN model
architectures and hyper-parameters are fine-tuned and tested. The best performing CNN for both
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satellite and LiDAR data inputs is used to extract a reduced feature set which is then fed into either
support vector machine (SVM) or random forest classifiers to provide a single roof geometry decision.
Validation and test set accuracies are evaluated over a suite of different classifier options to determine
the best model(s). A range of urban environments are used to train and test the proposed models.
Data from Witten, Germany; Ann Arbor, Michigan; and the Manhattan borough of New York City,
New York are collected and manually labeled to represent small to large metropolitan city centers. We
show that combining datasets from both small and large cities leads to a more generalized model and
improves performance. Figure 1 provides an overview of the data processing pipeline and illustrates a
UAS localization and contingency landing use case [2].
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Figure 1. Roof classification data fusion and processing pipeline. LiDAR, building outlines, and
satellite images are processed to construct RGB and LiDAR images of a building rooftop. In Stage 1,
these images are fed into a CNN for feature extraction, while Stage 2 uses these features with a random
forest for roof classification. These data can be stored for quick reference, e.g., navigation or emergency
landing site purposes.

Although this is our first journal publication on roof classification, this paper extends our
preliminary work presented at a conference [4] on both processing methods and application to diverse
geographical and architectural environments. Specific contributions include:

• Over 4500 building roofs spanning three cities have been manually classified and archived with a
satellite and LiDAR depth image pair. This dataset is released with this paper.

• New “complex-flat” and “unknown” roof shape classes enable the machine classifier to distinguish
flat roofs with infrastructure (e.g., air conditioning and water towers), unfamiliar roof shapes,
and images of poor quality.

• This paper significantly reduces the set of outliers that previously required manual removal
for training and test datasets (from 45% in [4] down to 5% in this paper). This paper’s test set
accuracies represent a reasonable expectation of results when deployed in new areas.

• An analysis of confidence thresholding is presented to improve the model’s predictive power.
This ensures only correct labels are assigned which is critical for use in high risk scenarios.

• Expanded results are presented from use of a single trained classifier (over Witten and Manhattan)
tested with datasets from three cities, one of which (Ann Arbor) was never used for training
or validation.

The paper is structured as follows. First, GIS data sources and prior roof geometry classification
work are summarized. Next, background in machine learning and data extraction methods is provided.
Specific methods to extract data for input to this paper’s machine learning feature extraction and
classification system are presented, followed by a description of training, validation, and test runs
performed. Statistical accuracy results are presented followed by a discussion and conclusions.
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2. Background

This section summarizes related work. First, GIS data sources and previous efforts to extract roof
geometries are reviewed. Next, convolutional neural networks (CNNs) and their application to feature
extraction are reviewed.

2.1. Roof Geometry Classification

Satellite color images and 3D point cloud data from airborne LiDAR sensors provide
complementary roof information sources. High resolution satellite images offer rich information
content and are generally available worldwide. However, extracting 3D building information from
2D images is difficult due to occlusion, poor contrast, shadows, and skewed image perspectives [5].
LiDAR point clouds provide depth and intensity measurements that capture the features of roof
shapes, yet LiDAR does not offer other world feature information from ambient lighting intensity and
color. LiDAR point cloud data are often processed and converted to digital surface models (DSM)
representing the top surface layer of any terrain.

The amount of detail desired for roof geometry influences data processing methods. Detailed
reconstruction of 3D city maps for visualization or simulation purposes often requires a detailed
representation of the geometric elements in a 3D building model. This is often accomplished using
a model based or data driven approach. In a model-based approach, a collection of parameterized
building models are selected as possible candidates given prior knowledge of buildings in the
geographic region of interest. Buildings are then fit to these models using the gathered data points,
and the best 3D model is chosen. This method can reliably extract parameters from data points so
long as the building shape is simple and roof details are not required [6]. A data-driven approach
does not require a priori knowledge of building structures, instead using large datasets to generate
a high-fidelity model. Data points are grouped to define planar surfaces which in turn are used to
construct 3D lines fully specifying building geometry. For example, work by Jochem et al. [7] segments
potential roof points in a building through their normal vectors, which are later collapsed into planar
elements that conform to the defined constraints of roof planes.

The photogrammetry community has demonstrated recent success in applying data driven
approaches for 3D building reconstruction. Yan et al. [8] proposed a dynamic multi-projection-contour
(DMPCA) framework that uses super generalized stereo pairs (SGSP) to generate and iteratively refine
3D buildings models. This method minimizes the total difference between the projection-contour of
a building across SGSPs and the projection-contours of the simulated 3D model. Using building images
captured by a UAS, Malihi et al. [9] generated a dense point cloud from image matching. This point
cloud is then clustered by RANSAC shape detection. Planar geometry is then determined through
least squares fitting, and finally refined details (e.g., dormers and eaves) are modeled. Maset et al. [10]
proposed the use of both thermal infrared (TIR) and RGB images taken by UAS to generate point
clouds. These distinct point clouds are then aligned with an iterative closest point (ICP) procedure
generating a high fidelity building model with accompanying RGB textures. Similarly, Yan et al. [11]
proposed a roof-contour and texture-image guided interpolation (RTGI) method that generates facades
as well as texture maps of buildings. A common theme in most of the above research is the increased
use of UAS to capture high resolution data from multiple viewpoints to improve model accuracy.

The localization and landing site applications for UAS referenced by this paper only require
a simple classification of building roof shape. In fact, complex model representations are undesirable
given that UAS applications would be computed by a low-power lightweight embedded processor.
Classical machine learning algorithms such as support vector machines (SVM), logistic regression,
and decision trees are often used in these classification scenarios but invariably face computational
complexity challenges caused by the high dimensionality found in these GIS data sources. To employ
these algorithms, a reduction in dimensionality through feature selection is often performed. Recent
work by Mohajeri et al. [12] performed roof classification through SVM’s by reducing a DSM image of
a roof to a set of handcrafted features such as the number of roof surfaces for each building and the
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distribution of the binned slope angles. A set of 717 buildings in Geneva, Switzerland were manually
labeled for training and testing purposes of the model, resulting in an overall accuracy of 66% for
a six roof type classification. The same authors also experimented using a random forest classifier
with similarly handcrafted features from a DSM on a 1252 building dataset from Switzerland. The test
set was a 25% random sampling of the labeled dataset with a reported total accuracy of 70% when
identifying six roof types [13].

Recent advances with deep learning with techniques such as convolutional neural networks
(CNN) have demonstrated the ability to accurately and robustly classify high dimensional data sources
such as camera images [14]. The GIS community has begun to apply CNNs to roof identification.
Perhaps most closely related to this paper, Alidoost and Arefi [15] trained CNNs using satellite
red green blue (RGB) imagery and digital surface map (DSM) images to label basic roof shapes.
However, the final predicted roof shape was simply taken as the highest probability result between the
two models (RGB, DSM); no feature fusion or training was performed between different modalities.
Training and test set sizes are not explicitly provided, however two test set accuracies are reported:
95% and 88% using the the authors’ best model. Complementary work by Partovi et al. [16] fine-tuned
a CNN using patched satellite images of building rooftops. Using the fine-tuned CNN, the authors
extracted high-level features of images as inputs to a second-stage SVM classifier. Approximately 3000
images in Munich, Germany were used for training and testing resulting in 76% total accuracy. Our
paper adopts an analogous two-stage processing approach to roof classification with the novel addition
of LiDAR and satellite image feature fusion. Specifically, this fusion allows the creation of a nonlinear
decision function that exploits the strengths of each modality. Finally, unlike all previous work we
have encountered, this paper incorporates data from geographically diverse cities and assesses models
on their ability to generalize across regions.

2.2. The Convolutional Neural Network (CNN)

An artificial neural network is composed of a series of functional layers connected in a weighted
graph structure. Each neural network layer consists of a node vector, a node activation function,
and weighted edges typically feeding forward to the next network layer. A layer is considered fully
connected (FC) if every node in the layer is connected to every node in the previous layer. Repeating
layers are called blocks and can have unique structural and functional designs. An example is shown
in Figure 2a.

Input
layer

Hidden
layer

Output
layer

(a) (b)

Figure 2. (a) Example of a fully connected neural network with one hidden layer. (b) Example of
a CNN with two convolutional blocks.

Convolutional neural networks (CNNs) are primarily distinguished by their shared weights and
translation-invariance characteristics. CNNs hold multiple convolutional blocks that are generally
composed of a convolutional filter layer, an activation layer, and finally a pooling or downsampling
layer. These blocks generate high level features from their inputs which are then fed into the next set
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of blocks. Figure 2b shows an example of an input image passing through two convolution blocks.
Eventually, a final feature set is produced which feeds into fully-connected layers generating an output
feature vector or classification. The dimensions of CNN blocks and how they interconnect with each
other and subsequent layers determines the architecture of the network. Researchers have developed
several CNN architectures that have been tested against large image sets such as Imagenet [17].
These networks are trained from scratch, meaning their weights are randomly initialized, and take
weeks (of real-time) to converge even with the aid of general purpose graphics processing units
(GPGPUs). For example, the Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) holds
a dataset of over a million images with the task of distinguishing between 1000 categories. CNN
classifiers achieved “Top 5” accuracies of greater than 95%.

For a CNN to be applied to an application such as roof classification, a large supervised
domain-specific training set is needed. If a large training dataset is not available, a technique called
transfer learning can be applied. Transfer learning accelerates machine learning by transferring
knowledge from a related, perhaps generalized, domain to a new domain [18]. This technique requires
the use of an existing pre-trained CNN. The beginning layers of the pre-trained CNN often generate
domain-independent features (e.g., features which distinguish lines or color changes) that will be
useful for other domains. The base architecture and associated weights are used as the starting layers
in a new CNN to be trained. An opportunity also arises during the training process to freeze a variable
number of initial layers’ weights, thereby reducing the number of parameters to learn and overall
training time. In essence, the more initial layers that are frozen, the more the CNN relies upon the
pre-trained model’s domain knowledge.

In addition to transfer learning, image augmentation (rotation, cropping, etc.) can be used to
artificially inflate the training dataset, which tends to reduce overfitting. Parameters such as the size
of the fully connected layers or number of frozen initial layers influence the accuracy of the model.
Optimal parameters are determined by evaluating multiple trained networks against a validation
set and assessing its accuracy. Parameter adjustments are grouped as hyperparameters to determine
an optimal model structure.

2.3. Feature Extraction and Classical Machine Learning

Supervised learning classification algorithms such as support vector machines (SVM) and decision
trees have difficulty handling large GIS datasets such as images or point clouds. However, when given
a reduced feature set, both approaches can be effective for final classification [12,19]. Researchers have
begun to use CNN’s to extract a “Stage 1” reduced feature set that is then fed into a downstream
“Stage 2” classifier. Support vector machines (SVM) divide a feature space into linear hyperplanes
for class separation, but often use kernels to project input features into higher-dimensional spaces
to create non-linear decision boundaries. The best kernel to be used is dependent upon the feature
set provided; however, linear, polynomial, and radial based function (rbf) kernels are often the first
used. Figure 3a shows an SVM separating a binary class (red/green) with the line that maximizes
margin distance between classes; a linear kernel is used. Similarly, random forest classifiers create
nonlinear decision boundaries through ensemble learning, a technique that trains many decision
trees on random subsets of the training data as shown in Figure 3b. The forest is represented by the
many decision trees created and trained, and the final classification is the statistical mode of the trees’
collected predictions. The forest is often limited by the number of trees (i.e., number of estimators)
as well as the maximum depth of any tree in its collection. Random forest classifiers are resilient to
overfitting through the collected knowledge of the ensemble. This paper will train both SVM and
random forest classifiers on CNN extracted features from satellite and LiDAR building images in
an effort to improve classification accuracy.
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Figure 3. (a) Example of an SVM separating two classes with a hyperplane. Optimal class separation is
guaranteed by maximizing margin size. (b) Example of a random forest with multiple decision trees
being trained on random samples from the training data.

3. GIS Data Processing, Image Generation, and Training

Section 3.1 details the process of generating an annotated dataset and its random split into distinct
training, validation, and testing subsets. Sections 3.2 and 3.3 outline image generation techniques from
LiDAR and satellite data, respectively. Section 3.4 details the specific CNN architectures and training
procedures, followed by validation assessment. Section 3.5 explores CNN feature extraction as input
for several chosen classical machine learning algorithms and their associated parameters.

3.1. Classified Image Set Generation

Generation of an annotated roof dataset requires three data sources for each building: satellite
imagery, airborne LiDAR data, and building outlines with corresponding roof labels (from manual
classification). Buildings outlines are used to extract individual roofs from satellite and LiDAR data.
Using building outlines to filter such data sources is a technique used within the GIS community [20,21].
For example, Tack et al. [22] used 2D cadastral maps to clip buildings from a DSM for 3D building
reconstruction. This clipping step allows for the subsequent generation of images focused on the
building of interest and enhances feature extraction.

All three of these data sources must be properly geo-referenced so they can be fused together.
Care must be taken to select a geographic area where data sources for all of these items are present.
Although OSM provides the necessary building outlines in many geographic regions, the associated
roof shape label is most often incomplete. Some geographic regions (e.g., Germany) are more likely
to have a denser collection of labeled roof shapes through a higher volunteer involvement. Previous
work by the authors relied upon pre-labeled roof shapes provided by the OSM database [4] in Witten,
Germany. However, this paper broadens the categories of classifiable roof shapes as well as sampling
from diverse regions including small to large city centers. The authors found that OSM did not provide
sufficient pre-labeled buildings, necessitating manual classification of thousands of roof shapes (by the
first author). Once the appropriate data sources are found or generated, the methods described
below can be employed to generate satellite and LiDAR images for each building in preparation for
supervised learning and subsequent use in roof shape classification.

Satellite, LiDAR, and building outline data sources have their own spatial reference systems (SRS).
The SRS defines a map projection and determines the transformations needed to convert to a different
SRS. These reference systems are uniquely identified though a spatial reference system identifier (SRID)
which designates an authority and an identifier. For example, the European Petroleum Survey Group
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(EPSG) can be used to specify SRIDs. Many map vendors, such as OSM, choose to store building
outlines as polygons, with each vertex stored in WGS84 (EPSG:4326). Satellite images from common
map vendors (ArcGIS, Bing, and Google) often use WGS84/Pseudo-Mercator (EPSG:3857). LiDAR
data are usually stored in a region-specific SRS; for example, data for Witten, Germany uses EPSG:5555.
To convert a point stored in one SRS to another, a program specialized in these transformations, such as
proj.4, must be used [23]. Building polygons are transformed to their LiDAR and satellite counterpart
coordinate systems so that the building outlines are consistent.

3.2. LiDAR Image Construction

A depth image representation of each building’s roof shape is generated from a LiDAR point
cloud. However, many outlier points can inadvertently be present during image generation leading to
poor quality or misleading images. To attenuate these effects, bulk preprocessing and per-building
filtering steps are performed as described below.

3.2.1. Bulk Preprocessing

LiDAR point cloud data are often stored and publicly released in an industry-standard LASer file
binary format [24]. This specification not only details the storage of the xyz coordinates of each point,
but also supports data classification. If the LAS file’s ground points have been classified previously,
one can filter the ground points from the file leading to improve image generation. However, if the
ground points are not already classified, ground point removal per building can be performed as
outlined in Section 3.2.2.

Airborne LiDAR point clouds often include points from building wall surfaces that are not of
interest for roof shape classification. These points appear as noise around the edges of the generated
LiDAR image and can be removed by estimating the normal vectors for each 3D point and removing
points that are nearly orthogonal to the unit vector k̂ facing up. Normal vectors may be estimated by
gathering points in a configurable search radius, r, and then performing a least squares fit to a plane.
The authors chose to use the open source White Box Analysis Tools for generating normal vectors in
bulk [25]. A search radius of one meter was chosen to generate a point normal, n̂i for each point p̂i,
with points stored that satisfy

∣∣n̂i · k̂
∣∣ > 0.3. This ensures that only points with normals that are within

72◦ of ±k̂ are kept for further use.

3.2.2. Individual Building Filtering and Projection

Individual building LiDAR filtering begins by constructing a 2D planar bounding box (BBOX)
from a polygon building outline. This BBOX is used first to quickly remove points in the point cloud
that are not related to the building of interest. The resulting subset of points is filtered again using
the polygon roof outline, resulting in only points encapsulated in the building outline. Points are
determined to be within the polygon by employing a ray casting algorithm [26]. At this time, the 3D
point cloud may be noisy and contain undesirable points.

Ground points not already removed due to a ground label per Section 3.2.1 must now be removed.
First, the minimum ground height zmin must be identified; this value is specific to the building of
interest. Ground height can be determined by applying a buffer to the BBOX ensuring a ground point
is within the set and then finding the point with the minimum height. Any point whose z coordinate,
p̂i,z, less than zmin plus a configurable threshold zbu f f can be considered a ground point and then
removed, as shown in Equation (1). The authors found zbu f f = 2.5 meters is sufficient to remove most
ground points. Note this fractional zbu f f accounts for sheds, etc. with low height.

zmin + zbu f f < p̂i,z (1)

A final step of filtering will remove stray points often caused by overhanging trees or other
interference. This technique relies upon analyzing the distribution of the z-coordinates of each
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building’s point cloud. This paper employs median absolute deviation (MAD) to construct a modified
z-score that measures how deviant each point is from the MAD as in [27]. This method only applies to
unimodal distributions; however not all buildings height are distributed as such. For example,
there exist complex flat buildings that contain multiple height levels resulting in a multimodal
distribution. To distinguish these buildings, the dip test statistic is employed which measures
multi-modality in a sample distribution [28]. The test outputs a p-value ranging from zero to one,
with values 0.10 or less suggesting bimodality with marginal significance [29]. Any building with
a p-value greater than 0.2 is considered unimodal, and outlier removal is performed as shown in
Algorithm 1. Results of this filtering technique are shown in Figure 4.

Algorithm 1: Filtering of 3D LiDAR point cloud using Medium Absolute Deviation
Input : Collection of 3D points, A
Output : Filtered 3D point cloud, B

1 Z = Az

2 B = ∅
3 p-value = diptest(Z)
4 if p-value ≥ .2 then
5 MAD = median ( |Zi −median(Z)| )
6 for p in A do
7 diff = |pz −median(Z)|
8 z-score = 0.6745 · diff/ MAD
9 if z-score ≤ 3.0 then

10 B = B + p
11 end
12 end
13 else
14 B = A
15 end
16 return B

Once LiDAR point extraction is complete, the points are projected onto a plane, creating a 2D
grid that takes the value of each point’s height information. The 2D grid world dimensions are the
same as the bounding box of the building, with the discrete grid size being the desired square image
resolution. Grid points use interpolation of nearest neighbor if no point is available. Afterward, this
grid is converted into a grayscale image, where each value is scaled from 0 to 255 with higher values
appearing whiter and lower areas darker. Figure 4c demonstrates this process. The CNN’s used in this
paper require the grayscale LiDAR data be converted to a three-channel RGB image by duplicating the
single channel across all three color channels. This final image is referred to as the LiDAR image.

3.3. Satellite Image Construction

It is preferable that the satellite imagery be orthorectified to remove image tilt and relief effects.
Ideally, the building polygon can be used to completely stamp out a roof shape image. However, if the
aforementioned issues are present in the image, it is unlikely that the polygon will exactly match the
building outline in the image. To work around these issues, an enlarged crop can be made around
the building. The enlarged crop is produced by generating a buffer around the building polygon by a
configurable constant, and then using the bounding box of the new polygon as the identifying stamp.
After the image is produced, the image is resized to the square image resolution required by the CNN.
The authors found this technique to be necessary only in Witten, while Manhattan and Ann Arbor
building outlines were fairly consistent with satellite images. After experimentation, this configurable
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constant was set to three meters when processing the Witten dataset. Figure 5a shows an example
original building outline (red shade) overlaid on a satellite image, and the expanded polygon bounding
box in cyan. The resulting generated image is shown in Figure 5b. This final image is referred to as the
RGB image below.
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Figure 4. LiDAR data of a gabled roof. Histogram of height distribution and generated image (a) before
filtering and (b) after filtering, using median absolute deviation. (c) Projection of filtered point cloud.

(a) (b)

Figure 5. (a) Witten building outline in red shading overlaid on the satellite image. The enlarged crop
area is shown in cyan shading. (b) The final generated image, resized.

3.4. Stage 1: CNN Architectures and Training

The CNN base architectures chosen for experimentation are Resnet50 [30], Inceptionv3 [31],
and Inception-ResNet [32]. All three of these architecture structures are distinct; when trained and
tested on ImageNet [17] they received “Top 5” accuracy scores of 92.8%, 93.9%, and 95.3%, respectively.
The computational complexity and size of the network increases progressively from Resnet50 to
Inceptionv3, with the Inception-ResNet architecture combining the previous architectures to produce
a deeper overall network. Each CNN makes use of successive convolutional blocks to generate



Sensors 2018, 18, 3960 10 of 23

a final feature map (referred to as the base layers) which are subsequently used by downstream
fully-connected layers to make a 1000 categorical prediction (referred to as the top layers). The top
layers are domain specific and are not needed for roof classification thus are removed. This paper
applies a global average pooling layer after the final feature layer of each architecture, reducing the
convolved feature layers to be used as input into a roof classifying layer. This final classifying layer
is composed of an optional fully connected layer (FC1) and a softmax prediction layer as shown in
Figure 6. A FC1 size of 0 means the fully connected layer is omitted, and the features map directly to
the softmax layer. These models are then trained individually on the RGB and LiDAR images.

Pretrained CNN
 Base Layers

(Resnet50, Inceptionv3,
Inception-Resnet)

FC1
(0, 100)

LIDAR 
Softmax

Gloabal
Average
Pooling

Prediction

Pretrained CNN
 Base Layers

(Resnet50, Inceptionv3,
Inception-Resnet)

FC1
(0, 100)

RGB 
Softmax

Gloabal
Average
Pooling

PredictionFeatures

Features

Figure 6. CNN architecture templates.

Training initializes base layer weights with their respective parent architecture. The optimizer
chosen for gradient descent is Adam [33] for its ability to effectively adjust learning rate automatically
for individual weights; this optimizer is kept consistent for all architectures and training sessions
with learning rate initialized at 0.001. The option of freezing initial layers is exploited with a variable
number of frozen layers chosen. When Layer 11 is said to be frozen, this means all previous layers,
(Layers 1–11), are frozen during training. All base architectures and tested hyperparameters are shown
in Table 1.

Table 1. CNN architectures and hyperparameters.

Base CNN Model FC1 Size Frozen Layers

Resnet50 0, 100 50, 80
Inceptionv3 0, 100 11, 18, 41
Inception-Resnet 0, 100 11, 18, 41

Keras [34], a high-level neural network API written in Python, is used to import the pretrained
CNN models and construct the new architectures discussed above. A maximum of 1000 epochs are run
during the training process, while early stopping is employed at the end of each epoch. Early stopping
is a technique where after each epoch, the model is run against the validation set and accuracy metrics
are reported. If validation accuracy is not improved after seven epochs, training is halted. This ensures
that the the model does not needlessly overfit the training data, and the most generalized model is
saved. Data augmentation is performed randomly with horizontal and vertical image flips as well as
rotations ranging from 0◦–45◦.

After training is complete on all CNN architectures and hyperparameters, the best performing
CNN with respect to the validation set accuracy for both LiDAR and RGB images is selected for further
use. Another training session is performed to determine if region-specific training improves region
model accuracy, i.e., whether a model that is trained with data in a specific region (city) will be better
at predicting roof shapes in that region compared to a model trained on more diverse data. In this
study, model architecture is held constant; only training data quantity and diversity are manipulated.
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3.5. Stage 2: SVM and Random Forest Classifier Training

The best CNN models are used to extract high level image features as input to a downstream
“Stage 2” classifier. This step determines if improved results can be obtained by combining both
classical and deep learning models together, as shown in Figure 7. In this scenario, only the layers
up to global average pooling are used to generate a condensed feature map for each image in the
dataset. The augmented training set images are reduced to this small feature vector and are used to train
both sets of classifiers (SVM and random forest) over a variety of configurations, as shown in Table 2.
The Python machine learning library Scikit-learn is used to train and validate the models [35].
The final model is chosen which holds the highest test score accuracy.

Table 2. SVM and random forest training configurations.

Classifier Parameters

SVM Regularization Constant (C): 1, 10, 100
Kernel: linear, rbf, poly, sigmoid

Random Forest Criterion: gini, entropy
Number of Estimators: 5, 10, 50
Max Depth: 5, 10, 50

Best Fine-tuned  
LIDAR CNN 

LIDAR 

Best Fine-tuned 
RGB CNN 

RGB 
Features

Features 
LIDAR 
SVM 

Random Forest 

RGB 
SVM 

Random Forest 

DUAL 
SVM 

Random Forest 

Figure 7. Feature extraction for use in SVM and Random Forest model training. The “dual” model
refers to both LiDAR and RGB features being combined as input for model training and prediction.

4. Results

4.1. Case Study Dataset Generation

This section outlines the data sources of several cities used to generate images of building rooftops
for this paper’s case studies. Procedures for manually labeling images are discussed, and a complete
breakdown of labeled roof categories is presented. Example images are shown for each category along
with explanations of training, validation, and testing datasets.

4.1.1. Data Sources

The geographic regions used in the following case studies are chosen to maximize diversity in
roof shape architectural examples. Diversity within each class translates to image differences such as
colors and outline shapes for roofs. Data from the cities of Witten, Germany; the Manhattan borough
of New York City, New York; and Ann Arbor, Michigan are used to generate case study data. Witten
represents a small urban city with minimal high rise buildings and numerous single-family residential
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buildings, whereas Manhattan represents a sprawling metropolis with a diverse range of flat-like
building roofs with structural additions to the rooftops (antennas, water towers, air conditioning
units, etc.). Ann Arbor, used only as an independent test set, includes a combination of building
architectures found in Witten and Manhattan. Each of these cities provide publicly available high
resolution satellite images, LiDAR data, and building outlines per Table 3. Building sampling was
random in the downtown districts of Ann Arbor and Manhattan, while Witten was sampled uniformly
over the entire city.

Table 3. Satellite, LiDAR, and building data sources.

City
Satellite LiDAR Buildings

Provider Resolution Provider Spacing Provider

Witten Land NRW [36] 0.10 m/px Open NRW [37] 0.30 m OSM [3]

New York NY State [38] 0.15 m/px USGS [39] 0.70 m NYC Open Data [40]

Ann Arbor Bing [41] 0.15 m/px USGS [42] 0.53 m OSM [3]

4.1.2. Image Generation and Labeling

Using the methods described in Section 3, RGB and LiDAR images are generated for each building
roof in all cities and then randomly downsampled. All data are treated as unlabeled, requiring manual
classification by the authors. One of eight roof shape labels can be assigned to each image: unknown,
complex-flat, flat, gabled, half-hipped, hipped, pyramidal, and skillion (shed). This set was
determined by observing the most abundant roof architectures present in Witten and Manhattan and
merging them together. Unknown is a catch-all category used to account for roof shapes outside the other
seven, often labeled complex in other literature [12,15]. Additionally, poor quality images unsuitable
for roof prediction are also marked unknown. A complex-flat roof differs from a flat roof in the
significance of obstructions on the surface of the roof, or if there are multiple height layers. A flat roof
should have minimal objects and a near homogeneous height profile, while a complex-flat roof may
have additional items such as water towers or superstructures but still contain sufficient flat structure,
e.g., for a safe small UAS landing. This distinction is more apparent in Manhattan than Witten;
separating these categories is beneficial to provide class diversity in an otherwise architecturally binary
dataset. Practically all roofs in Manhattan are either flat-like or classified as unknown. Examples of
RGB and LiDAR images for the seven classes of roof shapes are shown in Figure 8 while examples of
the unknown class are found in Figure 9.

RGB

LIDAR

flat hippedgabled pyramidal skillionhalf-hippedcomplex-flat

Figure 8. RGB and LiDAR example images of roof shapes.
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LIDAR

RGB

Figure 9. RGB and LiDAR example images classified as unknown. This category includes buildings
with poor quality images as well as complex roof structures.

LiDAR and satellite images may in some cases be labeled differently. For example, a building
with an actual gabled roof may have a LiDAR image which is malformed leading to an unknown
class label, while the RGB image may be clear leading to a gabled label. These differences must be
noted to prevent models from being trained on incorrect classifications; we want the LiDAR model to
learn that the LiDAR image is poor and that an unknown classification should be given while the RGB
model should learn the true label. When label differences occur, both labels are kept for training and
model validation, leading to differences between the LiDAR and RGB training and validation datasets.
However, the test dataset do not have these label difference between modalities; the test set instead
marks every image with the true building label. This ensures that the test set presents an accurate
prediction of results with slightly lower classifier accuracy than validation datasets. If both modality
images are poor, then the true label is unknown because no prediction is possible.

A final rare case exists where one modality is clear and correctly labeled but the other modality is
misleading with an incorrect label. This occurs especially in LiDAR images of half-hipped buildings
appearing as though they are gabled. There is often only a subtle difference between the two classes,
a small triangular dip near the edge of the building, that may not be captured fully in the LiDAR image.
When this occurs, the LiDAR image is removed from the training/validation set because one does not
want to train on an image that will give inaccurate results. However, the test dataset is left intact. In all
cases, the test dataset holds the true roof label based on manual classification, and performance of all
machine learning models is assessed in comparison to predicting the true label.

Models that require both input modalities for prediction must have a single label reference for
training. If a conflict exists between the two image labels, then the true label is used as was done in the
test dataset. This is beneficial as it forces the model to learn to rely on another modality when one input
is known to be incorrect. A complete breakdown of the annotated dataset by city is in Table 4. Witten
and Manhattan data are combined together and divided into training, validation, and testing data
in a 60/20/20 random split. The Ann Arbor data are used only as a secondary test set to determine
generalizability of the model and results.

Table 4. Breakdown of roof labels by city.

Roof Shape Witten Manhattan Ann Arbor

unknown 133 792 14
complex-flat 125 785 37

flat 454 129 24
gabled 572 7 96

half-hipped 436 0 3
hipped 591 3 20

pyramidal 110 0 0
skillion 189 0 2

Total 2610 1716 196
Removed 212 65 0
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Note that some data were removed from each city because of discrepancies between satellite
and LiDAR data resulting from the time the data were recorded. For example, a newly constructed
neighborhood in Witten has newer satellite images capturing the neighborhood while old LiDAR data
show a flat undeveloped area. This situation was attenuated in Manhattan by looking at building
construction dates and only using buildings whose date of construction is before the creation of earliest
data sources. However, this information was not able to be found for Witten leading to a much higher
removal rate. Overall, about 5.6% of the data were manually discarded for Dataset 1 (Witten and
Manhattan). No buildings were removed from the Ann Arbor dataset used for testing.

4.2. CNN Training and Results

All training was performed on the University of Michigan Flux system, providing a server with
a minimum of six gigabytes of RAM, two CPU cores, and a single NVIDIA Tesla K40. The training
and validation was performed only on Dataset 1, the combination of the Manhattan and Witten
data. Figure 10a plots validation set accuracy for the best-performing CNN models with RGB input,
while Figure 10b displays results for LiDAR input. The horizontal axis of both figures indicates whether
the network uses a fully connected layer after features are extracted from each CNN. Consistent with
previous research, accuracy results are substantially higher (∼10%) using LiDAR data versus RGB
data. The best performing network for RGB input is Inception-Resnet with a fully connected layer
providing a validation set accuracy of 78.0%. Accuracy appears to increase for RGB input models with
increasing CNN model complexity as well as the addition of a fully connected layer.
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(b) LiDAR Input

Figure 10. Comparison between CNN validation set accuracy. Colors indicate the base model used
while the horizontal axis specifies whether a fully connected layer is part of the architecture. (a) RGB
(satellite) image input and (b) LiDAR image input.

The best performing model for LiDAR input was Resnet50 with a validation set accuracy of 88.3%,
which narrowly outpaced Inceptionv3 with a score of 88.1%. The accuracy differences are statistically
insignificant, however the difference in model complexity in terms of memory and computations is
significant. Resnet50 is approximately 50% smaller in amount of floating-point operations and took
36 min to train versus the 81 min Inceptionv3 required [43]. In fact, all models performed similarly,
and the addition of a fully connected layer (adding more complexity) provided marginal benefit for
accuracy. All these factors indicate that a simpler model is desirable for LiDAR input. Intuitively,
the complex nature of satellite RGB images would necessitate a deeper network to extract useful
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features, while the more simplistic LiDAR images would require a less complicated model. The final
model architectures chosen are displayed in Table 5 along with their training parameters.

Table 5. Best CNN model architectures.

Input Base Model FC Layer? Frozen Layers

RGB Inception-Resnet Yes 11
LiDAR Resnet50 No 80

Using the best performing models, as shown in Table 5, another region-specific training session
was performed. Concretely, the training and validation datasets are separated by region, one for Witten
and one for Manhattan (New York), and the same architectures are retrained on this subset of the
original combined data. Figure 11 shows the results of comparing these new region-specific models
to the previous combined models. Accuracy results are significantly higher for RGB input by using
the model trained on the combined dataset, clearly demonstrating the benefits of data quantity and
diversity. However, LiDAR input has mixed results, with Witten performing better with additional
data and Manhattan performing worse. It is possible that the limited amount of class diversity in the
Manhattan dataset has not benefited by the diverse architectural examples Witten provides. However,
the results as a whole indicate that the models trained on the combined dataset are overall more
accurate and should be chosen for use in new cities.
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Figure 11. Comparison between region-specific and combined training datasets. Results labeled
“combined dataset” are trained on images from both Witten and Manhattan. Validation set accuracy on
the vertical axis is specific to the region indicated on the horizontal axis. (a) RGB (satellite) image input
and (b) LiDAR image input.

4.3. Feature Extraction for SVM and Random Forest Training

Training set images from Manhattan and Witten have their salient features extracted using the
trained models in Table 5. These features come after the global average pooling layer and are vector
sizes of 1536 and 2048 for Inception-Resnet and Resnet, respectively. This new high level feature
training set is then fed to SVM and random forest classifiers with varied configurations for training as
specified previously in Table 2. Once all classifiers are trained, they are run against Test Set 1 (Witten
and Manhattan). Results are shown in the Figure 12 swarm plot where each dot represents a model
trained at a different configuration; input modality is determined by its placement on the horizontal
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axis. The color represents base model type, and CNN accuracies are also shown for comparison. The
y-axis is configured to begin at 45% accuracy, truncating low accuracy outlier models. There are six
outliers not shown which are all SVM models using a polynomial kernel.
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Figure 12. Test Set 1 (Witten/Manhattan) accuracy using CNN feature extraction coupled with SVM
and decision tree classifiers.

As before we see an increase in model accuracy using LiDAR data in comparison to only RGB,
and even higher accuracy is achieved by combining the features into a “dual” input classifier. Focusing
on RGB input, the best classifiers are all random forest, with the top classifier achieving 73.3% accuracy.
This result scores higher than CNN accuracy, underscoring the strengths of random forests for
generalized classification. In this instance, the random forest was configured with 50 maximum
estimators, an entropy split, and a maximum depth of 10.

LiDAR models score significantly higher, with both SVM and random forest models achieving
similar top accuracies of 84.8% versus 84.4%, respectively. This top scoring SVM is configured to use
a radial basis function (rbf) kernel with a regularization constant of 10, while the random forest is the
same configuration that scored highest for RGB input. Once again, these classical machine learning
algorithms outperformed the CNN network in classification on the reduced feature set.

The dual input results validate previous research in that combining multiple streams of modality
data can lead to greater accuracy than use of either data type individually. The top classifier is once
again a random forest with the same configuration previously discussed; this configuration performs
consistently well in all classification tasks. Overall, an improvement of 2.4% is observed by fusing
features together resulting in an accuracy of 87.2%. Table 6 shows the top model classifiers and
associated parameters for each modality. The authors chose the “dual” input random forest classifier
for the final analyses described below.

Three SVM model outliers can be seen for all three inputs. The RGB outlier model used a sigmoid
kernel, while the LiDAR and dual input model outliers used a polynomial kernel. No random forest
model provided a low test accuracy to be considered an outlier.

Table 6. Best Classifiers using CNN extracted features.

Input Model Parameters Test Set 1 Accuracy

RGB Random Forest Criteria: Entropy, # Estimators: 50, Max Depth: 10 73.2%
LiDAR SVM Regularization Coefficient: 10, kernel: rbf 84.8%
Dual Random Forest Criteria: Entropy, #Estimators: 50, Max Depth: 10 87.2%
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4.4. Analysis of Final Dual Input Model

Section 4.4.1 provides analysis for the final dual input random forest model by generating
confusion matrices for both Test Set 1 and Test Set 2. Section 4.4.2 aggregates flat-like classes for the
UAS emergency landing application and evaluates the tradeoff between precision and recall through
confidence thresholding.

4.4.1. Confusion Matrices

The total accuracy for Test Set 1 (Witten and Manhattan) is 87.2%, while Test Set 2 (Ann Arbor)
scored 86.7%. The final dual input model’s confusion matrices for Test Set 1 and Test Set 2 are
shown in Figure 13a,b, respectively. The row-wise percentage of each cell is computed and color
coded along with the specific quantity classified in parentheses underneath. We can see that for both
test sets one of the largest errors comes from the confusion between complex-flat and flat roofs.
The authors found difficulty in labeling some flat-like roof examples, especially ones that bear traits
of both classes; it is clear this confusion carried over into the trained model. In some cases, a roof is
on the threshold of being flat or complex-flat, and this ambiguity makes it difficult to provide a
consistent “correct” answer. Indeed, this case often applies between the complex-flat and unknown
labels as well: When does a complex-flat roof become too complex to support a safe small UAS
landing? The authors attempted to be consistent in answering this question when labeling data,
however edge cases were observed. Tables 7 and 8 list results for recall (completeness), precision
(correctness), and quality for Test Set 1 and Test Set 2, respectively. Note that there were no pyramidal
roofs shapes in the Ann Arbor test set and too few half-hipped and skillion roofs to calculate valid
metric results.
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Figure 13. Confusion Matrices for Test Set 1 (Witten/Manhattan) and Test set 2 (Ann Arbor).
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Table 7. Results for recall, precision, and quality evaluation metrics for Test Set 1.

Type Recall Precision Quality

Unknown 0.90 0.88 0.80
Complex-Flat 0.79 0.83 0.68
Flat 0.81 0.84 0.70
Gabled 0.97 0.90 0.87
Half-Hipped 0.88 0.91 0.81
Hipped 0.95 0.92 0.87
Pyramidal 0.82 1.00 0.82
Skillion 0.82 0.77 0.66

Table 8. Results for recall, precision, and quality evaluation metrics for Test Set 2.

Type Recall Precision Quality

Unknown 0.86 0.60 0.55
Complex-Flat 0.76 0.90 0.70
Flat 0.92 0.82 0.76
Gabled 0.93 0.96 0.88
Half-Hipped N/A N/A N/A
Hipped 0.80 0.84 0.70
Pyramidal N/A N/A N/A
Skillion N/A N/A N/A

4.4.2. Confidence Thresholding

With every model prediction, there is a probability distribution of the likelihood the example
belongs to a class. The class with the highest probability is then chosen as the final prediction.
Model precision can be increased by adjusting the confidence threshold a model requires to make
a prediction, and, if not met, the example is marked unknown. This will generally decrease the number
of false positives at the expense of an increase in false negatives. For the UAS emergency landing use
case, operators need confidence that a roof labeled as “flat-like” is actually flat. We use confidence
thresholding to combine complex-flat and flat roofs into one flat-like category used for UAS
roof identification. Figure 14 shows individual graphs of how the model’s predictive power on Test
Set 1 is impacted as the confidence threshold is manipulated. This process is repeated on Test Set 2 in
Figure 15, with half-hipped, skillion, and pyramdial classes omitted due to lack of examples.

We can clearly see the inverse relationship between precision and recall as the required confidence
threshold is increased. Unfortunately, this relationship is clearly not linear for all classes; moderate
increases in precision come at a large decrease in recall for flat-like, gabled, half-hipped,
and hipped classes. Indeed, as precision increases above 95% recall drops exponentially to around 60%.
These figures certainly show there is a limit to the effectiveness of confidence thresholding; setting
too high a confidence threshold may even lead to a drop in precision in some cases as seen for the
hipped class in Figure 14. However, these results show promise that class-specific thresholds can be
set to ensure high-precision predictions are generated. For UAS landing, these results indicate we can
achieve near-perfect precision at the expense of only finding ∼60% of the flat roofs within a region.
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Figure 14. Test Set 1 confidence threshold impact on precision and recall for multiple classes.

0.0 0.2 0.4 0.6 0.8
Confidence…Threshold

0.6

0.7

0.8

0.9

1.0

Ac
cu
ra
cy

class…=…flat-like

0.0 0.2 0.4 0.6 0.8
Confidence…Threshold

class…=…gabled

0.0 0.2 0.4 0.6 0.8
Confidence…Threshold

class…=…hipped

Precision
Recall

Figure 15. Test Set 2 confidence threshold impact on precision and recall for multiple classes.

5. Discussion and Future Work

The presented study demonstrates that a combination of a Stage 1 CNN feature extractor coupled
with a Stage 2 random forest classifier can reliably and effectively label city wide roof shapes with
publicly available GIS data. In addition, we show good generalization of our final model on diverse city
landscapes ranging from small to large urban centers. Two independent test sets show similar results
in model quality metrics providing a realistic expectation of model performance, where one set, Ann
Arbor, was not used in training. Others have successfully performed roof shape classification through
machine learning, but no previous work to-date has demonstrated effectiveness to the scale analyzed
here in both breadth and depth. Over 9000 images (two for each building) have been manually
labeled from three diverse cities to generate the training, validation, and test sets. In comparison,
the largest labeled dataset the authors found in the literature for roof top classification is 3000 images
and encompasses only one city [16].

A comparison of our accuracy results with other work is difficult because no benchmark test
set has been available to date for roof shape classification. Benchmarking datasets are of critical
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importance to compare the results of applying different algorithms [44]. Since no such benchmarking
data exist for roof shape classification, the authors propose this paper’s released annotated dataset
serve as an initial dataset for future roof shape classification research.

The challenge of comparing algorithms is compounded by differences in expected model input.
Many models preprocess LiDAR input into handcrafted features, such as slope, aspect, and number
of roof surfaces [12,13]. Others rely on a raw DSM image of a roof, while our work relies upon
automatically generating a depth image from point clouds specifically filtered for each building roof.
Our work is one of the few that relies upon both satellite images and LiDAR data for classification,
and is the only one that uses deep learning to train on both modalities together to enhance model
accuracy. In addition, our work classifies eight roof categories, naturally bringing down accuracy
results in comparison to most others works attempting to classify six or at most seven roof shapes.

The largest weakness in this study comes from one of its greatest strengths: the fusion of LiDAR
and satellite input is only effective if both data sources observe the same thing. If one modality sees
a newly constructed neighborhood and the other sees undeveloped area, for example, the model
will become confused. The authors attempted to mitigate this issue by looking at construction dates
for buildings, and removing buildings constructed during/after the earliest data source. However,
this construction information is difficult to obtain in all cities/countries, and does not guarantee the
removal of all possible data source inconsistencies. Future work is needed to automatically detect
inconsistent datasets if present and automatically label the roof as unknown. Note that inconsistent
datasets are immediately apparent to the human eye.

As the authors have continually refined the LiDAR pre/post-processing methods for depth
image generation, they have concluded that an alternative method may be more suitable. Instead of
painstakingly converting point clouds to high quality depth images for a CNN, it should theoretically
be better to operate directly on the point cloud itself in a deep learning model. Several advances have
been proposed in deep learning for both point cloud segmentation and classification, e.g., PointNet
and SpiderCNN [45–47]. These neural network architectures sample from the point cloud and directly
learn global and local geometric features of the point cloud surface. These methods have been shown
to be successful in small scale object classification (household items, pedestrians, etc.) using high
resolution LiDAR data; future work should investigate their use on airborne LiDAR data.

Small UAS rooftop landing requires a high degree of confidence that a flat-like surface exists
for safe landing. This paper demonstrates that flat-like roofs can be be reliably predicted with high
precision by adjusting the final model’s confidence threshold. After flat-like roofs have been identified,
further post processing may be performed to quantify metrics such as ideal landing position, surface
roughness, and rooftop geometry. The output of this future work can then reliably generate a database
of emergency landing sites that is risk-aware.

6. Conclusions

Building outline and height information is useful for visualization and 3D reconstruction but
roof shape is often missing or at best incomplete in existing databases. GIS data such as satellite
images, LiDAR point clouds, and building outlines are often available. This paper processes these
data to construct individual image representations of depth and color of roof shapes. Datasets are
constructed and manually labeled across multiple cities. The final model uses deep learning for feature
extraction and a random forest algorithm for subsequent roof shape classification. Two test sets from
diverse cities show good generalization of the trained model, reporting total accuracies near 87%.
Confidence thresholds are manipulated leading to greater than 98% precision in labeling flat-like
roofs in all three tested cities, an important increase in precision for applications such as UAS rooftop
landing. The generalized models and test datasets show promise for applying machine learning to
automatically label roof shapes around the world with high confidence.
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