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Abstract—Unit Commitment is usually formulated as a Mixed 
Binary Linear Programming (MBLP) problem. When considering 
a large number of units, state-of-the-art methods such as branch-
and-cut may experience difficulties. To address this, an important 
but much overlooked direction is formulation transformation 
since if the problem constraints can be transformed to directly 
delineate the convex hull in the data pre-processing stage, then a 
solution can be obtained by using linear programming methods 
without combinatorial difficulties. In the literature, a few 
tightened formulations for single units with constant ramp rates 
were reported without presenting how they were derived. In this 
paper, a systematic approach is developed to tighten formulations 
in the data pre-processing stage. The idea is to derive vertices of 
the convex hull without binary requirements. From them, vertices 
of the original convex hull can be innovatively obtained. These 
vertices are converted to tightened constraints, which are then 
parameterized based on unit parameters for general use, 
tremendously reducing online computational requirements. By 
analyzing short-time horizons, e.g., two or three hours, tightened 
formulations for single units with constant and generation-
dependent ramp rates are obtained, beyond what is in the 
literature. Results based on the IEEE 118-bus and Polish 2383-bus 
systems demonstrate computational efficiency and solution 
quality benefits of formulation tightening. The approach is general 
and has great potential for tightening complicated MBLP 
problems in power systems and beyond.  
 

Index Terms—Unit commitment, mixed binary linear 
programming, branch-and-cut, formulation tightening.1 

I.  INTRODUCTION 

nit Commitment (UC) is an important problem faced by 
independent system operators.  The problem is to 
minimize the total commitment and dispatch cost by 

committing appropriate units while satisfying demand and 
other constraints [1].  It is usually formulated as a Mixed Binary 
Linear Programming (MBLP, with binary and continuous 
variables and a linear structure) problem, and is believed to be 
NP hard.  To solve such problems, industrial state-of-the-
practice is to use commercial solvers that are mostly based on 
branch-and-cut combined with heuristics.  In the method, all 
integrality requirements on binary variables are first relaxed, 
and the Linear Programming (LP) relaxation problem is solved 
by using LP methods.  If all binary variables have binary values, 
the solution is optimal to the original problem.  If not, valid cuts 
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are added, trying to obtain the convex hull (the smallest convex 
set that contains all feasible solutions [2]) of the original 
problem.  If successful, the problem can be solved by using LP 
without combinatorial difficulties.  If not, the method relies on 
time-consuming branching operations.  In the solvers, cuts are 
performed online by using existing types of cuts, and most of 
them are data dependent.  Since the cuts have coefficients in 
numerical values and cannot be reused, the solvers generate 
cuts again when solving the problem with other data sets.  For 
problems with a large number of units or complicated units such 
as combined cycle units with generation dependent ramp rates, 
the commercial solvers may experience difficulties.  

To obtain UC solutions with quantifiable quality fast, most 
researchers focus on solution methodologies.  An important but 
much overlooked direction is formulation transformation since 
if problem constraints can be transformed to directly delineate 
the convex hull (i.e., the formulation is “tight”) in the data pre-
processing stage, then a solution can be obtained by using LP 
methods without combinatorial difficulties [3].  With resulting 
constraints reused for other data sets, online computational 
requirements are tremendously reduced.  However, this 
formulation tightening process is fundamentally difficult.  
Given a problem formulation, it is difficult to obtain the convex 
hull, and there are no systematic ways to transform constraints.  
In the literature, a few tightened formulations for single units 
with constant ramp rates established in the data pre-processing 
stage were reported without presenting how they were derived 
as reviewed in Section II.  They were shown computationally 
efficient for overall UC problems.  Single-unit formulations 
were also tightened online in the problem solving process with 
expensive computations based on optimal LP solutions.   

In this paper, a systematic approach is developed to tighten 
formulations in the data pre-processing stage.  Our idea is first 
to apply existing cuts that are relevant, data independent and 
easily implementable based on constraint characteristics in 
Section III.  More importantly, tightened constraints are 
established based on novel integration of “constraint-and-
vertex conversion,” “vertex elimination” and 
“parameterization” in four steps in Section IV.  For a unit with 
given parameters (e.g., minimum/maximum generation levels 
and ramp rate) in numerical values, the first step is to relax 
integrality requirements, and generate vertices from 
constraints.  The second step is to eliminate vertices with 
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fractional values for binary variables.  The remaining vertices 
will be proved to be vertices of the convex hull to the original 
MBLP problem.  They are converted back to tight constraints 
in the third step.  To make tight constraints reusable, our idea is 
to covert numerical coefficients to unit parameters in the last 
step.  This parameterization process is done through analyzing 
constraints and relationships between numerical coefficients 
and unit parameters, and then verified by checking constraint 
physical meanings.  For practical applications, our idea is to 
obtain “near-tight” formulations by analyzing short-time 
horizons, e.g., two and three hours.  With units categorized by 
how long it takes to reach from the minimum generation level 
to the maximum, tightened constraints are developed for each 
category and a look-up table is established.  Then for each unit, 
tightened constraints can be identified through table lookup 
based on unit parameters in the data pre-processing stage. 

In Section V, three examples are presented.  The first is to 
obtain tight formulations for a three-hour problem for units with 
constant ramp rates and a one-hour problem for units with 
generation dependent ramp rates, to discuss unit categories, and 
to demonstrate tightness.  Resulting tightened constraints are 
beyond what is in the literature.  The second IEEE 118-bus 
problem is to show impacts of tightening units with generation 
dependent ramp rates.  The last Polish 2383-bus problem is to 
demonstrate performance of tightening units with constant 
ramp rates.  Results demonstrate great potential for tightening 
complicated MBLP problems in power systems and beyond.  

II.  LITERATURE REVIEW 

In the literature, most studies focused on single units 
without system-level constraints in view of complexity.  For 
single units, there are mainly three types of formulations: 1-
binary (1-bin) for unit on/off, 2-binary (2-bin) for on/off and 
start-up, and 3-binary (3-bin) for on/off, start-up and shut-
down.  Based on these formulations, tightening was performed 
in the data pre-processing stage or online as reviewed below.   
Pre-process.  In [4 - 7], new cuts were developed based on 
restrictions on binary variables to tighten formulations on top 
of the original constraints.  As developing new cuts is not the 
focus of this paper, it is not elaborated.  In terms of rewriting 
constraints, a 1-bin formulation with start-up/shut-down and 
minimum (min) up/down time constraints was considered in 
[8].  New start-up/shut-down constraints were presented based 
on a 7-hour problem.  It was proved that constraints directly 
delineate the convex hull.  With commercial solvers, testing 
results of 20-32 unit UC problems showed that computational 
time was significantly reduced as compared to that in [9].  
Based on a 3-bin formulation, a new set of tightened ramp rate  
constraints for the first- and last-operation hour was reported in 
[3].  Results of 5-unit problems showed that computational time 
was significantly reduced as compared to those in [10, 11].   

With more constraints, short periods were considered.  
Based on a 3-bin formulation with capacity, ramp rate , and min 
up/down time constraints, new ramp rate  constraints for a two-
hour problem were presented [12].  The single-unit formulation 
is tight when unit parameters satisfy certain conditions.  Similar 
ramp rate  and min up/down time constraints were reported for 
a three-hour problem in [13].  Based on a 2-bin formulation, 
combined ramp rate and min up/down time constraints were 
presented for two/three-hour problems under various parameter 

conditions in [14].  In [12 - 14], under specific assumptions on 
unit parameters, formulations were proved tight for problems 
with short-periods, and were shown computationally efficient 
by using branch-and-cut for overall UC problems.   

The above tightened formulations were presented without 
explaining how they were obtained.  Built on [14], assuming a 
unit is off for certain time, a tight single-unit formulation was 
derived by dynamic programming to max profits [15], without 
numerical results.  When using branch-and-cut, however, there 
are no prices and assumptions on units may not be easy to drop.   

Ramp rates were constants in the above.  For generation-
dependent ramp rates, they were modeled as converted ramp 
time curves in [16], while performance decreases drastically as 
problem sizes increase.  In our previous work, ramp and reserve 
capability functions were established, and the formulation was 
improved by convex hull analysis [17].  Results by branch-and-
cut show improved performance as compared to [16].  Results 
by a decomposition and coordination approach show much 
reduced branching time as compared with branch-and-cut.  A 
few preliminary tightened constraints for units with constant 
ramp rates were presented in [18], without numerical results.   

Tightening of reserve and generation dependent ramp rates 
was rarely discussed in the literature.  To the best of our 
knowledge, there is no systematic approach in data pre-process.   
Online.  In [19], with a 3-bin formulation, a LP relaxation 
problem was solved first.  Then cuts were generated as a 
callback for individual units based on the LP solution if it is 
infeasible to the unit.  These cuts were given to the solver, and 
the original problem was solved with cuts.  Results on 900-unit 
UC problems showed that computational time was reduced by 
19% on average.  For online tightening, cuts obtained for one 
unit cannot be reused for other units, and online computations 
are expensive as compared to tightening in data pre-process. 

III.  SINGLE-UNIT FORMULATION AND EXISTING CUTS  

Assuming system-level constraints are relaxed, a single-unit 
UC problem is formulated in Subsection A.  Then existing cuts 
are applied in Subsection B.   
A.  Formulate single-unit UC problems [1] 

For a unit, the main decision variables at each time t include 
binary commitment decisions on/off x and startup u, and 
continuous dispatch decision p.  For illustration purposes, a 2-
bin formulation is adopted in this paper (performance of this 2-
bin and a 3-bin formulation in the literature will be compared 
later in Section V).  With different values of x and u, the unit 
has four statuses at each t, i.e., on, off, start-up and shut-down.  
Corresponding initial conditions include x(0), u(0) and p(0).  
Constraints are generation capacity, offer price block, ramp rate, 
start-up, minimum up/down time, and reserve.   
1) Generation capacity  

When a unit is online, generation level p should be within 
its minimum Pmin (MW) and maximum Pmax (MW); otherwise, 
p is zero, i.e.,  

min max( ) ( ) ( ) , .x t P p t x t P t               (1) 
2) Offer price block  

Generation cost is usually a piecewise function of p.  To 
maintain linearity, a few offer blocks are considered with 
constant prices in each block (assume prices are monotonically 
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non-decreasing).  For individual blocks, a new continuous 
decision variable pb(t) is needed, and their sum equals p(t), i.e.,  

max( ) , , ; ( ) ( ), ,b b b
b

p t P b t p t p t t            (2-3) 

where Pmax
b (MW) is the maximum generation of block b. 

3) Ramp rate  
Ramp rate constraints require that the change of generation 

levels between two consecutive time periods cannot exceed 
ramp rate R (MW/hour).  If the unit cannot reach Pmax in one 
hour, it is assumed that p cannot exceed Pmin plus 30-minute 
ramp upon starting up or at shutting down following the 
standard industrial practice, i.e., Pmin + R/2 ≤ Pmax.  Ramp rate 
constraints are formulated in a linear way below, 

min( ) ( 1) ( 1) ( / 2)( ( ) ( 1)), ,p t p t Rx t P R x t x t t          (4) 
min( 1) ( ) ( ) ( / 2)( ( 1) ( )), .p t p t Rx t P R x t x t t               (5) 

When Pmin + R/2 > Pmax, the above constraints are not needed.  
For units with generation dependent ramp rates, ramp 

capability functions in [17] are used here.  Consider a unit: 
when 0  p  P1, ramp is R1 (P1 > R1); and when P1 < p  P2, 
ramp is R2 (P2 > R2).  When p approaching P1 from the left, 
ramp capability reduces and reaches R2 when p = P1.  The break 
point is P3 = P1 - R1, before which point the ramp capability is 
R1.  Similarly, the other break point is P4 = P2 - R2.  The ramp-
up capability curve is shown in Fig. 1, specifying ramp R that a 
unit can provide in one hour given p.  If a ramp rate block is 
large, it corresponds two capability blocks as shown in Fig. 1.   

 

 
Figure. 1. Ramp-up capability curve  

 
The above curve is a piecewise linear function, and can be 

represented by SOS2 [17].  With a set of binary SOS2 variables 
Up(t) and a set of continuous nonnegative weight variables 
Up(t), ramp-up capability function RUp(t) is represented below,  

1 1 1 2 2 3 2 4 5( ) ( ) ( ) ( ) ( ) 0 ( ),Up Up Up Up Up UpR t R t R t R t R t t          

1 3 2 1 3 4 4 2 5( ) 0 ( ) ( ) ( ) ( ) ( ),Up Up Up Up Upp t t P t P t P t P t          
( ) ( ),0 ( ) 1, ( ) {0,1},1 5,Up Up Up Up

m m m mt t t t m          

( ) 1, ( ) 2.Up Up
m m

m m
t t               (6) 

Non-zero m
Up(t) must be consecutive in the ordering, and these 

standard constraints are omitted.  Ramp-down RDown(t) is 
modeled in a similar way.  Then replace the first R in Eq. (4) 
and (5) is replaced by RUp(p) and RDown(p), respectively, and 
replace the second R by R1.  Products of binary and continuous 
variables are linearized by the standard big M method.  

As ramp up/down functions are derived from ramp rates 
(large blocks), they are related: if R is at the 1st (2nd) block, ramp 
up/down must be at their 1st or 2nd (3rd or 4th) block [17], i.e., 

2 2 4 4( ) ( ), ( ) ( ).Up Down Up Downt t t t             (7-8) 
Further relations among Up can be derived as follows [17],  

2 4 1 3 5( ) ( ) 1, ( ) ( ) ( ) 1.Up Up Up Up Upt t t t t              (9-10) 
The model can be extended to ramp functions with more blocks.  

4) Start-up  
The binary startup variable u(t) equals 1 if and only if the 

unit is turned on from offline at hour t, i.e., 
( ) ( ) ( 1), ;u t x t x t t    ( ) ( ), .u t x t t      (11-12) 

Also if the unit is on at t-1, it cannot start up at t, i.e.,  
( 1) ( ) 1, .x t u t t               (13) 

5) Minimum up/down time 
The unit must remain online or offline for its minimum up 

or down time.  Formulas in [20] for minimum up are used here, 

1
( ) ,

MOnT
MOnx T






  

 
1

( ) ( ) ( 1) ,1 1,
MUt T

MU MOn MU

t
x T x t x t T t T T




 



         

  ( ) ( ) ( 1) 0, 2 ,
T

MU

t
x x t x t T T t T






                 (14) 

In the above, TMU denotes the minimum up time, and TMOn is 
the number of must on hours at the beginning (initial conditions, 
assumed given).  Minimum down is modeled in a similar way.  
6) Reserve capability 

To ensure system reliability under contingencies, reserve 
including ten-minute spinning reserve (TMSR) and thirty-
minute operating reserve (TMOR) are considered [21].  For 
TMSR, designation pTMSR(t) cannot exceed capability PTMSR 
(calculated based on R) and is zero when the unit is off, i.e., 

( ) , ;TMSR TMSRp t P t  max( ) ( ) ( ), .TMSRp t p t P x t t      (15-16) 
For TMOR, pTMOR(t) cannot exceed capability PTMOR, i.e., 

( ) , ;TMOR TMORp t P t  max( ) ( ) , .TMORp t p t P t           (17-18) 
For units with generation-dependent ramp rates, similar to 

the ramp capability, TMSR and TMOR capability functions 
PTMSR(t) and PTMOR(t) are established based on the ramp rate 
function and modeled by SOS2.   

For the UC problem consideration, system level constraints 
include system demand, reserve requirements, and transmission 
capacity constraints, and they are all linear.  The objective 
function is linear but irrelevant for tightening.  The above 
problem (1) - (18) is an MBLP problem.  Eq. (4), (5), (11), (13) 
and (14) involve initial conditions.   
B.  Apply existing cuts 

Most types of existing cuts are data dependent, e.g., Gomory 
fractional cuts based on simplex tableau [22].  In commercial 
solvers, a lot of valid cuts are applied to constraints, and most 
are inefficient and time-consuming.  Also cuts are generated 
online with coefficients in numerical values, and cannot be 
reused when solving the same problem with other data sets.   

To address the above issues, our idea is to apply existing 
cuts that are relevant, data independent and easily 
implementable based on characteristics of appropriate 
constraints, then replace the original constraints by cuts or add 
cuts as new constraints up front.  In this way, the cuts are 
reusable.  In the following, implied bound and mixed integer 
rounding cuts that can be applied to UC problems are discussed.  
1) Implied bound cuts [23] 

Implied bound cuts reflect the relationship between binary 
and continuous variables when the binary ones imply bounds 
on the continuous ones.  Consider a continuous variable y with 
an upper bound ymax, i.e., y  ymax, and a binary variable z that 
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implies a new upper bound on y, e.g., z = 0  y  ymax’ (ymax’ < 
ymax).  The idea is to merge z into y  ymax as follows,  

  max max' max1 .y y y z y              (19) 

According to (19), if z = 1, y  ymax; and if z = 0, y  ymax’.  
For UC problems, implied bound cuts can be applied to the 

offer price block constraints as follows, 
  max max( ) 1 ( ) , , .b b bp t x t P P b t              (20) 

Eq. (20) guarantees that when x(t) = 1, pb(t)  Pmax
b; and when 

x(t) = 0, pb(t) = 0.  Then Eq. (2) is replaced by Eq. (20).   
Implied bound cuts can also be applied to the reserve 

constraints as Eq. (A1) and (A2) in Section A of Appendix, and 
Eq. (15) and (18) are replaced by (A1) and (A2), respectively.  
Note that the original constraints are replaced by cuts. 
2) Mixed-integer rounding cuts [24] 

Mixed-integer rounding cuts apply rounding on coefficients 
of integer variables and the constant of a constraint.  Consider 
a constraint z - y ≤ b with integer variable z and continuous 
variable y (z ≥ 0, y ≥ 0).  If constant b is not an integer, then the 
convex hull of the LP-relaxed problem (LP-relaxed convex 
hull) has a non-integer vertex (b, 0).  To avoid this, a mixed-
integer rounding cut that goes through the two points (b, 0) 
and (b + 1, b + 1 - b) (floor function  gives the greatest 
integer ≤ b) of the LP-relaxed convex hull is applied below,  

  1/ 1 .z b b y b                    (21) 

A general version is expressed as Eq. (A3) in Section A of 
Appendix.  For UC problems, mixed integer rounding cuts can 
be applied to the offer price block constraints as follows, 

min ( ) ( ) 0, .b
b

P x t p t t                (22)  

IV.  ESTABLISH TIGHT CONSTRAINTS  

The above single-unit UC formulation is further tightened 
in this section.  Tightened constraints are established based on 
novel integration of “constraint-and-vertex conversion,” 
“vertex elimination” and “parameterization” in Subsection A, 
and a numerical example is presented in Subsection B.  
Tightness is proved in Subsection C.    
A.  Establishment of tight constraints  

As mentioned earlier, a few constraints involve initial 
conditions, and this is problematic since there are many sets of 
possible initial conditions.  This issue is first addressed in 
IV.A.1.  Tightened constraint are established through four steps 
in IV.A.2.  Unit categorization is then discussed in IV.A.3.  The 
overall tightening process is summarized in IV.A.4.   
1) Initial conditions   

To overcome the difficulties caused by initial conditions, 
our idea is to treat them as decision variables without specifying 
their values, and can take any reasonable values.  For a one-
hour problem with capacity and start up constraints, and given 
initial conditions, it becomes a two-hour problem with 
additional ramp rate constraints.  Although the convex hull with 
initial conditions treated as decision variables is generally 
larger than the one with specific initial values, the tightening 
process is significantly simplified.   
2) Four-step tightening   

For a unit with (1) given parameters (Pmin, Pmax, R, TMU and 
TMD) in numerical values and (2) initial conditions (x(0), u(0), 

p(0), TMOn and TMOff) as decision variables, tightened constraints 
are established through four steps as follows.  
Step 1. Constraint-to-vertex conversion.  The first step is to 
relax integrality requirements on binary variables.  For the LP 
relaxed problem, generate vertices of the convex hull from 
constraints by using algebraic manipulation of unit parameters 
with algorithms well established based on Gaussian elimination 
[25].  For example, for a problem with two continuous decision 
variables and three inequality constraints, the vertices of the 
convex hull are generally the intersections of every two 
constraints.  This conversion is performed by using existing 
software Porta [26].  Given constraints with coefficients in 
numerical values, Porta outputs vertices in numerical values.   
Step 2. Vertex elimination.  For clarity of discussion, a vertex 
with binary values for all binary variables is named a “binary 
vertex,” and a “fractional vertex” otherwise.  All binary vertices 
are feasible to the original problem, while all fractional ones are 
infeasible.  If all vertices obtained in Step 1 are binary vertices, 
the formulation is tight.  If not, the second step is to eliminate 
the factional vertices.  The remaining vertices are the vertices 
of the convex hull to the original MBLP problem as will be 
proved later in Subsection IV.C.   

To illustrate the idea, consider a simple Binary Linear 
Programming (BLP) problem with two binary variables x1 and 
x2, and x1 + x2 ≥ 0.5.  In Fig. 2(a), constraints are color-coded 
by blue lines, and the convex hull Conv(PBLP) by red lines.  
Vertices VBLP of Conv(PBLP) are represented by solid red dots.  
For the LP-relaxed problem in Fig. 2(b), constraints are color-
coded by blue lines, and they delineate convex hull Conv(PRBLP) 
with vertices VRBLP represented by blue dots.  There are two sets 
of vertices in VRBLP.  One set VRBLP

B consisting of binary vertices 
is represented by solid blue dots, and the other set VRBLP

F 
consisting of fractional vertices is represented by open blue 
dots.  Given VRBLP, how to get back to VBLP?  The idea is to drop 
fractional vertices VRBLP

F.  The remaining binary vertices VRBLP
B 

in Fig. 2(b) are the same as vertices VBLP in Fig. 2(a).   
 

 
Figure 2(a): Convex hull of a BLP 

problem with binary variables x1, x2 
Figure 2(b): Convex hull of its LP-

relaxed problem 
 
Now consider an MBLP problem with binary variables x1 

and x2, and continuous variable x3.  In Fig. 3(a), constraints and 
convex hull Conv(PMBLP) are color-coded by blue and red lines, 
respectively, and vertices VBLP of Conv(PMBLP) are represented 
by solid red dots.  For the LP-relaxed problem in Fig. 3(b), 
constraints are color-coded by blue lines, and they delineate 
convex hull Conv(PRLP) with vertices VRMBLP presented by blue 
dots.  By dropping fractional vertex VRMBLP

F (open blue dots), 
remaining binary vertices VRMBLP

B (solid blue dots) in Fig. 3(b) 
are the same as vertices VMBLP (solid red dots) in Fig. 3(a).  

Step 3. Vertex-to-constraint conversion.  In this step, vertices 
obtained in Step 2 are converted back to tight constraints by 
using software Porta as a reverse process of that in Step 1.  The 
resulting formulation should be tight as to be proved in IV.C.   
Step 4. Parameterization.  The constraints obtained above 
have coefficients in numerical values.  To make them reusable 
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Figure 3(a): Convex hull of an MBLP 

problem with binary x1, x2 and continuous x3 
Figure 3(b): Convex hull of 

its LP-relaxed problem 
 
to other units, our idea is to covert numerical coefficients to unit 
parameters.  This parameterization process is done by analyzing 
these constraints and the relationships between numerical 
coefficients and unit parameters.  It is then verified by checking 
physical meanings of the resulting constraints with coefficients 
in unit parameters under all possible combinations of binary 
variables as to be shown in IV.B.  
3) Categorization 

For different types of units, a few sets of tight formulations 
are developed through the above four steps.  For units, ramp 
rate is an important physical characteristic, restricting the unit’s 
up/down movement from one hour to another and determining 
reserve capability.  Thus one way to categorize units is through 
how long it takes to reach from Pmin to Pmax.  The simplest 
category is Pmax < Pmin + R/2 since in this case, the unit can reach 
Pmax upon starting up without requiring ramp rate requirements.  
The second is Pmin + R/2 ≤  Pmax < Pmin + 3R/2 since the 
maximum generation that the unit can reach in two hours is Pmin 
+ 3R/2 as shown in Fig. 4.  Minimum up/down time 
requirements are not considered in unit categorization.  

 
 

 
 
 

Figure 4: Unit categories based on ramp rates and generation limits 
 
Tight constraints for the first category are still valid for units 

in the second category as they work for every hour.  The above 
analysis can be extended to the third category Pmin + 3R/2 ≤ 
Pmax < Pmin + 5R/2 and beyond, and a lookup table can be 
established based on Pmin, Pmax and R.   

Some solution methodologies such as Lagrangian relaxation 
have difficulty with identical or almost-identical units.  For 
formulation tightening, identical units will have identical 
tightened formulations, and there is no difficulty in tightening.  
By the same token, there are no difficulties in tightening almost 
identical units.  However, Lagrangian relaxation will still 
encounter similar difficulties with tightened formulations.   

As the number of vertices increases exponentially in 
constraint-and-vertex conversion [27] and so does the number 
of constraints in parameterization, it is difficult to obtain a tight 
formulation.  For practical applications, our goal is to obtain 
“near-tight” formulations by analyzing problems of short-time 
horizons, starting with two hours and extending to three hours.  
Although only three hours are considered, good results have 
been obtained as to be shown later in Section V.   
4) Overall tighening process   

The process of generating tight constraints is summarized in 
Fig. 5.  Given a UC problem, a set of tightened constraints for 
different unit types will be established by using the systematic 
approach before solving the problem.  A look-up table that 

covers most unit types in the market is established based on unit 
categories.  When solving the UC problem, tightened 
constraints will be identified based on unit parameters in the 
data pre-processing stage.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Flow chart of generating tight constraints 
 

B.  Numerical example 
To illustrate the idea, consider a two-hour (t - 1, t) problem 

for a unit with Pmin = 59 MW, Pmax = 111 MW, and R = 19 
MW/hour.  Since one coefficient value can be the result of 
multiple manipulations of unit parameter values, prime values 
are used for unit parameters.  Capacity (Eq. 1), ramp rate (Eq. 
(4) and (5)) and start up constraints (Eq. (11 - 13)) are denoted 
as C1 as shown in Fig. 6.  Other constraints are not considered 
for simplicity, and ranges for binary variables ([0, 1]) are not 
presented for brevity.  By constraint-to-vertex conversion, 
obtain vertices V1, and the last 10 vertices are shown in Fig. 7 
(variable sequence: x(t-1), u(t-1), p(t-1), x(t), u(t), p(t)).  This 
conversion takes about 1 second by Porta.  

 
59x(t-1) - p(t-1) ≤ 0 
111x(t-1) - p(t-1) ≥ 0 
x(t-1) - u(t-1) ≥ 0 
59x(t) - p(t) ≤ 0 
111x(t) - p(t) ≥ 0 
x(t) - u(t) ≥ 0 
x(t) - u(t) ≤ x(t-1) 
u(t) + x(t-1) ≤ 1 
137/2x(t) - 99/2x(t-1) - p(t) + p(t-1) ≥ 0 
99/2x(t-1) - 137/2x(t) - p(t) + p(t-1) ≤ 0 

1 

Figure 6: Constraints C1 of a two-hour problem 
 

 

(26)    1    1         59            0      0               0 
(27)    1    1         59     19/85      0    2109/85 
(28)    1    1    137/2            0      0               0 
(29)    1    1        111   85/123     0    3145/41 
(30)    1    1         59            1      0             59 
(31)    1    1         59            1      0             78 
(32)    1    1         78            1      0             59 
(33)    1    1         92            1      0            111 
(34)    1    1        111           1      0              92 
(25)    1    1        111           1      0             111 

 

Figure 7: Vertices V1 of a two-hour problem 
 

In V1, there are 35 vertices, and 19 are binary vertices.  For 
vertices (32-35), u(t-1) should be 0 as generation levels exceed 
maximum limit for the first on hour (i.e., Pmin + R/2), and this 
issue will be addressed later.  Keep binary vertices as V2 and 
convert to constraints C2 (about 1 second by Porta).  Compared 
to C1, there are 4 new constraints as shown in Fig. 8 below. 

min / 2P R
minP maxPmin 3 / 2P R min 5 / 2P R … 

… Category 1 Category 2 Category 3 

Step0. Initial condition treatment: Treat initial conditions as 
decision variables 

Step 1. Constraint-to-vertex conversion: Relax integrality requirements 
on binary variables, and convert constraints to vertices 

Step 2. Vertex elimination: Eliminate fractional vertices 

Step 3. Vertex-to-constraint conversion: Convert the new vertices to 
tight constraints 

Step 4. Parameterization: Represent numerical coefficients of tight 
constraints in terms of unit parameters 

Categorization: Develop a few sets of tight formulations based on 
different unit parameters 
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 (1)   -137/2x(t-1)           + 2p(t-1)    -85x(t) + 85u(t)             ≤ 0 
(2)                                                 - 222x(t) + 85u(t) + 2p(t) ≤ 0 
(10) -137/2x(t-1)           + 2p(t-1)   +99x(t) + 19u(t)  - 2p(t) ≤ 0 
(11)   +118x(t-1)            - 2p(t-1)  -156x(t) + 19u(t) + 2p(t) ≤ 0 

 

Figure 8: New constraints in C2 of a two-hour problem 
 

To describe the parameterization process, take Constraint 
(2) with three variables in Fig. 8 as an example.  In the original 
formulation in Fig. 6, coefficients before decision variables are 
linear functions of unit parameters, i.e., Pmin = 59, Pmax = 111, 
and R = 19.  Since constraint-and-vertex conversion is based on 
Gaussian elimination, coefficients of tight constraints are also 
linear functions of unit parameters.  For the value of 222 before 
x(t) in Constraint (2), it is twice of Pmax.  For the value of 85 
before u(t), with prime unit parameters, it can be obtained that 
85 = 2(111- 59) - 19, and the function is 2(Pmax - Pmin) - R.  For 
the value of 2 before p(t), it is just 2, and there is no need of 
parameterization.  The entire constraint is parameterized below, 

max max min( ) ( ) ( / 2) ( ).p t P x t P P R u t             (23) 
In the above, when x(t) = u(t) = 0, p(t) ≤ 0; when x(t) = 1 

and u(t) = 0, it represents the maximum generation level; and 
when x(t) = u(t) = 1, it represents the maximum generation limit 
on the first operation hour.  With (23), the right-hand side of 
capacity constraint Eq. (1) can be deleted.   

Constraints (10) and (11) in Fig. 8 can be treated as revised 
ramp rate constraints as compared to Eq. (4) and (5).  With 
prime values for Pmin, Pmax, and R, numerical coefficients of 
constraints (10) and (11) in Fig. 8 are parameterized as follows, 

min min( ) ( 1) ( ) ( ) ( 1) ( / 2) ( ),p t p t P R x t P x t R u t        
min min( 1) ( ) ( / 2) ( 1) ( / 2) ( )p t p t P R x t P R x t      

( / 2) ( ).R u t        (24-25) 
The above constraints are the same as the ramp rate constraints 
developed in [14].    

Physical meanings of Eq. (24) and (25) under all possible 
combinations of binary variables are as shown in Table I.  It can 
be seen that these two tight constraints are meaningful under all 
situations, and no feasible solutions will be cut by adding them.  
 

TABLE I CONSTRAINT ANALYSIS FOR (24) AND (25) 
x(t-1) x(t) u(t) Eq. (24) Eq. (25) 

0 0 0 ( ) ( 1) 0p t p t    ( 1) ( ) 0p t p t    
0 1 1 min( ) / 2p t P R   min( 1)p t P   
1 0 0 min( 1)p t P   min( 1) / 2p t P R    
1 1 0 ( ) ( 1)p t p t R    ( 1) ( )p t p t R    
 
Constraint (1) in Fig. 8 is parameterized as follows, 

min( 1) ( / 2) ( 1)p t P R x t     
max min( / 2)( ( ) ( )), .P P R x t u t t              (26) 

It can be verified that Eq. (26) is valid for all the possible 
combinations of the three binary variables.  

Add Eq. (23) and (26) in C2, apply Eq. (23) to t-1, and 
replace ramp rate constraints Eq. (4) and (5) by Eq. (24) and 
(25).  Denote the new constraint set as C3, and obtain vertices 
V3.  There are 20 vertices in V3, and 17 binary ones.  The issue 
in V1 with u(t-1) is addressed by applying Eq. (23) to t-1.  Keep 
binary vertices as V4 and convert them to constraints C4.  Two 
new tight constraints are obtained and parameterized below,   

min min( 1) ( ) ( ) ( ) ( 1) / 2 ( 1),p t p t P x t P R x t R u t          
min( ) ( 3 / 2) ( ) ( )p t P R x t Ru t    

max min( 3 / 2)( ( 1) ( 1)).P P R x t u t          (27-28) 
When x(t-1) = 1 and u(t-1) = x(t) = u(t) = 0, Eq. (28) is p(t) 

≤ Pmax - Pmin - 3R/2.  Here Pmax - Pmin - 3R/2 cannot be negative, 
and Eq. (27) and (28) are valid under all possible combinations 
of x and u, otherwise feasible solutions would be cut off.  Eq. 
(23-28) directly constrain variables at t-1 and t, tighten the 
formulation, but can hardly be obtained manually.  Among 
them, Eq. (23) and Eq. (26-28) are new tightened constraints, 
beyond what is in the literature.  With Eq. (23-28), the above 
two-hour formulation is tight.   
C.  Tightness proof 

The proof will be conducted in two steps for BLP and 
MBLP problems, respectively.  
Step 1. Tightness of BLP problems 

Tightness proof for BLP problems is established based on 
Theorem 1 introduced below.   
Theorem 1. For a BLP problem, the set of binary vertices 
VRBLP

B of its LP-relaxed convex hull Conv(PRBLP) is the set of 
vertices VBLP of original BLP convex hull Conv(PBLP).   
Proof.  This proof follows by contradiction to prove that the 
binary vertices in VBLP remain in VRBLP

B and integrality 
relaxation does not bring new binary vertices to VRBLP

B.  For a 
binary vertex v1

 in VBLP, assume there exists a nonzero vector d 
(one element is ,  > 0, and others are 0) such that v1  d  
Conv(PRBLP).  If the corresponding element of  in v1 is 1, then 
1 +  > 1, and v1 + d  Conv(PRBLP).  If it is 0, then 0 -  < 0, 
and v1 - d  Conv(PRBLP).  Similar for d with multiple non-zero 
elements.  By contradictory, d does not exist, thus the binary 
vertices in VBLP are still vertices of Conv(PRBLP) [28].  Assume 
that integrality relaxation brings a new binary vertex v2 to 
VRBLP

B, i.e., v2  VRBLP
B but v2  VBLP.  However, v2 is binary 

and satisfies all constraints, it must be feasible to the original 
BLP problem.  For a n-dimensional unit hypercube, its vertex 
set is {0, 1}n.  With constraints, binary points still remain as 
vertices of the truncated hypercube [29], thus v2  VBLP

B.  By 
contradiction, v2 does not exist, thus integrality relaxation does 
not bring new binary vertices to VRBLP

B.  Therefore Theorem 1 
holds.  End.  

Based on Theorem 1, constraints converted from VRBLP
B 

directly delineate Conv(PBLP), i.e., the formulation is tight.   
Step 2. Tightness of MBLP problems 

Tightness proof for MBLP problems is established based on 
Theorem 2 introduced below.   
Theorem 2. For an MBLP problem, the set of binary vertices 
VRMBLP

B of its LP-relaxed convex hull Conv(PRMBLP) is the set 
of vertices VMBLP of original MBLP convex hull Conv(PMBLP).   
Proof.  This proof is based on Theorem 1.  For a binary vertex 
v3

 in VMBLP, assume there exists a nonzero vector d’ such that v3 
 d’  Conv(PRMBLP).  Similar to Theorem 1, d’ does not exist, 
thus the binary vertices in VMBLP are still vertices of 
Conv(PRMBLP).  Since integrality relaxation has effects on 
ranges of binary variables only and not on continuous variables, 
it will not bring new binary vertices in VRMBLP

B following 
Theorem 1.  Therefore Theorem 2 holds.  End. 
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For Eq. (35), when 3 = 5 = 0, Pminx ≤ (2 + 3 + 4 + 5)P3 
= p; and when 3 = 1 or 5 = 1, 2 + 3 + 4 + 5 ≥ 1.  It can 
be verified that when P3 ≥ Pmin + R1/2, Eq. (36) is valid under 
all possible combinations of x and u.   

Tightening of generation dependent ramp rates was rarely 
discussed in the literature, the above tightened constraints are 
new.  They can be extended to other ramp and reserve capability 
functions, and problems with more blocks.   
Example 2.  IEEE 118-bus system 

This example is based on the IEEE 118-bus system with 54 
units [31].  A day-ahead hourly UC problem is considered, and 
all units have generation-dependent ramp rates with four blocks.  
The problems are solved by using branch-and-cut with different 
formulations: (1) standard; (2) adding tightened constraints Eq. 
(7-10) as T1; and (3) adding T1 and tightened constraints Eq. (23-
25), (32), (33), (35) and (36) as T2.  In Cplex, optimization stops 
when computational time reaches the pre-set stop time or the 
relative mixed-integer programming gap (relative difference 
between the objectives of the optimal relaxed solution and 
current integer solution) falls below the pre-set gap.  Here the 
stop time and gap is set as 1800 s and 0.01%, respectively.  
Results are compared in Table II below.  CPU time is the total 
time on data and model loading, problem solving and solution 
outputting; and solving time includes root node solving, cutting, 
and branching.  As tightened constraints can be identified based 
on unit parameters through table lookup quickly in the data-
preprocess stage, pre-process time is not included in CPU time.   

 
TABLE II RESULTS OF IEEE 118-BUS SYSTEM  

 
CPU 
(s)  

Gap 
(%) 

Cost  
($) 

Solve 
(s) 

Cut 
(s) 

Branch 
(s) 

# of 
IBC  

# of 
MIRC 

# of 
Other 

(1) Std 1804 / / 1802 100 1632 2380 2844 15244 
(2) Std+T1  1430 0.01 948,831 1424 123 1233 2878 2720 5776 

(3) Std+T1+T2 467 0.01 948,750 461 99 307 1837 2362 3805 
 

With the standard formulation, there is no solution after 30 
minutes.  After adding tightened constraints T1, both CPU and 
solving time is reduced.  With T2, branching time is further 
reduced by 75%.  To model generation-dependent ramp rates 
and the corresponding reserve capabilities, many more binary 
variables and constraints are needed as introduced in Eq. (6), 
making the problem more complicated as compared with the 
problem with constant ramp rates.  The solving time is much 
higher than that of the same problem with constant ramp rates, 
even higher than that of a larger system as to be shown later.   

To demonstrate the performance of our tightening approach, 
another day-ahead hourly UC problem is considered based on 
the IEEE 118-bus system, where all units have constant ramp 
rates.  Following the testing in [14], a scale factor is randomly 
generated for each hourly nodal load.  Seven instances are 
created with load scale factors falling in: (a) [0.5, 0.7]; (b) [0.7, 
0.9]; (c) [0.9, 1.1]; (d) [1.1, 1.3]; (e) [1.3, 1.5]; (f) [1.5, 1.7]; and 
(g) [1.7, 1.9].  Time-varying ten-minute spinning reserve 
requirement is considered, and it is set as 3% of the total load 
at each hour following [14].  The problems are solved with: (1) 
the standard UC formulation; and (2) applied cuts and tightened 
constraints obtained in the two/three-hour problems.  The stop 
time is set as 1800 s, and the stop gap is set as 0.01% following 
[14].  Cutting and branching time is compared in Fig. 11.   

The results show that the cutting time is much reduced after 
adding cuts and tightened constraints.  To compare the results  

Figure 11: 118-bus: Cutting and branching time with (1) standard and (2) 
tightened formulations under different load scale factors falling in (a) [0.5, 

0.7]; (b) [0.7, 0.9]; (c) [0.9, 1.1]; (d) [1.1, 1.3]; (e) [1.3, 1.5]; (f) [1.5, 1.7]; and 
(g) [1.7, 1.9]. 

 
with those in Table 6 of [14], the CPU time and the total number 
of cuts are shown in Table III below.  Since the processer and 
the version of commercial solver used in the testing could be 
different as compared with those in [14], the numbers of nodes 
processed are also provided. 
 
TABLE III 118-BUS: CPU TIME, NUMBER OF CUTS, AND NUMBER OF NODES 

UNDER DIFFERENT LOAD  
 Instance (a) Instance (b) Instance (c) Instance (d) 
 (1) (2) (1) (2) (1) (2) (1) (2) 

CPU 3.9 3.68 2.41 2.27 2.52 2.05 2.41 2.01 
Cuts 751 23 993 59 739 0 929 0 
Node 27 96 0 0 0 0 0 0 

 Instance (e) Instance (f) Instance (g) 
 (1) (2) (1) (2) (1) (2) 

CPU 3.38 2.25 2.66 2.18 3.34 2.39 
Cuts 1,316 6 935 20 1,680 131 
Node 0 0 0 0 0 0 

 
It is shown that the CPU time is reduced by 6% - 33% after 

adding cuts and tightened constraints, and the total number of 
cuts is reduced by 92% - 100%.  For instants 3 and 4, there are 
no cuts at all, demonstrating good performance of our approach.  
As compared with the results in [14], it is shown that the CPU 
time, and the numbers of cuts and nodes with our tightened 
formulations are much less.   

The above results on units with generation dependent and 
constant ramp rates demonstrate that our tightening approach is 
general, and can be used for other problems in power systems. 
Example 3.  Polish system 

This example is based on the Polish 2383-bus system with 
327 units [32].  A day-ahead hourly UC problem is considered, 
and all units have constant ramp rates.  To test performance of 
our tightened formulations for large-scale UC problems, all 
units are treated dispatchable.  Ramp rates of 227 units are 
reduced by 75% to satisfy Pmax ≥ Pmin + 5R/2, and ramp rates of 
the other 100 units are reduced by 50% to satisfy Pmin + 3R/2 
≤ Pmax < Pmin + 5R/2.  Minimum up/down times are assumed 
as 2 or 3 hours.  TMSR and TMOR are assumed as150 MW and 
300 MW (as unit ramp rates are reduced), respectively.   

Results with different formulations are presented in Table 
IV bellow: (1) the standard UC formulation (Std); (2) adding 
cuts (Cuts); (3) and adding tightened constraints obtained in the 
two/three-hour problems (Tightened).  From (1) to (3), the 

(1) (2)
(g)

(1) (2)
(f)

(1) (2)
(d)

(1) (2)
(c)

(1) (2)
(b)

0

0.5

1

1.5

2

(1) (2)
(a)

Branch

Cut

(1) (2)
(e)
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process is accumulative.  To demonstrate the performance of 
our tightening approach, the problem with the standard 
formulation is also solved with aggressive cuts and heuristics 
provided by Cplex as (4) (Cplex Cuts) and (5) (Cplex 
heuristics).  The heuristics are called every 500 nodes.  From 
(4) to (5), the process is accumulative.  The standard UC 
formulation considered here has 2 binary (2-bin) decision 
variables for unit on/off and start-up, and formulations with 3 
binary (3-bin) decision variables for unit on/off, start-up and 
shut-down is also discussed in the literature [3, 12, 13, and 19].  
For comparison purposes, the above problem is also solved 
with the 3-bin formulation in [19] (without cuts) as (6) (3-bin).   

 
TABLE IV POLISH 2383-BUS SYSTEM 

Formulation 
CPU 
(s)  

Gap 
(%) 

Cost  
($) 

Solve 
(s) 

Cut 
(s) 

B 
(s) 

# of 
IBC  

# of 
MIRC 

# of 
Other 

(1) Std 1174 0.01 31,941,900 1071 665 310 3181 836 345 
(2) Cuts 347 0.01 31,942,300 335 220 51 3001 2939 1304 
(3) Tightened 127 0.01 31,942,135 117 22 40 2779 1729 757 
(4) Cplex cuts 588 0.01 31,942,300 492 223 211 3166 2959 2883 
(5) Cplex heuristics 428 0.01 31,942,200 334 236 37 3330 2728 2939 
(6) 3-bin 1891 0.05 31,943,000 1800 969 666 6898 4537 2959 

 
Comparing (1) to (3), it can be seen that CPU, solving, 

cutting and branching time is significantly reduced by adding 
cuts and tightened constraints, while the solution quality is still 
high.  With the standard formulation, a feasible solution with a 
gap of 0.01% is obtained in 1174 s, while the time on cutting 
and branching is 665s and 310s.  By adding cuts and tightened 
constraints, a feasible solution which is 0.0007% higher than 
the above is obtained in 127s, while the cutting and branching 
time is only 22s and 40s.  It demonstrates that tightening single 
unit formulations also improves the computational efficiency 
and solution quality when solving the overall UC problems.   

Comparing (1), (4) and (5), the results show that CPU time 
is reduced by adding aggressive cuts and heuristics in Cplex, 
but still higher than that obtained with our cuts and tightened 
constraints without adding those aggressive cuts and heuristics.  
Comparing (1) and (6), the 2-bin formulation has lower CPU 
time and less numbers of cuts as compared with the 3-bin.   

The problem is also solved with different reserve 
requirements.  For the above 6 formulation configurations, 
cutting and branching time is compared in Fig. 12, and the 
numbers of cuts are shown in Table VI.  

 

Figure 12: Polish: Cutting and branching time with different formulations 
under different TMSR/TMOR values: (1) Standard; (2) Cuts; (3) Tightened; 

(4) Cplex cuts; (5) Cplex heuristics; and (6) 3-bin 

TABLE VI POLISH: NUMBER OF CUTS UNDER DIFFERENT TMSR/TMOR  
  IBC MIRC Other Total 

TMSR = 
140 

TMOR = 
300 

(1) Std 3,060 2,949 2,636 8,645 
(2) Cuts 828 2,926 1,820 5,574 
(3) Tightened 378 1,080 5,74 2,032 
(4) Cplex cuts 2,831 2,775 2,774 8,380 
(5) Cplex heuristics 2,916 2,805 2,764 8,485 
(6) 3-bin 7,075 4,745 2,985 14,805 

TMSR = 
150 

TMOR = 
290 

(1) Std 3,015 2,954 2,662 8,631 
(2) Cuts 810 2,991 1,777 5,578 
(3) Tightened 358 1,292 769 2,419 
(4) Cplex cuts 3,132 3,076 2,829 9,037 
(5) Cplex heuristics 3,108 2,900 2,750 8,758 
(6) 3-bin 6,888 4,634 2,894 14,416 

TMSR = 
140 

TMOR = 
290 

(1) Std 3,024 2,833 2,655 8,512 
(2) Cuts 697 2,895 1,676 5,268 
(3) Tightened 318 1,028 574 1,920 
(4) Cplex cuts 2,703 2,813 2,663 8,179 
(5) Cplex heuristics 2,964 2,773 2,783 8,520 
(6) 3-bin 6,898 4,639 2,974 14,511 

 
Comparing (1) to (3), it shows that time on branching and 

cutting is both dramatically reduced by adding cuts and 
tightened constraints, demonstrating computational efficiency 
of our approach.  In addition, the total numbers of implied 
bound cuts are reduced by 87% - 89%, implying most of this 
type of cuts are applied to single units.  The total numbers of 
mixed integer rounding cuts are reduced by 57% - 63%, and the 
remaining may be related to system-level constraints.  The total 
numbers of other cuts are reduced by 71% - 78%.  Results 
demonstrate great potential of our systematic approach to 
tighten complicated MBLP problems.   

Comparing (1), (4) and (5), the results show that the total 
cutting and branching time is reduced by 32% - 74% after 
adding aggressive cuts and heuristics in Cplex, but it is still 
higher than that obtained with our cuts and tightened constraints 
and without those aggressive cuts and heuristics.  In addition, 
after adding Cplex aggressive cuts and heuristics to the standard 
2-bin formulation, the total numbers of implied bound cuts, 
integer rounding cuts and other cuts are reduced by -5% ~ 3% 
(a negative value means that the number of cuts is increased), -
5% ~ -2% and 3% ~ 5%, respectively.  After adding our cuts 
and tightened constraints to the standard 2-bin formulation, 
time on branching and cutting are significantly reduced by 94% 
- 96%.  In addition, the numbers of implied bound cuts, integer 
rounding cuts and other cuts are dramatically reduced by 88% 
- 89%, 56% - 64% and 71% - 78%, respectively.   

Comparing (1) and (6), it can be seen that the 2-bin performs 
better in terms of solving time and numbers of cuts.  The total 
cutting and branching time with the standard 2-bin formulation 
is less than that of the 3-bin by 16% - 45%.  In addition, the 
total numbers of implied bound cuts, integer rounding cuts and 
other cuts with 2-bin before tightening is also less than those of 
3-bin by 56% - 57%, 37% - 39% and 8% - 12%, respectively.   

VI.  CONCLUSION 

In this paper, a systematic approach is developed to tighten 
single-unit UC formulations in the data pre-processing stage for 
the first time.  Existing cuts are first applied, and then tightened 
constraints are established based on novel “constraint-and-
vertex conversion,” “vertex elimination” and 
“parameterization” processes.  By analyzing problems with 
short-time horizons, e.g., two or three hours, tightened 
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formulations for single units with constant and generation-
dependent ramp rates are obtained, beyond what is in the 
literature.  For each category, its tightened constraints are 
developed, and a look-up table is established.  Then for each 
unit, tightened constraints can be identified through table 
lookup based on unit parameters in the data pre-processing 
stage.  Numerical testing results on IEEE 118-bus and Polish 
2383-bus systems demonstrate computational efficiency and 
solution quality benefits of formulation tightening.  The 
approach is general and has great potential for tightening 
complicated MBLP problems.  We believe that tightened 
single-unit formulations can be fully exploited by using our 
latest powerful decomposition and coordination approach [33].  
This will fundamentally change how we formulate and solve 
complicated MBLP problems in power systems and beyond.   

According to our knowledge, it is hard to extend the above 
approach to tighten the entire unit commitment problem with a 
large number of units considering system-level constraints, e.g., 
system demand, reserve requirement, and transmission capacity 
constraints.  To tighten those system-level coupling constraints, 
we have developed another systematic approach [34].   

VII.  APPENDIX  

A.  Applied cuts 
 ( ) 1 ( ) , .TMSR TMSR TMSRp t x t P P t           (A1) 

 max( ) ( ) ( ) 1 ( ) , .TMOR TMORp t p t p x t P x t t           (A2) 

j j i i
j i

a x g y b    

: 0
1/ (1 ) , .

i

j j i i
j i g

a x f g y b f b b


                       (A3) 

B.  Tight constraints for single-unit formulations  
min max min( 1) ( / 2) ( 1) ( / 2) ( 1)p t P R x t P P R u t         

max min( / 2)( ( ) ( )), .P P R x t u t t            (B1) 
min( 1) ( ) ( / 2) ( 1) / 2 ( 1)p t p t P R x t R u t          

min( / 2) ( ) / 2 ( ), .P R x t R u t t           (B2) 
min min( 1) ( ) ( ) ( ) ( 1)p t p t P x t P R x t        

/ 2 ( 1), [1, 1].R u t t T            (B3) 
min min( 1) ( ) ( 1) ( / 2) ( )p t p t P x t P R x t         

/ 2 ( ) / 2( ( 1) ( 1)), [1, 1].R u t R x t u t t T             (B4) 
min

min max min

( 1) ( ) ( 1) ( / 2) ( 1)
/ 2 ( 1) ( / 2) ( ) ( / 2) ( )

p t p t p t P R x t
R u t P R x t P P R u t
     

    



 
 

max max min( 1) ( / 2) ( 1), [1, 1].P x t P P R u t t T        (B5) 
max min max( 1) ( 3 / 2) ( ) ( 1)p t P P R u t P x t        

max min( / 2) ( 1), [1, 1].P P R u t t T             (B6) 
min

max min

( 1) ( / 2) ( 1) ( 1)
( ) ( / 2) ( )

p t P R x t Ru t
Rx t P P R u t
     

    
 

max min( 3 / 2)( ( 1) ( 1)), [1, 1].P P R x t u t t T           (B7) 
max min max( ) ( 3 / 2) ( 1) ( ) ( )p t P P R u t P R x t        

max min( / 2) ( )P P R u t  

( ( 1) ( 1)), [1, 1].R x t u t t T             (B8) 
min( 1) ( 1) ( / 2) ( 1) 3 / 2 ( 1)p t p t P R x t R u t         

min3 / 2( ( ) ( )) ( 1), [1, 1].R x t u t P x t t T            (B9) 
min( 1) ( 1) ( / 2) ( 1) ( 1) ( )p t p t P R x t Ru t Rx t          

min3 / 2 ( ) ( / 2) ( 1)R u t P R x t     
/ 2 ( 1), [1, 1].R u t t T          (B10) 

min( 1) ( 1) ( 1) / 2 ( )p t p t P x t R u t         
min( 2 ) ( 1) 3 / 2 ( 1), [1, 1].P R x t R u t t T           (B11) 
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