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Abstract
This paper introduces a computationally efficient geofence boundary violation detection method using the Triangle Weight
Characterization with Adjacency (TWCA) algorithm. The geofence is defined as a maximum and a minimum altitude,
and a horizontal boundary specified as a polygon that does not self-intersect. TWCA initialization divides the horizontal
component and bounding box of each geofence into a finite set of triangles, then determines the triangle containing the
vehicle. During flight, each position update is checked for containment within the vertical geofence boundaries using
inequalities and the horizontal geofence boundaries using TWCA. TWCA searches for the triangle containing the vehicle
position using breadth-first search of the adjacency graph. The root node of the search is the triangle occupied at the previous
time step. This algorithm is applicable to three-dimensional geofences containing both keep-in (inclusion) geofences and
keep-out (exclusion) geofences.
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1 Introduction

Unmanned aircraft systems (UAS) continue to proliferate
and can now be operated commercially within line-of-
sight through the FAA’s Part 107 rules [4] and beyond-
line-of-sight with Part 107.31 waiver. UAS applications
range from last-mile package deliveries to agricultural and
infrastructure inspection to disaster relief support. Hobbyist

flight is also commonplace. A micro-air vehicle (MAV) or
very small UAS (< 250 g) may pose little risk to people
or property, but such a vehicle has limited range and cannot
carry payload beyond a small camera. Even small UAS can
pose a safety risk through fast-spinning propeller cuts and
direct impact. NASA is working with industry and academic
partners to develop a UAS Traffic Management (UTM)
system of which a key component is electronic geofencing
[7].

Geofences assign each UAS an empty flight volume in
which they are authorized to operate. The geofence can also
be used as a mechanism to assure a low-flying UAS only
operates low over a property with landowner permission. A
geofence can be classified as a keep-in (inclusion) geofence
or a keep-out (exclusion) geofence. The keep-in geofence
defines a bounded flight volume for the UAS, while the
keep-out geofence defines general volumes to avoid as well
as cut-outs within a keep-in geofence. A keep-out geofence
marks a no fly zone for the UAS. Public properties such
as national monuments and private properties such as a
backyard pool may be protected by low-altitude keep-out
geofences.

Given defined geofence boundaries, the geofencing
system consists of two logic units: the detection of geofence
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violations and the response to a geofence violation. There
are many possible responses to a geofence violation
including but not limited to alerting the pilot, cutting
the aircraft power, or an alternative guidance scheme
designed to respect the geofence boundaries [17]. To
prevent the vehicle from violating the geofence boundaries,
the geofence system must activate before the boundary
is crossed. The activation point can be represented as a
stopping distance calculated based on the vehicle flight
characteristics and the current wind speeds, which can
be used to shift the geofence boundaries. The design of
these shifted geofence boundaries is discussed in other
works [3, 18], which can then be analyzed using the
methods presented in this paper. This paper focuses on
the detection of geofence violations through the application
of the Triangle Weight Characterization with Adjacency
(TWCA) algorithm [2, 8, 14, 15]. TWCA is compared to the
Ray Casting algorithm [1, 5, 11], a common solution to this
type of problem, as a baseline for algorithm analysis.

This paper contributes a survey of algorithms applica-
ble to the geofence boundary violation detection problem.
General geofence boundaries may be non-convex, and mul-
tiple geofences can potentially overlap causing intersecting
boundaries. This paper also contributes a methodology for
benchmarking geofence boundary violation detection strate-
gies. These benchmarking techniques are applied to com-
pare Ray Casting and TWCA. This is the first paper to our
knowledge that evaluates and compares multiple geofencing
boundary detection strategies.

Section 2 states geofence characteristics and assump-
tions made in the proposed geofence violation detection
framework. Section 3 discusses methods commonly applied
to solve problems similar to the detection of horizontal
geofence boundary violations. Section 4 presents the Tri-
angle Weight Characterization with Adjacency (TWCA)
algorithm, while Section 5 presents results of introduc-
ing randomly-generated UAS flight paths through randomly
generated geofence boundaries to compare TWCA with

a traditional Ray Casting approach to boundary violation
detection. Section 6 discusses the application of geofencing
with TWCA in real-world environments and areas for future
work, followed by a brief conclusion in Section 7.

2 Problem Statement

The static UAS geofence proposed in this work has the
following characteristics:

– A geofence consists of exactly one surrounding keep-
in boundary and any number of interior keep-out
boundaries.

– Geofence boundaries remain unchanged for the dura-
tion of a flight, i.e., the geofence volume is static.

– Each geofence boundary is a polyhedron with vertical
and horizontal boundaries.

– The polyhedron is formed by extruding a horizontal
plane polygon vertically. Geofence vertical boundaries
are specified as altitude ceiling and floor above ground
level (AGL) or mean sea level (MSL). Note that
buildings and terrain with variable elevations can be
modeled with multiple keep-out polyhedra.

– The horizontal geofence boundary is a polygon that is
not self-intersecting as shown in Fig. 1. Each horizontal
geofence boundary is specified as a list of vertices in a
local ENU (East-North-Up) or local NED (North-East-
Down) format, in clockwise or counterclockwise order
around the polygon boundary.

– The vehicle is powered on, initialized, and launched
from a position within the keep-in geofence polyhedron
and outside all keep-out geofence polyhedra.

– The geofencing system monitors vehicle state at regular
interval δt .

This work assumes the internal representations of the
geofence boundaries are expressed in meters relative to
a locally defined origin point, the launch point of the

Fig. 1 Examples of valid and
invalid (unacceptable)
horizontal geofence boundary
specifications using the same
vertex list with good (left) and
bad (right) orderings
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aircraft. Two subcategories of geofences are utilized: keep-
in (inclusion) and keep-out (exclusion). A keep-in geofence
defines the volume in which the aircraft is allowed to
operate. A keep-out geofence defines a volume in which the
aircraft is not allowed to operate, either due to permissions
or physical barriers. A geofence violation occurs when the
UAS is outside the keep-in geofence or inside a keep-out
geofence. The Fig. 2 flow chart details the procedure utilized
by the geofencing system to detect geofence violations. The
inputs to the system are the current UAS position r =
(x, y, z) and the geofence g. The geofence is defined as
g = [gi, go] where gi is the keep-in geofence polyhedron
and go = {go,1, . . . , go,n} is the set of keep-out geofence
polyhedra. go,j is the j th of n keep-out geofence polyhedra.
The altitude limits of a geofence g are denoted by zgi/go,j

.
The horizontal geofence polygon vertices are denoted by
coordinate pairs (xgi/go,j

, ygi/go,j
) listed in either clockwise

or counter-clockwise order around the polygon.
For each vehicle state update, three checks are performed

for the keep-in geofence and for each keep-out geofence.
The first check determines if the vehicle is within the
altitude limits of the geofence. The second check determines
if the vehicle is within the bounding box of each geofence.
Each bounding box is defined as a rectangle orthogonal
to the global axes that contains the original horizontal
geofence polygon [6]. Vehicle position inside or outside the
bounding box is determined using four inequality tests. If
the vehicle is outside the bounding box, then it is outside the
geofence. If the vehicle is inside the bounding box, then the
third check determines if the vehicle is within the horizontal
geofence boundary. The third check is an application of the
point-in-polygon problem [13].

3 Horizontal Geofence Violation Detection
Algorithms

A point-in-polygon algorithm can be applied to determine
whether a geofence horizontal boundary is violated. The
point-in-polygon problem is commonly discussed in the
fields of computer graphics, computational geometry, and
geographical information systems (GIS). Point-in-polygon
algorithms are benchmarked based on the complexity of a
single position query. Surveys and explanations of point-in-
polygon solutions can be found in an article by Nordbeck
and Rystedt [12], a survey by Huang and Shih [6], and a
book by Preparata and Shamos [13].

3.1 Grid-Based Algorithms

There are two primary types of grid-based point-in-
polygon algorithms. The first method simplifies the polygon

Fig. 2 Geofence violation detection algorithm for a single keep-in
geofence and a known number of keep-out geofences. Options for
the PointInPolygon((x, y), g) algorithm are presented in Figs. 4
and 5. The point-in-polygon problem is presented in [13]

boundaries to lie along a grid such that each grid square
can be designated as inside the polygon or outside the
polygon. The run-time complexity of this algorithm is linear
in the number of grid squares [12, 20] . The second method
overlays the polygon boundaries on a grid then analyzes
each position of interest with respect to the occupied grid
section. The complexity of these algorithms depends on the
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size of the grid squares and the number of polygon edges [9,
19, 20].

3.2 Decomposition Algorithms

Decomposition divides the polygon into subcomponents
that are less complex to simplify the point-in-polygon inclu-
sion check. Three decomposition methods are commonly
utilized: Wedge, Swath, and convex decomposition. The
Wedge method, only applicable to convex polygons, divides
the polygon into triangles by connecting an interior point
to each of the polygon vertices. There are the same num-
ber of triangles as number of original polygon vertices.
This algorithm has a run-time complexity of O(log N) [6,
13]. The Swath method divides the polygon into horizon-
tal swaths where the maximum and minimum y-values are
designated by successive polygon vertices when the vertices
are ordered by y-value. Each swath contains a subset of rel-
evant polygon edges. The step to find the swath containing a
position of interest has complexity O(log N) when searched
for using a balanced binary tree [16]. Convex decomposition
has a run-time complexity of O(log N) [10].

3.3 Ray Casting

The Ray Casting algorithm determines whether or not the
position of interest, r, is inside a given polygon, p, by
projecting an infinite ray from r. In this implementation,
each ray is cast in the positive y-direction (Fig. 3). If an
infinite ray intersects an odd number of polygon edges, then
r is contained in p; otherwise r is outside of p. If the ray
intersects a vertex of p, then that intersection is tallied as

Fig. 3 Example polygon with ray directed along the y-axis for the Ray
Casting algorithm [11]

count = count + 1/2 instead of count = count + 1 to
prevent double counting [1].

An outline of the Ray Casting algorithm is shown in
Algorithm 1. The algorithm is based on the formulation
presented by Narkawicz and Hagen [11]. The Ray Casting
algorithm iterates over all edges of p and does not have an
initialization step. The complexity of the algorithm is O(N),
and if the geofence boundaries change from one time step
to the next, code execution and results of the Ray Casting
algorithm are not impacted. Ray Casting with a bounding
box is used as the baseline for comparison with TWCA
(Figs. 4 and 5).

4 TriangleWeight Characterization
with Adjacency (TWCA)

The point-in-polygon algorithm being proposed by this
paper for application in geofence systems is Triangle
Weight Characterization with Adjacency (TWCA). This
algorithm is closely related to the Wedge algorithm [6,
13]. Both algorithms divide the polygon into triangles then
search the triangles for the one containing the position of
interest. Unlike the Wedge algorithm, TWCA is designed to
handle non-convex polygons and multiple trajectory-based
inquiries. TWCA contains an initialization step and a run-
time step as shown in Algorithm 2. The initialization step
must be executed for all keep-in and keep-out geofences
when the system first activates. If there are any changes
to any of the geofence boundaries after the original
initialization, each keep-in or keep-out geofence that is
changed must be initialized again.
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For a keep-in geofence, TWCA initialization constructs
a second polygon formed by the bounding box and the
original geofence boundary (see Fig. 6b). Then, TWCA
divides both polygons into triangles and generates an
adjacency graph that spans both polygons. Prior to takeoff,
the triangles are searched in random ordering to locate the
vehicle. After takeoff, the triangle search for the vehicle

begins at the previously-occupied triangle, and searches the
adjacency graph in a breadth-first search with a visited list.
A geofence boundary is violated when the vehicle is outside
the bounding box or inside a triangle located between the
geofence and the bounding box.

4.1 Bounding Box Definition

The bounding box completely contains its horizontal
geofence. For a keep-in geofence gi , the bounding box is
defined with x-values of (min xgi

− Δx, max xgi
+ Δx) and

y-values of (min ygi
− Δy, max ygi

+ Δy). The value of
Δ can either scale relative to the size of the geofence or
be a constant value. The value of Δ does not impact the
activation of the geofence. Computational cost is highest
when transitioning into the bounding box, comparable to the
cost of Ray Casting for that geofence boundary check. This
paper uses Δ = 0.2∗(max xgi

−min xgi
, max ygi

−min ygi
)

based on illustration considerations. The value of Δ could
be optimized based on the expected vehicle flight trajectory
given communication between autopilot and geofencing
systems. To divide the space between the bounding box
and the geofence into triangles, the bounding box needs to
be joined to a copy of the geofence boundary. The bottom
left corner of the bounding box is the joining point to the
geofence boundary through the vertex with the minimum

Fig. 4 Ray Casting algorithm.
Green boxes indicate end states.
The algorithm for Ray Casting
is presented in [11]
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Fig. 5 Triangle Weight Characterization with Adjacency (TWCA)
algorithm. Blue highlighting indicates initialization steps that are
only executed once per flight. Green boxes indicate end states. The
algorithm for dividing p into y-monotone polygons is shown in [8].
The algorithm for dividing y-monotone polygons into triangles is
shown in [2]. The algorithm for determining if r is within a triangle is
shown in [14]

x-value. If multiple geofence vertices have the minimum x-
value, the vertex with the minimum y-value within the set
of minimum x-value vertices is selected. To avoid issues in
polygon division steps, a temporary shift is applied before
division and removed afterwards. This shift is introduced
to separate the co-located vertices of the bounding box
polygon that is passed to the polygon division steps and has
no impact on the geofence violation detection.

Inclusion of a bounding box in TWCA is important to
reduce expected run-time complexity of the algorithm. In
cases where the position of interest is outside the bounding
box, no triangles need to be checked. When the position of

interest is within the bounding box, it is within a triangle.
Being within a triangle does not guarantee that the position
of interest is not violating the geofence boundary, but
each triangle is marked as inside or outside the geofence
boundary when it is created. If the position of interest is
known to be within a triangle, then the containing triangle
can be found from the adjacency graph.

4.2 Polygon Division

To divide an arbitrary geofence boundary into non-
intersecting triangles, we implement the triangulation
method described in Garey et al. [2] which relies on the
regularization algorithm presented by Lee and Preparata
[8]. To visualize the subdivision of an arbitrary polygon,
TWCA is applied to the polygon shown in Fig. 6. TWCA
initialization consists of two steps: divide the polygon
into monotone polygons [8], and subdivide each monotone
polygon into triangles [2]. Each of these steps is executed
with respect to the y-axis but would also work if applied
to the x-axis. Unlike the Wedge method, these methods do
not create any additional vertices. There are other methods
available to divide simple polygons into triangles without
creating additional vertices, but those methods are not
explored here.

4.2.1 Polygon to Monotone Polygons

A y-monotone polygon is defined as a polygon for which
all lines parallel to the x-axis intersect a maximum of
two edges of the polygon. To divide a polygon into
monotone polygons, we iterate through the vertices from
highest to lowest y-value, then from lowest to highest y-
value, adding edges between vertices to create monotone
polygons. Vertices with equivalent y-values are iterated over
from left to right [8]. The original algorithm creates new
edges between existing vertices both inside and outside
the original polygon, but geofencing is only interested in
the area of the original polygon. Thus, edges added that
are outside the original polygon are ignored. An edge is
determined to be outside the original polygon when the
order of the edge vertices of the newly-defined polygon
is opposite the order of the original polygon vertices,
i.e., clockwise versus counterclockwise. Because some of
the newly-generated edges are ignored, this algorithm is
executed for each newly created polygon until no new
edges are added. This ensures that the polygons being
returned are all y-monotone. In Fig. 7a, the original polygon
has been divided into three y-monotone polygons and
the bounding box polygon has been divided into five y-
monotone polygons.
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Fig. 6 Example urban keep-in
geofence located over Upper
Bay, Hudson River, and East
River with bounding box with
keep-out geofences surrounding
the contained islands

4.2.2 Monotone Polygon Conversion to Triangles

For each monotone polygon, the vertices are iterated over
from highest to lowest y-value, iteratively adding edges
to create triangles. Because the polygons are already y-
monotone, all created edges are inside the polygon and
therefore kept. For the example geofence, this algorithm is
run eight times, once for each monotone polygon. Figure 7b
illustrates the TWCA triangles with black lines for the
geofence triangles and red lines for the bounding box
triangles.

Any geofence represented by a simple polygon with v

vertices can be divided into τg = v − 2 triangles using this
process. For the case of TWCA, both the original polygon
and the bounding box must be divided into triangles. The
bounding box consists of the original v vertices, the 4
vertices of the bounding box rectangle, and 2 vertices to
connect the two sets of vertices. This results in the space

between the geofence and the bounding box being divided
into τb = (v+4+2)−2 = v+4 triangles. The total number
of triangles to be considered is τ = (v − 2) + (v + 4) =
2 ∗ (v + 1) triangles.

4.3 Triangle Occupancy Check

To determine if the launch position or any subsequent
position, r, is inside the geofence polygon, we check if
r is inside each triangle. Let vertices of the ith triangular
cell be located at ri1 = (xi1 , yi1), ri2 = (xi2 , yi2), and
ri3 = (xi3 , yi3). Because a triangle is a 2 − D convex hull,
positions of the ith triangular cell satisfy the following rank
condition:

Rank
[
ri2 − ri1 ri3 − ri1

] =
[

xi2 − xi1 xi3 − xi1

yi2 − yi1 yi3 − yi1

]
= 2.

(1)

Fig. 7 Example geofence and
bounding box divided into
monotone polygons and then
triangles
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Therefore, position of an arbitrary point r = (x, y) in the
motion plane can be uniquely expanded as

r = ri1 + wi2

(
ri2 − ri1

) + wi3

(
ri3 − ri1

)

= (
1 − wi2 − wi3

)
ri1 + wi2ri2 + wi3ri3 . (2)

Setting wi1 = (
1 − wi2 − wi3

)
, Eq. 2 can be rewritten as

r =
3∑

k=1

wikrik (3)

where
3∑

k=1

wik = 1. (4)

Considering Eqs. 3 and 4, distance weights wi1 , wi2 , and
wi3 are obtained from
⎡

⎣
xi1 xi2 xi3

yi1 yi2 yi3

1 1 1

⎤

⎦

⎡

⎣
wi1

wi2

wi3

⎤

⎦ =
⎡

⎣
x

y

1

⎤

⎦ . (5)

The distance weights satisfying Eq. 5 can expressed as
follows:

wi1(x, y) =
(
xi3 − xi2

) (
y − yi2

) − (
yi3 − yi2

) (
x − xi2

)

(
xi3 −xi2

) (
yi1 − yi2

) − (
yi3 − yi2

) (
xi1 − xi2

)

wi2(x, y) =
(
xi1 − xi3

) (
y − yi3

) − (
yi1 − yi3

) (
x − xi3

)

(
xi1 − xi3

) (
yi2 − yi3

)−(
yi1 − yi3

) (
xi2 − xi3

)

wi3(x, y) =
(
xi2 − xi1

) (
y − yi1

) − (
yi2 − yi1

) (
x − xi1

)

(
xi2 −xi1

) (
yi3 −yi1

)− (
yi2 − yi1

) (
xi3 − xi1

) .

(6)

wik (x, y) = c (k = 1, 2, 3 and c is a constant) is a
line parallel to a triangle side not passing through ik . As

examples, wi1 = c is a line parallel to triangle side i2 − i3,
wi2 = c is a line parallel to triangle side i3 − i1, and wi3 = c
is a line parallel to triangle side i1 − i2. Also, wik (xij , yij ) =
δk,j , where δk,j is the Kronecker delta defined as follows:

δk,j =
{

1 j = k

0 j �= k
. (7)

In Fig. 8, the x−y motion plane can be divided into seven
sub-regions based on the signs of distance weights wi1 , wi2 ,
wi3 . As shown, distance weights are all positive inside the
ith triangular cell.

If the distance weights of one of the triangles are all
positive for the position of interest, then the position of
interest is within the polygon.

Remark If a geofence area is sufficiently large, it may
not be approximated by a planar surface. For this case,
the geofence domain can be considered as a spherical
surface with longitude φ and latitude λ. The proposed
TWCA method can still be applied for boundary violation
checking over a spherical surface. By substituting x, xi1 ,
xi2 , xi3 , y, yi1 , yi2 , yi3 by φ, φi1 , φi2 , φi3 , λ, λi1 , λi2 ,
λi3 , weights wi1(φ, λ), wi2(φ, λ), and wi3(φ, λ) can be
obtained from Eq. 6. Similar to a planar representation,
the UAS is enclosed by the ith sector over the spherical
geofence surface if wi1(φ, λ), wi2(φ, λ), and wi3(φ, λ) are
all positive.

4.4 Adjacency Graph

The adjacency graph can be stored as an adjacency matrix,
multiply linked list, or an array. A multiply linked list is
typically preferred for low-level languages such as C++.
However, an array is used in this work because case studies
were implemented in MATLAB. Adjacent triangles are

Fig. 8 Division of the motion
plane into seven sub-regions
based on the signs of distance
weights wi1 , wi2 , and wi3
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defined as triangles that share a common side. To efficiently
search for an occupied triangle, each search is initialized at
the triangle occupied at the prior time step. If that triangle is
no longer occupied, a Breadth First Search is executed with
a “visited” list that eliminates the possibility of checking the
same triangle more than once.

5 Results

To evaluate TWCA performance, it is compared against Ray
Casting with a bounding box using MATLAB on a laptop
running Windows 10. Embedded UAS applications would
require these algorithms to be compiled in a language such
as C so the execution times will be lower. The relative
performance trends presented here are expected to translate
to embedded codes. Trial geofences are randomly generated
such that test cases are 25 instances of geofences with 3 to
50 vertices for a total of 1,200 geofences. Geofence vertices
have a maximum possible magnitude of 50 m in the x and
y directions. Each geofence is tested with 100 simulated
flight paths from the origin (0, 0) to a randomly generated
end position. The flight path end positions have a maximum
possible magnitude of 50 m in the x and y directions.
Two sampling intervals of the flight path are tested: 10
positions along the flight path and 100 positions along
the flight path. State sampling frequency can therefore be
analyzed given that the adjacency graph search complexity
depends on number of triangle passages taken from the
previously-occupied triangle.

Figure 9 shows the average time for a position of interest
query for each of the 1,200 randomly generated geofences.
TWCA queries are shown in blue, while Ray Casting query
times are shown in red. Figure 9a and b show the results
when the position is sampled 10 times and sampled 100
times along each of the 100 flight paths respectively. The
frequency of position samples along the flight path does
not impact execution time of the Ray Casting algorithm
because Ray Casting does not utilize any information from
prior states during execution. However, the Ray Casting
execution time is seen to scale linearly with the number of
vertices in the geofence.

The frequency of position samples strongly impacts
the expected execution time of TWCA. By sampling the
position of the vehicle at a higher frequency, the average
execution time of TWCA is shown to be independent of
the number of geofence vertices rather than increasing
linearly as in Ray Casting. This result is expected because
as the time between vehicle position estimates increases,
the likelihood that the vehicle has moved multiple triangles
away from the previously occupied triangle increases as
well.

Figure 10 displays results in terms of the percentage
of triangles explored: τe/τ where τ is the total number
of triangles and τe is the number of triangles explored.
The black data points present the percentage of triangles
explored for each geofence averaged over each position
sample in each flight path. Both plots in Fig. 10 show that
as the number of geofence vertices increases, the percentage
of triangles explored for each position update decreases.
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Fig. 9 Average time per boundary violation check for each of 25 ran-
domly generated geofences with 3 to 50 vertices for a total of 1,200
random geofences. Ray Casting results are shown in red. TWCA

results are shown in blue. Note that sporadic inconsistencies in the
data are likely due to a background process on the computer and not
relevant to the results illustrated for geofences of size 23 to 25 vertices
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Fig. 10 Maximum percentage of triangles explored before locating the
triangle containing the vehicle is shown in green. One maximum is
reported for each set of 25 geofences with the same number of ver-
tices and each position sampled for each flight path explored. Average

percentage of triangles explored before locating triangle containing
vehicle is shown in black. The average percentage of triangles is
reported for each of the 1,200 geofences. The average is over each of
the position samples for each of the explored flight paths

This trend is also present in the worst-case scenarios
for TWCA. The green data points in Fig. 10 are the
highest percentage of triangles checked for each number of
geofence vertices. This data shows that the inverse relation
between the number of geofence vertices and the percentage
of triangles checked is still present in the worst observed
cases. Although the trends are observable in both plots, the
trends are more pronounced in Fig. 10b than in Fig. 10a.
As discussed above, this reflects that TWCA executes with
a time complexity independent of the complexity of the
geofence by leveraging knowledge of the triangle occupied
at the previous time step.

6 Case Study

With a geofence boundary violation detection algorithm like
TWCA that has an expected execution time independent of

the complexity of its borders, it becomes possible to form
the geofence based on data from a mapping database. The
usage of a mapping database would reduce pre-flight pilot
workload of manually entering geofence data.

In the near future, geofences generated using property
maps could enable flights over areas such as private property
and public parks. Figure 11a shows the outline of a privately
owned campsite in a sparsely populated area. If the campsite
owners want to photograph the campsite from a UAV, they
might want to utilize a geofence to prevent flights over the
adjacent properties and the public roads. They might also
choose to manually define keep-out geofences around the
campers and trees to preserve the privacy of their guests and
prevent collisions.

In the not too distant future, as UAS operate in increas-
ingly populated areas, similar geofences could be automati-
cally generated for suburban and urban flight volumes. The
keep-in geofences might be created encompassing parks

Fig. 11 Examples of rural and urban environments that might be operational areas for UAS with geofences in the future. Generated using Google
Maps at www.google.com/maps/ and OpenStreetMap at www.openstreetmap.org

www.google.com/maps/
www.openstreetmap.org
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or multiple blocks or entire city regions, while keep-out
geofences might be used to denote buildings.

In a city aligned with the Earth coordinate axes such as
Salt Lake City (Fig. 11b), the bounding box buffer distance
Δ could be defined as a value that minimized overlap
between keep-out geofences or that minimized the instances
of being within a keep-out geofence bounding box. These
optimizations become more complicated as the geofence
becomes less regular. Consider the section of Manhattan in
New York City shown in Fig. 11c. The city blocks are at a
consistent angle to the cardinal axes; this inefficiency can
be eliminated by applying a yaw (heading) transformation
to the local map (ground) coordinate axes. In general, the
coordinate axis orientation can be optimized to maximize
the flight area not covered by a keep-out geofence bounding
box.

In an urban environment, there are obstacles to be
avoided other than other aircraft, including buildings, power
lines, and street lights. The issue is further complicated by
the existence of urban canyons, where GPS is denied due
to the surrounding buildings. In these areas, even if every
obstacle were designated a keep-out geofence, accumulated
state estimation error might make it impossible for the
geofence to guarantee a collision free flight. In these cases,
the addition of a sense and avoid system could enable
safe flight through a geofenced region without relying on
a potentially inaccurate state estimate. The inclusion of a
sense and avoid system in addition to a geofencing system
is critical to safe flight.

When operating at higher altitudes, in shared airspace
with manned aircraft, large UAS can still benefit from
geofencing. The keep-in geofence ensures that the UAS
does not exit its designated flight boundary, and keep-out
geofences can ensure separation from buildings, terrain,
and ultimately other aircraft operating in fixed regions /
bounding boxes.

7 Conclusion

This paper has presented an efficient methodology for
defining a static geofence for an unmanned aircraft system
(UAS) containing both keep-in (inclusion) geofences and
keep-out (exclusion) geofences. This paper developed
Triangle Weight Characterization with Adjacency (TWCA)
to detect horizontal geofence boundary violations with an
execution time complexity that is independent from the
number of vertices used to define the geofence. Case studies
showed that TWCA on average has better performance
than Ray Casting, particularly when geofence polyhedra are
complex, with a large number of vertices.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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