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Abstract— The expected proliferation of Unmanned Aircraft
Systems (UAS) has prompted many to question their safety and
reliability, particularly in urban areas. Failures and anomalies
can lead to the need for emergency landing, which in turn
requires the UAS operator or autonomy to rapidly identify and
evaluate the risks for possible landing sites and trajectories to
reach these sites. This paper proposes a method to optimize the
overall emergency landing site and flight path risks. Although
sensors can scan an immediate area, no safe site might be
observable in which case pre-processed data on more distant
safe sites is required. For example, in urban regions, out of
sight flat rooftops may pose less risk to people and property
than landing in streets or sidewalks. This paper proposes the
offline construction of a landing site database using a variety
of public data sources, uniquely allowing for the assessment
of risk associated with a rooftop landing. A real-time map-
based planner is presented that demonstrates a novel trade-off
between landing site risk and path risk and provides a heuristic
to improve decision-making efficiency.

I. INTRODUCTION

Unmanned Aircraft Systems (UAS) are expected to pro-
liferate in urban and rural environments. What was once a
technology used primarily by the military is now the core
technology of numerous commercial ventures [1]. Operation
of UAS in densely-populated areas will require flight near
buildings and over people. Safety must be a top priority for
system designers and regulators as UAS will pose new risks
to an overflown population.

One of the primary safety concerns is ensuring robust
emergency landing capabilities [2], [3]. A controlled emer-
gency landing requires landing site selection, trajectory plan-
ning to that site, and stable flight control to actually reach
that site. When a UAS spots a safe site within sensor range,
a safe landing can be immediately executed. In other cases,
the UAS must explore beyond sensor range or utilize pre-
processed map data to identify a safe site [4]. An onboard
database of maps and even landing sites can be incorporated
into an efficient autonomous decision making framework. For
example, Refs. [5] and [6] utilize airborne flight risk models
to build emergency landing plans for fixed-wing and urban
flight operations, respectively.

This paper proposes a multi-objective optimization strat-
egy to minimize combined risks posed during flight and
touch down at the chosen landing site. Landing site and local
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area map information is pre-processed and stored onboard.
A novel minimum integrated risk heuristic is proposed to
guide an onboard emergency landing planner to explore the
suite of landing sites likely to minimize overall landing risk.
Pareto fronts over landing site and path risk are generated
for an urban region in which flat and gently-sloped rooftops
are marked as potential landing sites.

The primary contribution of this paper is in its approach
to multi-objective optimization over landing site risk and
path risk during emergency landing planning. A secondary
contribution is our admissible heuristic to efficiently guide
the landing planner to low-risk solutions. Risk metrics are
quantified from offline construction of a database using
public data sources. A risk map is proposed that supports
distinction of risk due to the landing site and that offers a
cost map used to asses risk for path planning. The proposed
emergency planning framework enables a UAS to select a
minimal-risk landing site while also considering path risk.

The paper is structured as follows. Section II provides
background in emergency landing planning done using local
sensing and map-based planners. Section III presents a
problem statement including motivation for rooftop landing.
Section IV discusses the offline construction of a risk-
aware landing site database used for landing site selection
as well as cost maps used for path planning. Section V
summarizes the search strategy used for emergency landing
planning. Section VI presents case studies to generate a
landing site database and build emergency flight plans from
multiple starting positions, focusing on analysis of the trade-
off between landing site risk and path risk. Finally, Sec. VII
presents conclusions and future work.

II. BACKGROUND

Emergency landing planning is typically accomplished
with either onboard sensor-based planning or map-based
planning [7], [8]. The former generates decisions based
solely on real-time information provided by onboard sensors,
while the latter utilizes map database information in decision-
making. Sec. II-A summarizes sensor-based planning while
an overview of map-based planning is presented in Sec.
II-B. A meta-level framework to unify these methods has
been proposed for general (fixed-wind) aviation [9] as well
as multicopter UAS [8]. The planning architecture relies
on utilizing local sensors to land if the immediate area is
safe and to adopt a map-based planner otherwise. Our work
focuses on map-based planning.
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A. Local Sensor Planning

Emergency landing planning using onboard sensors, e.g.,
cameras and radar, has demonstrated success in the identi-
fication of landing sites and subsequent controlled landings.
Warren et al. used downward facing cameras to identify and
characterize possible landing sites according to size, shape,
slope, and nearby obstacles [7]. Others have demonstrated
real-time control using an outer vision-based controller send-
ing navigation commands to a low-level controller respon-
sible for stable flight [10]. Experimental results with UAS
were carried out in both studies and have demonstrated
robust capabilities of using sensors for this general task.
Ref. [11] describes successful experiments in autonomous
local landing using video and scanning laser (lidar) data.
Ref. [12] presents a risk map for trajectory planning that
translates risk to probability of an air vehicle reaching its
destination, but this map is vehicle-centric whereas our risk
map is environment-centric, e.g., mapping risk posed to an
overflown community and population during an emergency.

B. Map-based Planning

Sensor-based planners can only identify landing sites and
assess risk with information available from local sensors,
vehicle models, and health data; whereas a map-based plan-
ner would incorporate information on emergency flight risk
beyond sensor line-of-sight. A map-based planner provides
a database of possible landing site locations as well as local
terrain and buildings for use in both risk mapping and flight
planning. A holistic view of risk often takes into account
failures or uncertain performance of the vehicle [12] as well
as risk a UAS poses to people and property [13], [14], [8].
Pre-processed risk data can be quickly queried and used in
real-time settings to safely and autonomously navigate a UAS
to a low-risk landing site.

Previous work has utilized offline database planning strate-
gies for both piloted fixed wing [9] and UAS systems
[8]. Work by Donato et al. investigated the use of non-
conventional data sources to construct risk metrics for emer-
gency landing site selection with fixed wing aircraft [14].
Data such as census records, Open Street Maps (OSM),
and mobile phone records were processed to quantify risk
to overflown people, the vehicle itself, and property. The
proposed planning architecture used an onboard database of
landing sites to select a risk-optimal landing site in the event
of an emergency. Path planning was performed at a constant
altitude, assessing risk to people through fusion of census
data and mobile phone activity.

Map-based planning for an energy-constrained multicoptor
in an urban environment was studied in [8]. A 3D occupancy
grid to represent risk was generated as a combination of
terrain, population, and obstacle costs. Terrain cost was
evaluated using slope as well as terrain type. Census data
was used to determine population risk, and property risk
was assigned equally to all buildings. Costs were weighted
and added to construct a multidimensional grid for flight
planning. In the Ref. [8] framework, a landing site is a terrain
grid cell that has a lower cost than a configurable threshold.

Note that all landing sites were treated equally so the primary
contribution was in risk assessment for path planning without
regard for relative landing site risk metrics.

Our work holistically trades off risk of landing sites and
their risk-optimal paths. While others have used publicly-
available data for collision avoidance and for selecting open
field or road landing sites, our work proposes roof top
landings based on roof shape as a risk metric. In addition we
propose the fusion of OpenStreetMap (OSM) data with other
sources (e.g. catalogued LIDAR data) to augment features
sets such as providing building height information when not
otherwise available. Refs. [8], [14], and [9] are the primary
inspiration of this paper. We combine the strengths of risk-
aware landing site selection in [14] with the cost maps for
path planning by [8]. Data concerning roof shape is provided
by OpenStreetMap (OSM); if missing, this information may
be generated utilizing public LIDAR and satellite images
[15]. The authors’ previous work on roof shape analysis
utilizing machine learning is used in this paper to provide
building roof shapes [16]. Section IV discusses how to
process multiple data sources to construct an offline database
of possible landing sites and cost maps to be used in the
proposed emergency planning framework.

III. PROBLEM STATEMENT

A. Preliminaries

While map data may be globally geo-referenced, low-
altitude urban flights can be conducted with a local Cartesian
reference frame. Let the orthogonal bases for this coordinate
system be denoted êx, êy , and êz . The position of the UAS
body frame with respect to the local Cartesian reference
frame can then be defined as:

OUAS = x êx + y êy + z êz = [x, y, z]. (1)

When initiating an emergency landing planning cycle, a set
of candidate landing sites are generated, defined as

Sls = {li, . . . , ln} (2)

where each li refers to a landing site holding a set of
properties defined as

li = {ci, rl,i, rp,i} (3)

ci ∈ R3 (4)
rl,i, rp,i ∈ R (5)

where ci is the centroid of the landing site in the Cartesian
reference frame, rl,i is the landing site risk in domain [0, 1],
and rp,i is the path risk. Landing site risk is calculated
offline and represents the risk intrinsic to touching down
at that landing site. Path risk must be calculated online and
represents the path length and penalties (quantified as meters)
associated with a path. The calculation of both metrics is
expanded in Sec. IV-B and Sec. IV-D respectively.
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B. Planning Scenario

During an emergency landing, the first objective is to
identify safe landing sites nearby. Conventional emergency
landing sites, such as parks or grasslands, are often sparsely
distributed and unreachable in urban environments. The
satellite image in Fig. 1 illustrates this challenge, and the
need for a UAS to find alternative landing sites. Buildings
with flat roofs are often unoccupied and can provide a safe
landing site for a UAS [17]. Common roof shapes include
flat, skillion (flat with slight slope), and gabled (slope on
both sides); examples are labeled in Fig. 1. In this paper we
consider rooftop landings possible given sufficient shape and
size properties.

The proposed flight planner requires the vehicle to be
able to execute a stable approach to an emergency landing
site. There are a number of specific failure scenarios that
can be detected and handled in time to execute such a
landing. These scenarios include but are not limited to:
UAS low energy, lost communication link, bad weather,
non-essential sensor or actuator failure, operator emergency
landing directive, and non-cooperative aircraft nearby. The
methods and optimization techniques discussed in this paper
can be used for any vertical take-off and landing (VTOL)
aircraft. The case studies later presented are specific to a
multicopter in an urban environment.

Fig. 1. Satellite image of an urban environment with multiple flat roof
landing sites.

IV. OFFLINE DATABASE CONSTRUCTION

Shown in Fig. 2, database construction begins first by
processing multiple Geographic Information System (GIS)
data sources into a cohesive feature set. A feature is a
geometric object, e.g., polygon or polyhedron, that represents
an area of interest, e.g., a building, park, or grassland. These
features also have attributes such as building height, roof
shape, ground height, land type, and population density. An
overview of constructing this feature set is discussed in
Section IV-A. Section IV-B details the proposed domain-
specific risk model that maps features and their attributes
to a numeric risk value for landing site purposes. A final

step, outlined in IV-C, converts this data to an embedded
landing-site database used in real-time planning. Section IV-
D discusses the construction of cost maps used during path
planning.

A. GIS Data Processing

In order to construct a feature rich database, data is
fused from OSM, LIDAR, census, and terrain height sources.
This paper focuses on gathering information relevant to
emergency landing for UAS in an urban environment, but the
procedure is general for other planning problems. The first
stage of database processing is to extract features from OSM
as outlined in Sec. IV-A.1. Buildings are further processed
to determine height information utilizing catalogued LIDAR
data as outlined in Sec. IV-A.2. Finally Sec. IV-A.3 discusses
how each landing site is assigned a ground height and
average population density by consulting digital elevation
models and census records, respectively.

Raw Data Data Processing

Census

OSM

Terrain

Lidar Building Feature
Analysis

Terrain 
 Analysis

Population
Density

Landing Site
Extraction

Environment 
Occupancy Maps
Grid Cost/Risk 
Maps

Risk Analysis

Cost Map DB

Used:

Risk Score
Geometry
Site Constraints
Location

Landing Site DB

Used:

Fig. 2. Data Pre-processing for landing site and cost map database
generation.

1) Open Street Map: OpenStreetMap (OSM) is an online
collaborative mapping project that generates a worldwide
database of geographic information [18]. OSM not only
provides detailed information on buildings, terrain types,
and roads, but it also provides classification of land use
(e.g. military, school). The building blocks of OSM are
elements, i.e., georeferenced geometries such as polygons for
buildings. Every element can be provided semantics through
the attachment of tags. A tag is composed of two free form
text fields, a key and a value. For example, an element
can have the tags “building=residential” and “height=8”
attached to it, indicating that this element represents a private
residential building 8 meters tall. Any key/tag combination is
possible in OSM, however the community agrees on certain
key/value pairs to generate an informal standard.

In order for this text-based data to be usable in a practical
way, a domain specific processing/parsing step often com-
bined with a subsequent storage step is needed. Many tools
exist to aid this process and help in the construction of a
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TABLE I
BUILDING TABLE FROM OSM

Column Name Key Values Description

Height height All Records height of bulding from
ground plane to top of roof

Roof Shape roof:shape All Records the roof shape of
the building

Geometry NA NA Georefrenced geometry

TABLE II
NON-BUILDING TABLE FROM OSM

Column Name Key Values Description

Amenity amenity All Describes an assortment of
community facilities

Land Use landuse All Describes the primary use
of land by humans

Natural natrual All Describes geological
or landcover features

Leisure leisure All Describes land areas where
people go in their spare time

Geometry NA NA Georefrenced geometry

database [19]. Using these tools, one can generate a database
with two tabular data structures, one for buildings and one
for non-buildings, that hold the defining geometry of each
feature and other relevant attributes. Table I and II show
the imported table structures of building and non-building
features, respectively, and the OSM tags used to extract
them. Further processing is discussed below to augment
the database with additional attributes using other GIS data
sources.

2) Building height estimation: Building height refers to
its maximum height, specifically the distance between the
top edge of a building (including the roof, but excluding
antennas, spires, and other equipment mounted on the roof)
and the lowest point at the bottom ground plane. This
information is often incomplete from OSM and can be
estimated using LIDAR data.

Our technique is shown in Fig. 3(a). The blue polygon (pb)
representing the building outline is expanded a configurable
distance, ε, to construct the green polygon (pg) not including
the blue area. This green polygon’s bounding box (BBOX) is
used to quickly filter points in the LIDAR data set not related
to the building of interest. This reduced LIDAR point set, L,
is then quickly grouped into the ground set G and building
set B defined as

G = { point ∈ L | pg contains point}
B = { point ∈ L | pb contains point}

A ray casting algorithm was chosen to determine if a
point resides in each polygon [20]. Fig. 3(b) shows a 3D
visualization of the LIDAR point separations. These two
sets of z-coordinates can then be analyzed to determine the
minimum ground height and maximum roof height of the
building. To account for possible outliers, the bottom 2%
and top 2% of ground and building points can be neglected
respectively. The conservative building height estimate is
then computed as height = max(B)−min(G).

3) Population density and ground height estimation: Cen-
sus records have long been used to estimate static population
density [21], [14], [8] and will similarly be used in this
research. Ground height can be estimated from a digital
surface model (DSM), which provides height values of the
terrain including vegetation. Census and DSM data sources
are often released as a raster, or a matrix of cells (pixels)
arranged into rows and columns where each grid cell contains

(a) (b)

Fig. 3. (a) Polygon representations of building outline (blue) and ground
plane (green), (b) 3D visualization of LIDAR point cloud separation. Blue
points are the building points; green points include the ground plane and
nearby foliage.

a value representing information of interest. These rasters
are geo-referenced, meaning each cell refers to a specific
location on the surface of the Earth. One can determine
the average population density and ground height for each
feature in the database by using these data sources.

This process is completed for each feature by rasterizing
its vector geometry onto the raster dataset as shown in Fig.
4. The green dashed outline represents the vector feature
geometry overlaid on the grid. The multiple lines defined by
each connected vertex of the polygon are rasterized accord-
ing to Bresenhams line algorithm [22]. All cells enclosed
by this line rasterization are highlighted in blue, and the
population density and ground height can be taken as the
average of these cells. These attribute values are then added
to the database for later access.

B. Landing Site Risk Model

A domain specific risk model is constructed that maps a
landing site risk (rl) to each feature in the database. Risk is
decomposed as terrain cost (Ct), population cost (Cp), and
property cost (Cs). Each of these risks are numeric values
created from a functional composition of the attributes of
each feature (building height, land type, etc.) and are outlined
in Sec. IV-B.1 through Sec. IV-B.3. All costs are in the range
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Fig.4. Examplerasterizationprocessofafeaturegeometry(greendashed
line)onarasterdataset.

from[0,1]andareweightedtogetherasfollows:

rl=wt·Ct+wp·Cp+ws·Cs (6)

1)TerrainCost:TerrainisanysurfaceonwhichtheUAS
maylandincludingbuildingrooftopsinthiswork.Terrain
costexpressestherisktotheUASandaimstocapturehow
certainterraintypesaremorepreferabletolandon.This
valueiscomputedbyassigningcosttothelandingarea
terrainorrooftopclass(Cc)aswellasitssize(Ca).After
assigningcoststoeachofthesefactorsonecancomputea
weightedsumfortheterraincostasshown:

Ct=wc·Cc+wa·Ca (7)

Theclassofterrain,e.g.,brownfieldorskillionroof,is
firstcontingentonwhetherthefeatureisabuildingornot.
Buildingterrainischaracterizedbyitsroofshapeattribute
andisassignedaCccostasshowninTableIII.Flatroofs
arepreferred while mostotherslopedroofsareheavily
penalized.Non-buildingshaveavarietyofkeywordsde-
scribingthemfromtheimportedOSMattributes.Following
thetaxonomyfrom[14],thesenon-buildingkeywordsare
aggregatedintogroupsandassignedcostsasshowninTable
IV.Thesecostvalueswouldbelaterrefinedbystakeholders.

TABLEIII

BUILDINGTYPECOST(Cc)

Group RoofShape(s) Cost(Cc)

Group1 flat 0
Group2 skillion 0.5
Group3 allothers 1

Associatingacosttoareaisdependentupontheneeds
oftheUASwhilealsoconsideringtheaverageareasizeof
landingssitesinthemissionregion.Afunctionisneededthat
mapssmallareastohighrisk(1),averageareastomedium
risk(0.5),andlargeareastolowrisk(0).Inadditionsuch
afunctionshouldallowspecifyingaminimumarea,Amin,
aswellanaverageareaAavg.Onepossiblefunctionthatfits
thiscriteriaisapiecewiseexponentiallydecayingfunction.
Areacostcanthenbecomputedas:

Ca(a)=
1 a≤Amin

2
Amin a

Aavg Amin a>Amin
(8)

whereaisthefeaturearea.

TABLEIV

NON-BUILDINGTYPECOST(Cc)

Group Keywords Cost(Cc)

Group4 brownfield,grass,grassland
villagegreen,greenfield

0

Group5 meadow,cemetary,scrub,
heath,farmland

0.25

Group6 water,riverbank 1
Group7 recreationground,garden,

golfcourse,track,pitch,
playground,common,park

0.5

Group8 parking 0.6
Group9 industrial,commercial 1

2)PopulationCost:ApopulationcostCpforeachfeature
canbeassignedbyutilizingitspopulationdensityattribute.
Afunctionisneededthatmapshighdensitytohighriskand
lowdensitytolowrisk.Similartoareacost,afunctioncan
begeneratedwhichspecifiesanaveragepopulationdensity,
Pavg,mappedtoariskof0.5:

Cp(p)=1−2
p

Pavg (9)

3)PropertyCost:ToaccountfortheriskoftheUAS
damagingproperty,apropertycostisassignedtoeach
feature.Buildingsarealltreatedequally,howeverbuilding
typecanbelaterusedfromOSMtoassignhighercosts
tocertainbuildingtypes.Thesamegroupingsmentioned
previouslyinterraincostareusedtoprovidethemapping
foundinTableV.

TABLEV

PROPERTYCOSTSCs

Group(s) Cost(Cs) Description

Groups1-3 0.5 Buildings
Groups4-6 0 Nondevelopedarea
Groups7-8 0.5 Developedarealowcost
Group9 1 Developedareahighcost

C.EmbeddedLandingSiteDatabase

Thedatabasediscussedsofarisaworldwidefeature
databaseforwhichriskhasbeenevaluated.Asubsetof
thisdatacomposedofstrictlyfeasiblelandingsitesmust
begeneratedandstoredonboardtheUAS. Weproposeuse
ofSQLite[23]withtheGISextensionSpatialite[24]for
thispurpose.TheSpatialiteextensionaddsspatialindexing,
meaningeverylandingsiteisindexedbyitsspatialregion,
allowingforfastqueriesusingR∗-treesearch[25].The
databasehasalowmemoryandstoragefootprint,andis
abletointegratewithover30+languagesincludingPython
andC/C++usedbyourteam.

D.CostMappingandPathPlanning

Optimalplanningalgorithmsrequireacostfunctionto
explorethesearchspaceinpursuitofafeasibleandeven
optimalsolution.Fordiscretesearchplanners,thespace
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must first be discretized into a graph G(V,E), where V
denotes the nodes (or vertices) with corresponding edge set E
depicting any node transitions between configurations. One
can then define costs associated with an individual node or
edge transition as described below.

An A* path planner was used to validate the proposed
emergency landing planning framework. The implemented
planning scheme traded off between paths resulting in high
risk to the aircraft (i.e., flying to close to nearby buildings)
and the distance of travel required. To generate costs first
a 3D representation of the operating environment was built
from OSM and terrain databases as described above. The
OSM databases provided geometric building information
including their heights with respect to the ground plane. The
terrain database specified the varying elevation of the ground
plane as height above Mean Sea Level (MSL).

A set of feature maps were generated to account for
risks to the aircraft as it flew in the generated 3D urban
environment. First, a simple height-based feature map Hmap

was generated for the neighboring area which depicted the
varying height of the landscape for some desired spatial
resolution (xres, yres). Second, using the Hmap, an obstacle
occupancy mesh Omesh was generated to define the presence
of obstacles, e.g. buildings or the ground, in the environment
at the same spatial resolution and for altitude-based resolu-
tion zres. Distance to the nearest obstacles was calculated
and encoded in an obstacle proximity feature mesh Dmesh

using breadth-first search in pre-processing only. Finally,
using these distances along with a distance threshold dthresh
the risk for a given (xi, yj , zk) position in the mesh was
calculated as follows:

Rmesh(i, j, k) = max

(
1.0− Dmesh(i, j, k)

dthresh
, 0

)
(10)

Similar to the repulsion field used in [8], our risk metric gen-
erates a linearly decaying risk potential field up to a defined
distance threshold. All present obstacles are automatically
assigned the maximum risk value, such as a tall building
or high point of elevation with respect to the examined
altitude. This multidimensional risk mesh is known as the
cost map and is used by our A* path planner to generate
optimal collision free paths from the current UAS position
to a landing site. A* is used with cost g(n) and heuristic
h(n) functions calculated as

c(n, n′) = dist(n, n′) · (1 + risk(n′)) (11)
g(n) = g(n′) + c(n, n′) (12)
h(n) = dist(n, goal) (13)
f(n) = g(n) + h(n) (14)

where c is the transition cost between the current node n
and the previous node n′, g is the cumulative cost, h is the
heuristic cost, f is the estimated total cost, dist(·) calculates
the distance between nodes, and risk(·) returns the risk
encoded by the given node data structure. Once a path is
found to the goal, the path risk, rp, is the total accrued cost
of the path to reach the goal node.

V. MAP-BASED PLANNER

This section describes the proposed real-time map-based
planner to be used in emergency landing situations. Section
V-A summarizes trade-offs between landing site risk and path
risk, while Sec. V-B summarizes our real-time map-based
planning method.

A. Trade-off between landing site risk and path risk

The planner must identify the optimal landing site and
flight plan pair from the set of candidate landing sites Sls.
The risk of each landing site and the path to that site presents
a multi-objective (MO) optimization problem from which
there may not be a single solution simultaneously optimal
over both objectives. MO problems therefore require analysis
of trade-offs by computing and analyzing a Pareto frontier
when possible. The visualization of this frontier helps a
system designer choose the relative weighting of objective
trade-offs to select a single “best” solution [26].

An example Pareto frontier for our planner is shown in
Fig. 5. Each dot represents a specific landing site. The x-
axis represents landing site risk and the y-axis represents
a normalized path risk to that site. The normalizing con-
stant, R, represents a maximum path length the UAS is
allowed to traverse. Note that this graph by itself makes no
determination of the weighting or “worth” between the two
objectives. The green line connects three points in the Pareto
frontier, the set of non-dominated landing sites for which any
improvement in one objective results in a negative trade-
off in the other. Each of these three points is considered
“optimal”, and a weighting factor between each objective
must be assigned to determine a final choice of weighted
minimum total risk solution. Such a weighting scheme is
proposed below for each landing site li ∈ Sls:

rt,i = wl · rl,i + wp ·
rp,i
R

(15)

where rt,i refers to the total risk and wl and wp are weights
for landing site risk and path risk, respectively. The optimal
landing site can then be found by solving the optimization
problem shown in Eq. 16.

l∗ = argmin
li ∈ Sls

rt,i (16)

B. Real-time Planner

A landing site database stored onboard can be used for
landing site risk-assessment and selection, and a 3D regional
risk-based cost map can be used for path planning. Large-
area map data can be stored in the cloud and updated as
needed over time. Before a UAS mission begins, a preflight
download is performed which extracts a subset of the data
constrained by the geographic bounds of the mission plan.
These lightweight embedded databases can be used by the
on-board map-based planner in landing site selection and
path planning respectively as shown in Fig. 6.

In the event of an emergency landing scenario, the planner
first generates a geographic footprint indicating the range of
the vehicle. This work does not focus on the construction of
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Fig. 5. Example trade-off between landing site risk and path risk. Points
in the Pareto frontier are connected by the green line.

such a footprint, however work by [27], [9] and [8] have
investigated its generation for fixed-wing and multicopter
aircraft, respectively. For purposes of this paper the footprint
is a sphere of radius R whose center is OUAS . The footprint
is used to efficiently query the spatially-indexed landing site
database to provide a list of risk-valued landing sites, Sls.
Constraints, such as landing site height or area, are applied to
filter undesirable locations and output a set of valid landing
sites. If no valid landing sites are found constraints are
relaxed first and the footprint expanded as a last resort.

As discussed in Sec. V-A, assessing risk in a global
sense requires one to not only quantify the risk of each
landing site but also the risk of the path to each landing
site. However, optimal collision-free path planning inside
three dimensional spaces can take a significant amount of
time and is impractical to perform in real-time for the
hundreds of potential landing sites that may be observed in an
urban environment. Algorithm 1 proposes the prioritization
of landing sites by estimating their total risk, a weighted
sum with the intrinsic landing site risk and their minimum
path risk. The minimum path risk, r̂p, is estimated as the
Euclidean distance between the landing site and OUAS . The
resulting set is then sorted by this estimated total risk.

Following this calculation, flight plans are generated in
parallel for the top N landing sites to determine their true
path risk, rp. After this more computationally-expensive
flight planning procedure, these N landing sites and associ-
ated paths are then prioritized as before except using rp in-
stead of r̂p. The minimum weighted risk landing site location
and associated path are provided to the UAS flight controller
and executed (when in an autonomous flight mode).

This heuristic does not guarantee global optimality be-
cause it is possible that the minimum path risk r̂p substan-
tially underestimates the true path risk rp. However, this
situation is mitigated by having N fully planned solutions
providing actual path risk comparisons over multiple plans.
Case studies shown in Sec. VI provide experimental results
illustrating the effectiveness of this heuristic and compare it

against the globally optimal solutions.

Algorithm 1: Heuristic Landing Site Prioritization
Input : Landing Site Set (Sls),

UAS Location (OUAS)
Footprint Radius (R),
Weighting Trade-off (wl, wp)

Output: Sorted Sls by estimated total risk, r̂t,i
1 foreach li ∈ Sls do
2 r̂p,i = ||OUAS − ci||
3 r̂t,i = wl · rl,i + wp · r̂p,i

R
4 end
5 sortSls by r̂t,i
6 return Sls

VI. SIMULATION RESULTS

All case studies were simulated in a 2.5 km2 city block of
Witten, Germany. Witten was chosen because a large amount
of high quality publicly-accessible data sources are available
for the area. High resolution raw LIDAR data is available as
well a professionally post-processed Digital Terrain Models
(DTMs) providing ground elevation [28]. In addition the city
of Witten has the desirable characteristic of having the most
densely-labeled roof shapes in the OSM database, as well as
all buildings being identified. Census raster data from 2011
is available in 100 meter square blocks [29].

Data was processed as outlined in Sec IV-A to generate
a landing site database as well cost maps which were 9.6
MB and 88 MB in size, respectively. Table VI shows the
weighting parameters chosen to assign risk for all case stud-
ies presented. The map-based planner weighting parameters
for landing site risk vs path risk, wl and wp, were set at 0.6
and 0.4, respectively. The number of sites chosen to plan in
parallel, N , was set at four. The footprint radius, R, was set
at 200 meters. The 3D cost map resolution was 2 meters in
all directions with a dthresh of 10 meters. All simulations
were run on a quad-core processor clocked at 3.0 GHz.

TABLE VI
ALL CASE STUDY PARAMETERS FOR RISK METRICS

Risk Parameter Value Description

LS Risk wt 0.5 Weight for terrain risk
wp 0.25 Weight for population risk
ws 0.25 Weight for property risk

Terrain Risk wc 0.5 Weight for feature type
wa 0.5 Weight for feature area
Aavg 150 m2 Average area
Amin 10 m2 Minimum area

Population Risk Pavg 1 ppl
100m2 Average Population

Fig. 7 displays a map of Witten overlaid with highlighted
valid landing sites. The colors of each polygon range from
light yellow to dark orange representing the total intrinsic
risk of each landing site. As expected, large open areas such
as Lutherpark are assigned a lower risk, while smaller build-
ings with undesirable roof shapes are assigned higher risk.
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Fig. 6. Proposed map-based planner modified from [9].

A total of 3,492 landings sites are available, where ∼ 70%
are buildings and the remainder non-buildings. Summary
statistics of the landing site risk distribution are as follows:
mean = 0.57, std = 0.13,min = 0.01,max = 0.85. These
statistics indicate that few low risk landing sites are present
in this region, while the majority of landing sites present
high risk to people and property.

Fig. 7. Map of Witten, Germany. Each colored area is a landing site with
the color determining the landing site risk.

A. Case Study Scenarios

Six emergency landing planning scenarios are presented
at different initial locations in Witten, Germany. Scenarios
1 and 2 demonstrate emergency situations in which ideal
landing sites are far away, yet favorable sites are close by.
Scenario 3 and 4 hold the fortunate (yet rare) situation
in which many desirable landing sites are nearby while in
Scenarios 5 and 6 only high risk landing sites are available.
Table VII displays summary information for each scenario.
Scenario 1 is given more attention to highlight the compo-
nents of the map-based planner algorithm.

Fig. 8 displays the first scenario and highlights the trade-
off which often must be made between landing site risk and
path risk. UAS position is denoted by the blue center marker
which is surrounded by available landing sites colored by
their risk. The blue numbered circles indicate the landing
sites with the lowest intrinsic risk while the red circles indi-

TABLE VII
SCENARIO LOCATIONS AND TIMING STATISTICS

Scenario Lng/Lat (degrees) Height (m) Execution Time (ms)

Scenario 1 51.4400, 7.3400 140 315
Scenario 2 51.4371, 7.3372 120 307
Scenario 3 51.4355, 7.3363 115 303
Scenario 4 51.4383, 7.3392 125 323
Scenario 5 51.4435, 7.3357 130 310
Scenario 6 51.4427, 7.3377 140 273

cate the ranked landing sites chosen by the proposed map-
based planner. The discrepancy between these two sets is a
result of the map-based planner also considering the path risk
involved in reaching each landing site. As Sec. V-B details,
the map-based planner uses the Euclidean distance between
the UAS and the landing site to estimate the minimum path
risk, which is illustrated by the straight lines drawn from the
first blue and red circle markers to the UAS location. The
map-based planner then computes the weighted risk sum to
arrive at the rankings displayed by the red numbered circles.

In order to assess the effectiveness of the map-based
planner heuristic, optimal collision-free paths to all landing
sites for each scenario were generated, providing their actual
path risk. Fig. 9 displays a scatter plot for each scenario,
with an x-axis of landing site risk and y-axis of path risk.
Path risk was normalized by the radial footprint R. Each
scenario graph has the same axis limits, allowing one to
compare each scenario visually. Each purple dot represents a
landing site, while the red dots represent the top four ranked
landing sites chosen by the map-based planner with the black
arrow indicating the first. The Pareto set for each scenario is
depicted by the green line.

The graphs in Scenarios 1 and 2 demonstrate how a small
negative trade-off in landing site risk (moving right in the
graph) can lead to significant reductions in path risk (going
down in the graph). One can see the map-based planner
taking advantage of this scenario by selecting landing sites
with higher landing site risk but significantly reduced path
risk. In scenarios 3 and 4 the map based planner does not
need to make any significant trade-off, ideal landing sites are
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Fig. 8. Landing site selection from Case Study 1. The center blue
marker indicates UAS position. Red numbered circles indicate the ranked
choices from the map-based planner using estimated total risk, the weighted
combination of estimated path risk and landing site risk. Blue numbered
circles indicate the best landing sites only considering landing site risk.

immediately available and chosen. Scenario 5 and 6 show a
situation where the Pareto frontier is shifted far to the right,
indicating the lack of favorable landing sties. An important
observation to note is that the final chosen landing site for all
scenarios lies on the Pareto frontier and strike an appropriate
balance between landing site risk and path risk.

Landing site total risk is calculated using Eq. 16. The map-
based planner for each scenario is detailed in Table VIII
and displays landing site type, ranking, estimated total risk,
and total risk over the actual flight plan and landing site.
A ranking of 1 indicates the optimal solution was chosen,
while higher rankings indicate that the path heuristic under-
estimated the true path risk leading to non-optimal solutions.
The map-based planner did not significantly underestimate
the path risk leading to choosing the optimal solution in all
cases . The heuristic performed well in this study because the
UAS position at the point of failure was above buildings and
near-straight (or near-direct) paths to the landing site were
possible for examined scenarios.

TABLE VIII
MAP-BASED PLANNER CHOICE

Scenario Type Ranking r̂t rt

Scenario 1 park 1 / 163 0.287 0.297
Scenario 2 garden 1 / 170 0.381 0.401
Scenario 3 grass 1 / 102 0.155 0.165
Scenario 4 grass 1 / 184 0.200 0.210
Scenario 5 flat roof 1 / 125 0.312 0.320
Scenario 6 flat roof 1 / 122 0.380 0.410

B. Random Tests
To more fully assess the robustness of the real-time map-

based planner, 100 random cases were generated. Initial state
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Fig. 9. Experimental results for scenarios 1-6. The x and y axes are landing
site risk and path risk respectively. Each purple dots represents a landing site
and its associated path, while red dots are top selections by the map-based
planner. The black arrow indicates the planners final selection.

planar coordinates were randomly generated but the height
of each UAS start position was chosen to be just above
the terrain surface, anticipating that the Euclidean distance
heuristic would underestimate the path risk by forcing the
path to maneuver around buildings. As before, optimal paths
for all landings sites were created providing the true path
risk and the same risk weights for landing site risk and path
risk from the previous case studies were used. Equation 16
was used to determine total risk for each random test case
and rank the map-based planner’s top choice in the solution
space. The map-based planner chose the optimal solution
for all 100 random test cases. For each choice the heuristic
underestimated the total risk by an average of 6% with a
maximum underestimation value of 20%.

VII. CONCLUSION

This paper proposes a map-based emergency landing
planner that explicitly considers landing site risk and path
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risk to determine a solution. While many other researchers
have looked at one metric or the other, this paper quantifies
both metrics and selects a solution optimizing the trade-
off between landing site and path risk metrics. This paper
also includes rooftop landing sites and estimates risk based
on the building’s roof shape and size. These rooftops pro-
vide numerous additional viable landing sites to VTOL air-
craft in emergency situations that previously were restricted
to surface-based landings. This work relies on data pre-
processing that assimilates multiple public data sources to
generate landing sites and their risks as well as risk-based
cost maps for path planning.

Experimental results in Sec. VI indicate that the proposed
map-based planner can quickly and robustly identify landings
sites and generate paths during emergency scenarios. The
identification of landing sites on average took less than 30
milliseconds by taking advantage of the spatially-indexed
landing-site database, while path-planning on average took
300 milliseconds. Note these timings are specific for the
environment and the 200 meter radial footprint chosen.
Urban centers with higher roof tops, such as Manhattan, may
provide significantly different results as paths would tend to
follow the street and avenue grid in the urban canyon. The
heuristic proposed to rank landing sites by a weighted sum
between minimum path risk and landing site risk proved
to be quite effective in presented case studies, arriving at
the globally optimal solution for all tests performed. While
this heuristic performed well in Witten, Germany, further
work should be done to investigate its efficacy in more dense
urban canyon settings. Future work should also be done to
handle situations where no landing sites are found within the
search footprint, mandating reliance upon local sensors for
an immediate landing.
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