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Abstract—Unit Commitment is usually formulated as a Mixed
Binary Linear Programming (MBLP) problem. When considering
a large number of units, state-of-the-art methods such as branch-
and-cut may experience difficulties. To address this, an important
but much overlooked direction is formulation transformation
since if the problem constraints can be transformed to directly
delineate the convex hull in the data pre-processing stage, then a
solution can be obtained by using linear programming methods
without combinatorial difficulties. In the literature, a few
tightened formulations for single units with constant ramp rates
were reported without presenting how they were derived. In this
paper, a systematic approach is developed to tighten formulations
in the data pre-processing stage. The idea is to derive vertices of
the convex hull without binary requirements. From them, vertices
of the original convex hull can be innovatively obtained. These
vertices are converted to tightened constraints, which are then
parameterized based on unit parameters for general use,
tremendously reducing online computational requirements. By
analyzing short-time horizons, e.g., two or three hours, tightened
formulations for single units with constant and generation-
dependent ramp rates are obtained, beyond what is in the
literature. Results based on the IEEE 118-bus and Polish 2383-bus
systems demonstrate computational efficiency and solution
quality benefits of formulation tightening. The approach is general
and has great potential for tightening complicated MBLP
problems in power systems and beyond.

Index Terms—Unit commitment, mixed binary linear
programming, branch-and-cut, formulation tightening.

1. INTRODUCTION

nit Commitment (UC) is an important problem faced by

independent system operators. The problem is to

minimize the total commitment and dispatch cost by
committing appropriate units while satisfying demand and
other constraints [1]. It is usually formulated as a Mixed Binary
Linear Programming (MBLP, with binary and continuous
variables and a linear structure) problem, and is believed to be
NP hard. To solve such problems, industrial state-of-the-
practice is to use commercial solvers that are mostly based on
branch-and-cut combined with heuristics. In the method, all
integrality requirements on binary variables are first relaxed,
and the Linear Programming (LP) relaxation problem is solved
by using LP methods. Ifall binary variables have binary values,
the solution is optimal to the original problem. If not, valid cuts

are added, trying to obtain the convex hull (the smallest convex
set that contains all feasible solutions [2]) of the original
problem. If successful, the problem can be solved by using LP
without combinatorial difficulties. If not, the method relies on
time-consuming branching operations. In the solvers, cuts are
performed online by using existing types of cuts, and most of
them are data dependent. Since the cuts have coefficients in
numerical values and cannot be reused, the solvers generate
cuts again when solving the problem with other data sets. For
problems with a large number of units or complicated units such
as combined cycle units with generation dependent ramp rates,
the commercial solvers may experience difficulties.

To obtain UC solutions with quantifiable quality fast, most
researchers focus on solution methodologies. An important but
much overlooked direction is formulation transformation since
if problem constraints can be transformed to directly delineate
the convex hull (i.e., the formulation is “tight”) in the data pre-
processing stage, then a solution can be obtained by using LP
methods without combinatorial difficulties [3]. With resulting
constraints reused for other data sets, online computational
requirements are tremendously reduced. However, this
formulation tightening process is fundamentally difficult.
Given a problem formulation, it is difficult to obtain the convex
hull, and there are no systematic ways to transform constraints.
In the literature, a few tightened formulations for single units
with constant ramp rates established in the data pre-processing
stage were reported without presenting how they were derived
as reviewed in Section II. They were shown computationally
efficient for overall UC problems. Single-unit formulations
were also tightened online in the problem solving process with
expensive computations based on optimal LP solutions.

In this paper, a systematic approach is developed to tighten
formulations in the data pre-processing stage. Our idea is first
to apply existing cuts that are relevant, data independent and
easily implementable based on constraint characteristics in
Section III. More importantly, tightened constraints are
established based on novel integration of “constraint-and-
vertex conversion,” “vertex elimination” and
“parameterization” in four steps in Section IV. For a unit with
given parameters (e.g., minimum/maximum generation levels
and ramp rate) in numerical values, the first step is to relax
integrality requirements, and generate vertices from
constraints. The second step is to eliminate vertices with
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fractional values for binary variables. The remaining vertices
will be proved to be vertices of the convex hull to the original
MBLP problem. They are converted back to tight constraints
in the third step. To make tight constraints reusable, our idea is
to covert numerical coefficients to unit parameters in the last
step. This parameterization process is done through analyzing
constraints and relationships between numerical coefficients
and unit parameters, and then verified by checking constraint
physical meanings. For practical applications, our idea is to
obtain “near-tight” formulations by analyzing short-time
horizons, e.g., two and three hours. With units categorized by
how long it takes to reach from the minimum generation level
to the maximum, tightened constraints are developed for each
category and a look-up table is established. Then for each unit,
tightened constraints can be identified through table lookup
based on unit parameters in the data pre-processing stage.

In Section V, three examples are presented. The first is to
obtain tight formulations for a three-hour problem for units with
constant ramp rates and a one-hour problem for units with
generation dependent ramp rates, to discuss unit categories, and
to demonstrate tightness. Resulting tightened constraints are
beyond what is in the literature. The second IEEE 118-bus
problem is to show impacts of tightening units with generation
dependent ramp rates. The last Polish 2383-bus problem is to
demonstrate performance of tightening units with constant
ramp rates. Results demonstrate great potential for tightening
complicated MBLP problems in power systems and beyond.

II. LITERATURE REVIEW

In the literature, most studies focused on single units
without system-level constraints in view of complexity. For
single units, there are mainly three types of formulations: 1-
binary (1-bin) for unit on/off, 2-binary (2-bin) for on/off and
start-up, and 3-binary (3-bin) for on/off, start-up and shut-
down. Based on these formulations, tightening was performed
in the data pre-processing stage or online as reviewed below.
Pre-process. In [4 - 7], new cuts were developed based on
restrictions on binary variables to tighten formulations on top
of the original constraints. As developing new cuts is not the
focus of this paper, it is not elaborated. In terms of rewriting
constraints, a 1-bin formulation with start-up/shut-down and
minimum (min) up/down time constraints was considered in
[8]. New start-up/shut-down constraints were presented based
on a 7-hour problem. It was proved that constraints directly
delineate the convex hull. With commercial solvers, testing
results of 20-32 unit UC problems showed that computational
time was significantly reduced as compared to that in [9].
Based on a 3-bin formulation, a new set of tightened ramp rate
constraints for the first- and last-operation hour was reported in
[3]. Results of 5-unit problems showed that computational time
was significantly reduced as compared to those in [10, 11].

With more constraints, short periods were considered.
Based on a 3-bin formulation with capacity, ramp rate , and min
up/down time constraints, new ramp rate constraints for a two-
hour problem were presented [12]. The single-unit formulation
is tight when unit parameters satisfy certain conditions. Similar
ramp rate and min up/down time constraints were reported for
a three-hour problem in [13]. Based on a 2-bin formulation,
combined ramp rate and min up/down time constraints were
presented for two/three-hour problems under various parameter

conditions in [14]. In [12 - 14], under specific assumptions on
unit parameters, formulations were proved tight for problems
with short-periods, and were shown computationally efficient
by using branch-and-cut for overall UC problems.

The above tightened formulations were presented without
explaining how they were obtained. Built on [14], assuming a
unit is off for certain time, a tight single-unit formulation was
derived by dynamic programming to max profits [15], without
numerical results. When using branch-and-cut, however, there
are no prices and assumptions on units may not be easy to drop.

Ramp rates were constants in the above. For generation-
dependent ramp rates, they were modeled as converted ramp
time curves in [16], while performance decreases drastically as
problem sizes increase. In our previous work, ramp and reserve
capability functions were established, and the formulation was
improved by convex hull analysis [17]. Results by branch-and-
cut show improved performance as compared to [16]. Results
by a decomposition and coordination approach show much
reduced branching time as compared with branch-and-cut. A
few preliminary tightened constraints for units with constant
ramp rates were presented in [ 18], without numerical results.

Tightening of reserve and generation dependent ramp rates
was rarely discussed in the literature. To the best of our
knowledge, there is no systematic approach in data pre-process.
Online. In [19], with a 3-bin formulation, a LP relaxation
problem was solved first. Then cuts were generated as a
callback for individual units based on the LP solution if it is
infeasible to the unit. These cuts were given to the solver, and
the original problem was solved with cuts. Results on 900-unit
UC problems showed that computational time was reduced by
19% on average. For online tightening, cuts obtained for one
unit cannot be reused for other units, and online computations
are expensive as compared to tightening in data pre-process.

IIT. SINGLE-UNIT FORMULATION AND EXISTING CUTS

Assuming system-level constraints are relaxed, a single-unit
UC problem is formulated in Subsection A. Then existing cuts
are applied in Subsection B.

A. Formulate single-unit UC problems [1]

For a unit, the main decision variables at each time # include
binary commitment decisions on/off x and startup u, and
continuous dispatch decision p. For illustration purposes, a 2-
bin formulation is adopted in this paper (performance of this 2-
bin and a 3-bin formulation in the literature will be compared
later in Section V). With different values of x and u, the unit
has four statuses at each ¢, i.e., on, off, start-up and shut-down.
Corresponding initial conditions include x(0), #(0) and p(0).
Constraints are generation capacity, offer price block, ramp rate,
start-up, minimum up/down time, and reserve.

1) Generation capacity

When a unit is online, generation level p should be within
its minimum P"" (MW) and maximum P"* (MW); otherwise,
p is zero, i.e.,

x(O)P™ < p(t) < x(£)P™ VL. (1
2) Offer price block

Generation cost is usually a piecewise function of p. To
maintain linearity, a few offer blocks are considered with
constant prices in each block (assume prices are monotonically
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non-decreasing). For individual blocks, a new continuous
decision variable ps(?) is needed, and their sum equals p(?), i.e.,

()< B, Vb8 2 p, (1) = p(0), V1, (2-3)

where P, (MW) is the maximum generation of block b.
3) Ramp rate

Ramp rate constraints require that the change of generation
levels between two consecutive time periods cannot exceed
ramp rate R (MW/hour). If the unit cannot reach P"* in one
hour, it is assumed that p cannot exceed P™" plus 30-minute
ramp upon starting up or at shutting down following the
standard industrial practice, i.e., P"" + R/2 < P"®. Ramp rate
constraints are formulated in a linear way below,
p()— p(t—1) < Rx(t =)+ (P™ + R/ 2)(x(t) — x(t 1)), V¢, (4)
p(t=1)—=p(®) < Rx()+(P™ + R/ 2)(x(t -1 —x(1)),Vt.  (5)
When P™" + R/2 > P™*, the above constraints are not needed.

For units with generation dependent ramp rates, ramp
capability functions in [17] are used here. Consider a unit:
when 0 < p < Py, ramp is R; (P; > R;); and when P; <p < P,
ramp is R> (P> > R;). When p approaching P; from the left,
ramp capability reduces and reaches R> when p = P;. The break
point is Ps = P; - R;, before which point the ramp capability is
R;. Similarly, the other break point is P, = P> - R;. The ramp-
up capability curve is shown in Fig. 1, specifying ramp R that a
unit can provide in one hour given p. If a ramp rate block is
large, it corresponds two capability blocks as shown in Fig. 1.
s

R
R(MW/h)
Ry

___________________

0 P=P/R, P, P/=P:R, P, pMW)
Figure. 1. Ramp-up capability curve

The above curve is a piecewise linear function, and can be
represented by SOS2 [17]. With a set of binary SOS2 variables
a’P(f) and a set of continuous nonnegative weight variables
@"?(f), ramp-up capability function RU(f) is represented below,

RY()=Ra" )+ Ra, )+ R, (t)+ R0, (t)+0a" (1),

p(t) = 00" (t) + R’ (1) + R’ (1) + Po,” (1) + Bay” (1),
al(®)zo?(1),0< 0’ ()<, a”(t)e{0,1},1<m<5,

Yo (=1 a/()=2. (6)

Non-zero a,(f) must be consecutive in the ordering, and these
standard constraints are omitted. Ramp-down RP*"(¢) is
modeled in a similar way. Then replace the first R in Eq. (4)
and (5) is replaced by RY(p) and RP*""(p), respectively, and
replace the second R by R;. Products of binary and continuous
variables are linearized by the standard big M method.

As ramp up/down functions are derived from ramp rates
(large blocks), they are related: if R is at the 1% (2") block, ramp
up/down must be at their 1% or 2™ (3" or 4) block [17], i.e.,

o (1) = " (0,0 (1) = o™ (1), (7-8)
Further relations among o*” can be derived as follows [17],

aO+a@O) =L+ (@) +al () =1. (9-10)
The model can be extended to ramp functions with more blocks.

4) Start-up
The binary startup variable u(¢) equals 1 if and only if the
unit is turned on from offline at hour ¢, i.e.,
u(t) = x(t)—x(t -1),vt; u(t) < x(t),vt. (11-12)
Also if the unit is on at #-1, it cannot start up at ¢, i.e.,
x(t—1)+u(t) <1,V
5)  Minimum up/down time

The unit must remain online or offline for its minimum up
or down time. Formulas in [20] for minimum up are used here,

on
z x(T) — TM()rx ,
7=l

(13)

(4T

> X(0) =T (x(0) —x(t 1)) 1+ T <t <T—T" 41,

7=t

> (x(0) —(x(t)~x(t - 1)) 2 0,7 ~T* +2<¢ < T, (14)

In the above, 7Y denotes the minimum up time, and 7"°" is
the number of must on hours at the beginning (initial conditions,
assumed given). Minimum down is modeled in a similar way.
6) Reserve capability

To ensure system reliability under contingencies, reserve
including ten-minute spinning reserve (TMSR) and thirty-
minute operating reserve (TMOR) are considered [21]. For
TMSR, designation p™>5R(f) cannot exceed capability PSR
(calculated based on R) and is zero when the unit is off, i.e.,

p™ (@) < PR Ve p™t () + p(r) < P™x(1),Vt.  (15-16)
For TMOR, p™O©%(¢) cannot exceed capability PTMOR je.,

p™M k() < PR YL p™ Ot () + p(t) < P™ VL. (17-18)

For units with generation-dependent ramp rates, similar to
the ramp capability, TMSR and TMOR capability functions
P™SR() and P™OR(f) are established based on the ramp rate
function and modeled by SOS2.

For the UC problem consideration, system level constraints
include system demand, reserve requirements, and transmission
capacity constraints, and they are all linear. The objective
function is linear but irrelevant for tightening. The above
problem (1) - (18) is an MBLP problem. Eq. (4), (5), (11), (13)
and (14) involve initial conditions.

=t

B. Apply existing cuts

Most types of existing cuts are data dependent, e.g., Gomory
fractional cuts based on simplex tableau [22]. In commercial
solvers, a lot of valid cuts are applied to constraints, and most
are inefficient and time-consuming. Also cuts are generated
online with coefficients in numerical values, and cannot be
reused when solving the same problem with other data sets.

To address the above issues, our idea is to apply existing
cuts that are relevant, data independent and easily
implementable based on characteristics of appropriate
constraints, then replace the original constraints by cuts or add
cuts as new constraints up front. In this way, the cuts are
reusable. In the following, implied bound and mixed integer
rounding cuts that can be applied to UC problems are discussed.
1) Implied bound cuts [23]

Implied bound cuts reflect the relationship between binary
and continuous variables when the binary ones imply bounds
on the continuous ones. Consider a continuous variable y with
an upper bound y"*, i.e., y <™, and a binary variable z that
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implies a new upper bound on y, e.g., z= 0 = y < y"* ("™ <
y"*). The idea is to merge z into y < y"* as follows,

y+(ymax _ymaxr)(l_z) <y

According to (19),ifz=1, y <y™*; and if z = 0, y < y"*,
For UC problems, implied bound cuts can be applied to the
offer price block constraints as follows,

p, () +(1=x(£)) B™ < B™ /b, V1. (20)

Eq. (20) guarantees that when x(7) = 1, p(¢) < P"*; and when
x(f) = 0, p’(r) = 0. Then Eq. (2) is replaced by Eq. (20).

Implied bound cuts can also be applied to the reserve
constraints as Eq. (A1) and (A2) in Section A of Appendix, and
Eq. (15) and (18) are replaced by (A1) and (A2), respectively.
Note that the original constraints are replaced by cuts.

2) Mixed-integer rounding cuts [24]

Mixed-integer rounding cuts apply rounding on coefficients
of integer variables and the constant of a constraint. Consider
a constraint z - y < b with integer variable z and continuous
variable y (z> 0, y > 0). If constant b is not an integer, then the
convex hull of the LP-relaxed problem (LP-relaxed convex
hull) has a non-integer vertex (b, 0). To avoid this, a mixed-
integer rounding cut that goes through the two points (Lo, 0)
and (|_bJ +1,l6)+1- b) (floor function L] gives the greatest
integer < b) of the LP-relaxed convex hull is applied below,

z=1/(1-(b=[b]))y<[b]. 1)
A general version is expressed as Eq. (A3) in Section A of

Appendix. For UC problems, mixed integer rounding cuts can
be applied to the offer price block constraints as follows,

| P™ |x(t) =% p, (1) <0,V

(19)

(22)

IV. ESTABLISH TIGHT CONSTRAINTS

The above single-unit UC formulation is further tightened
in this section. Tightened constraints are established based on
novel integration of “constraint-and-vertex conversion,”
“vertex elimination” and “parameterization” in Subsection A,
and a numerical example is presented in Subsection B.
Tightness is proved in Subsection C.

A. Establishment of tight constraints

As mentioned earlier, a few constraints involve initial
conditions, and this is problematic since there are many sets of
possible initial conditions. This issue is first addressed in
IV.A.1. Tightened constraint are established through four steps
inIV.A.2. Unit categorization is then discussed in IV.A.3. The
overall tightening process is summarized in IV.A.4.

1) Initial conditions

To overcome the difficulties caused by initial conditions,
our idea is to treat them as decision variables without specifying
their values, and can take any reasonable values. For a one-
hour problem with capacity and start up constraints, and given
initial conditions, it becomes a two-hour problem with
additional ramp rate constraints. Although the convex hull with
initial conditions treated as decision variables is generally
larger than the one with specific initial values, the tightening
process is significantly simplified.

2) Four-step tightening

For a unit with (1) given parameters (P"" P~ R, TMY and

T"P) in numerical values and (2) initial conditions (x(0), u(0),

p(0), 79" and TM9%) as decision variables, tightened constraints
are established through four steps as follows.

Step 1. Constraint-to-vertex conversion. The first step is to
relax integrality requirements on binary variables. For the LP
relaxed problem, generate vertices of the convex hull from
constraints by using algebraic manipulation of unit parameters
with algorithms well established based on Gaussian elimination
[25]. For example, for a problem with two continuous decision
variables and three inequality constraints, the vertices of the
convex hull are generally the intersections of every two
constraints. This conversion is performed by using existing
software Porta [26]. Given constraints with coefficients in
numerical values, Porta outputs vertices in numerical values.
Step 2. Vertex elimination. For clarity of discussion, a vertex
with binary values for all binary variables is named a “binary
vertex,” and a “fractional vertex” otherwise. All binary vertices
are feasible to the original problem, while all fractional ones are
infeasible. If all vertices obtained in Step 1 are binary vertices,
the formulation is tight. If not, the second step is to eliminate
the factional vertices. The remaining vertices are the vertices
of the convex hull to the original MBLP problem as will be
proved later in Subsection IV.C.

To illustrate the idea, consider a simple Binary Linear
Programming (BLP) problem with two binary variables x; and
x2, and x; + x2 > 0.5. In Fig. 2(a), constraints are color-coded
by blue lines, and the convex hull Conv(Pgrp) by red lines.
Vertices Vprp of Conv(Psrp) are represented by solid red dots.
For the LP-relaxed problem in Fig. 2(b), constraints are color-
coded by blue lines, and they delineate convex hull Conv(Prarp)
with vertices Vzprp represented by blue dots. There are two sets
of vertices in Vzarp. One set Vzpr® consisting of binary vertices
is represented by solid blue dots, and the other set Vrgrp™
consisting of fractional vertices is represented by open blue
dots. Given Vrarp, how to get back to Vp.p? The idea is to drop
fractional vertices Vzpp". The remaining binary vertices Vgprp®
in Fig. 2(b) are the same as vertices Vp.p in Fig. 2(a).

! Relax integral requirements 1
AN — N
2 \ : 2
0—yN 1 Drop fractional vertices 0

Figure 2(a): Convex hull of a BLP
problem with binary variables x;, x>

e
Figure 2(b): Convex hull of its LP-
relaxed problem

Now consider an MBLP problem with binary variables x;
and x», and continuous variable x3. In Fig. 3(a), constraints and
convex hull Conv(Pyprp) are color-coded by blue and red lines,
respectively, and vertices Varp of Conv(Puyprp) are represented
by solid red dots. For the LP-relaxed problem in Fig. 3(b),
constraints are color-coded by blue lines, and they delineate
convex hull Conv(Prp) with vertices Vrzyprp presented by blue
dots. By dropping fractional vertex Vruprr” (open blue dots),
remaining binary vertices Vruprr® (solid blue dots) in Fig. 3(b)
are the same as vertices Vusrp (solid red dots) in Fig. 3(a).
Step 3. Vertex-to-constraint conversion. In this step, vertices
obtained in Step 2 are converted back to tight constraints by
using software Porta as a reverse process of that in Step 1. The
resulting formulation should be tight as to be proved in IV.C.
Step 4. Parameterization. The constraints obtained above
have coefficients in numerical values. To make them reusable

0885-8950 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2019.2935003, IEEE

Transactions on Power Systems

Relax integral
requirements 2

& n
_J Drop fractional
vertices

0 X 1 0 Xy 1
Figure 3(a): Convex hull of an MBLP Figure 3(b): Convex hull of
problem with binary x;, x, and continuous x;3 its LP-relaxed problem

to other units, our idea is to covert numerical coefficients to unit
parameters. This parameterization process is done by analyzing
these constraints and the relationships between numerical
coefficients and unit parameters. It is then verified by checking
physical meanings of the resulting constraints with coefficients
in unit parameters under all possible combinations of binary
variables as to be shown in IV.B.
3) Categorization

For different types of units, a few sets of tight formulations
are developed through the above four steps. For units, ramp
rate is an important physical characteristic, restricting the unit’s
up/down movement from one hour to another and determining
reserve capability. Thus one way to categorize units is through
how long it takes to reach from P™" to P"*. The simplest
category is P"® < Pmin + R/2 since in this case, the unit can reach
P upon starting up without requiring ramp rate requirements.
The second is P™" + R/2 < P"® < pPmin + 3R/2 since the
maximum generation that the unit can reach in two hours is P""
+ 3R/2 as shown in Fig. 4. Minimum up/down time
requirements are not considered in unit categorization.

Category 1  Category 2 Category 3
—— — —_ -
P™  P™+R/2 P™ +3R/2 P™ +5R/2 P

Figure 4: Unit categories based on ramp rates and generation limits

Tight constraints for the first category are still valid for units
in the second category as they work for every hour. The above
analysis can be extended to the third category P"" + 3R/2 <
prax < pmin + 5R/2 and beyond, and a lookup table can be
established based on P"", P"® and R.

Some solution methodologies such as Lagrangian relaxation
have difficulty with identical or almost-identical units. For
formulation tightening, identical units will have identical
tightened formulations, and there is no difficulty in tightening.
By the same token, there are no difficulties in tightening almost
identical units. However, Lagrangian relaxation will still
encounter similar difficulties with tightened formulations.

As the number of vertices increases exponentially in
constraint-and-vertex conversion [27] and so does the number
of constraints in parameterization, it is difficult to obtain a tight
formulation. For practical applications, our goal is to obtain
“near-tight” formulations by analyzing problems of short-time
horizons, starting with two hours and extending to three hours.
Although only three hours are considered, good results have
been obtained as to be shown later in Section V.

4) Overall tighening process

The process of generating tight constraints is summarized in
Fig. 5. Given a UC problem, a set of tightened constraints for
different unit types will be established by using the systematic
approach before solving the problem. A look-up table that

covers most unit types in the market is established based on unit
categories. =~ When solving the UC problem, tightened
constraints will be identified based on unit parameters in the
data pre-processing stage.

[ Step0. Initial condition treatment: Treat initial conditions as ]
decision variables

[Step 1. Constraint-to-vertex conversion: Relax integrality requirements]
on binarv variables. and convert constraints to vertices

[ Step 2. Vertex elimination: Eliminate fractional vertices ]

Step 3. Vertex-to-constraint conversion: Convert the new vertices to
tight constraints

constraints in terms of unit parameters

Categorization: Develop a few sets of tight formulations based on
different unit parameters
Figure 5: Flow chart of generating tight constraints

[ Step 4. Parameterization: Represent numerical coefficients of tight ]

B. Numerical example

To illustrate the idea, consider a two-hour (7 - 1, ) problem
for a unit with P"" = 59 MW, P"* = 111 MW, and R = 19
MW /hour. Since one coefficient value can be the result of
multiple manipulations of unit parameter values, prime values
are used for unit parameters. Capacity (Eq. 1), ramp rate (Eq.
(4) and (5)) and start up constraints (Eq. (11 - 13)) are denoted
as C1 as shown in Fig. 6. Other constraints are not considered
for simplicity, and ranges for binary variables ([0, 1]) are not
presented for brevity. By constraint-to-vertex conversion,
obtain vertices V1, and the last 10 vertices are shown in Fig. 7
(variable sequence: x(¢-1), u(t-1), p(t-1), x(¢), u(f), p(¢)). This
conversion takes about 1 second by Porta.

59x(t-1) - p(t-1) < 0

111x(t-1) - p(-1) = 0

x(t-1) - u(t-1)>0

59x(f) - p(£) <0

111x(¢) - p(1) > 0

x(t) -u(®) >0

x(0) - u(®) < x(t-1)

u(@®) +x(t-1) < 1

137/2x(¢) - 99/2x(¢-1) - p(t) + p(t-1) >0

99/2x(t-1) - 137/2x(¢) - p(t) + p(t-1) <0
Figure 6: Constraints C1 of a two-hour problem

@26 1 1 39 0 0 0
@) 1 1 59 1985 0 2109/85
8 1 1 1372 0 0 0
(29 1 1 111 85/123 0 3145/41
B0) 1 1 59 1 0 59
@Gl 1 1 59 1 0 78
32 1 1 78 1 0 59
3G3) 11 90 1 0 111
G4 1 1 111 1 0 92
@5 1 1 11 1 0 111

Figure 7: Vertices V1 of a two-hour problem

In V1, there are 35 vertices, and 19 are binary vertices. For
vertices (32-35), u(#-1) should be 0 as generation levels exceed
maximum limit for the first on hour (i.e., P"" + R/2), and this
issue will be addressed later. Keep binary vertices as V2 and
convert to constraints C2 (about 1 second by Porta). Compared
to C1, there are 4 new constraints as shown in Fig. 8 below.
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(1) -137/2x(-1) F2p(-1)  -85x(2) + 85u(?) <0
) -222x(2) + 85u(f) + 2p(1) < 0
(10) -137/2x(t-1) +2p(t-1) +99x(7) + 19u(?) - 2p(£) <0
(11) +118x(t-1) - 2p(t-1) -156x(f) + 19u(f) + 2p(1) < 0

Figure 8: New constraints in C2 of a two-hour problem

To describe the parameterization process, take Constraint
(2) with three variables in Fig. 8 as an example. In the original
formulation in Fig. 6, coefficients before decision variables are
linear functions of unit parameters, i.e., P"" = 59, P"> = 111,
and R =19. Since constraint-and-vertex conversion is based on
Gaussian elimination, coefficients of tight constraints are also
linear functions of unit parameters. For the value of 222 before
x(?) in Constraint (2), it is twice of P"*. For the value of 85
before u(¢), with prime unit parameters, it can be obtained that
85 =2(111-59) - 19, and the function is 2(P"* - P"") - R, For
the value of 2 before p(¥), it is just 2, and there is no need of
parameterization. The entire constraint is parameterized below,

p(t) < P™ x(t) = (P™ — P™ — R/ 2)u(?). (23)

In the above, when x(¢) = u(t) = 0, p(f) < 0; when x(¢) = 1
and u(¢) = 0, it represents the maximum generation level; and
when x(7) = u(f) = 1, it represents the maximum generation limit
on the first operation hour. With (23), the right-hand side of
capacity constraint Eq. (1) can be deleted.

Constraints (10) and (11) in Fig. 8 can be treated as revised
ramp rate constraints as compared to Eq. (4) and (5). With
prime values for P, P and R, numerical coefficients of
constraints (10) and (11) in Fig. 8 are parameterized as follows,

p@)—pE-D<(P™ +R)x(t)— P™x(t =1)— (R / 2)u(?),

pt=D=p@) < (P™ +R/2)x(t-1)—(P™ —R/2)x(¢)

—(R/2)u(?). (24-25)
The above constraints are the same as the ramp rate constraints
developed in [14].

Physical meanings of Eq. (24) and (25) under all possible
combinations of binary variables are as shown in Table I. It can

be seen that these two tight constraints are meaningful under all
situations, and no feasible solutions will be cut by adding them.

TABLE I CONSTRAINT ANALYSIS FOR (24) AND (25)

x(-Dx(H)] u(®) Eq. (24) Eq. (25)
0101 0 | p@®)-pt-1<0 p(t-1)-p(®)<0
011 1| py<P™+R/2 p(t=1)> P™
Lo 0} pe-n2p™ pt-1)<P™+R/2
LT 0 pO-pt-1)<R p(t=D-p()<R

Constraint (1) in Fig. 8 is parameterized as follows,
p(t=D)<(P™+R/2)x(t-1)
+(P™ = P™ =R/ 2)(x(t) —u(?)), Vt. (26)

It can be verified that Eq. (26) is valid for all the possible
combinations of the three binary variables.

Add Eq. (23) and (26) in C2, apply Eq. (23) to #-1, and
replace ramp rate constraints Eq. (4) and (5) by Eq. (24) and
(25). Denote the new constraint set as C3, and obtain vertices
V3. There are 20 vertices in V3, and 17 binary ones. The issue
in V1 with u(z-1) is addressed by applying Eq. (23) to t-1. Keep
binary vertices as V4 and convert them to constraints C4. Two
new tight constraints are obtained and parameterized below,

p(t =1 — p(t) < =P™x(t)+(P™ + R)x(t —=1)— R/ 2u(t 1),
p(t) < (P™ +3R/2)x(t) — Ru(?)
+(P™ = P™ —3R/2)(x(t —1) —u(t -1)). (27-28)
When x(z-1) = 1 and u(#-1) = x(¢) = u(t) = 0, Eq. (28) is p(?)
< pmax. prin _3R/2. Here P"* - PMin - 3R/2 cannot be negative,
and Eq. (27) and (28) are valid under all possible combinations
of x and u, otherwise feasible solutions would be cut off. Eq.
(23-28) directly constrain variables at #-1 and ¢, tighten the
formulation, but can hardly be obtained manually. Among
them, Eq. (23) and Eq. (26-28) are new tightened constraints,
beyond what is in the literature. With Eq. (23-28), the above
two-hour formulation is tight.

C. Tightness proof

The proof will be conducted in two steps for BLP and
MBLP problems, respectively.

Step 1. Tightness of BLP problems

Tightness proof for BLP problems is established based on
Theorem 1 introduced below.

Theorem 1. For a BLP problem, the set of binary vertices
Vrarr® of its LP-relaxed convex hull Conv(Prarp) is the set of
vertices Vprp of original BLP convex hull Conv(Pg.p).

Proof. This proof follows by contradiction to prove that the
binary vertices in Vpp remain in Vggp® and integrality
relaxation does not bring new binary vertices to Vzp.p®. For a
binary vertex v;in Vp.p, assume there exists a nonzero vector d
(one element is & &> 0, and others are 0) such that v; = d €
Conv(Pgrarp). If the corresponding element of ¢in v, is 1, then
1+e&>1,and v; + d ¢ Conv(Pprprp). Ifitis 0, then 0 - £<0,
and v; - d ¢ Conv(Pgprp). Similar for d with multiple non-zero
elements. By contradictory, d does not exist, thus the binary
vertices in Vprp are still vertices of Conv(Pgprp) [28]. Assume
that integrality relaxation brings a new binary vertex v, to
VRBLPB, i.e., V) € VRBLPB but V) & VBLP. HOWGVCI‘, A% is binary
and satisfies all constraints, it must be feasible to the original
BLP problem. For a n-dimensional unit hypercube, its vertex
set is {0, 1}". With constraints, binary points still remain as
vertices of the truncated hypercube [29], thus v> € Vg%, By
contradiction, v, does not exist, thus integrality relaxation does
not bring new binary vertices to Vzp.r®. Therefore Theorem 1
holds. End.

Based on Theorem 1, constraints converted from Vizsir®
directly delineate Conv(Ps.p), i.€., the formulation is tight.
Step 2. Tightness of MBLP problems

Tightness proof for MBLP problems is established based on
Theorem 2 introduced below.

Theorem 2. For an MBLP problem, the set of binary vertices
Vrmprr® of its LP-relaxed convex hull Conv(Prusep) is the set
of vertices Vyp.p of original MBLP convex hull Conv(Pyarp).
Proof. This proof is based on Theorem 1. For a binary vertex
vzin Vyprp, assume there exists a nonzero vector d’ such that v;
+d’ € Conv(Prusrp). Similar to Theorem 1, d’ does not exist,
thus the binary vertices in Viypp are still vertices of
Conv(Pruprr). Since integrality relaxation has effects on
ranges of binary variables only and not on continuous variables,
it will not bring new binary vertices in Vzupr® following
Theorem 1. Therefore Theorem 2 holds. End.
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Based on Theorem 2, constraints converted from Vaysrr®
directly delineate Conv(Pgrp), 1.¢., the formulation is tight.

V. TESTING RESULTS

The above tightening approach has been implemented by
using Porta [26], and the UC problems are solved by using
commercial solver IBM ILOG CPLEX Optimization Studio V
12.8.0.0 [30], both on a PC with 2.90GHz Intel Core(TM) i7
CPU and 16G RAM. Porta is not embedded in CPLEX. Three
examples are presented. The first is to obtain tight formulations
for a three-hour problem for units with constant ramp rates and
a one-hour problem for units with generation dependent ramp
rates, to discuss unit categories, and to demonstrate tightness.
The second IEEE 118-bus problem is to show impacts of
tightening units with generation dependent ramp rates. The last
Polish 2383-bus problem is to demonstrate performance of
tightening units with constant ramp rates.

Example 1. Single-unit
a) Constant ramp rates: Three-hour

Add one hour (7 + 1) to the example in Subsection IV.B. For
the unit, P"* - P"in = 5R/2. it cannot reach P”* in three hours.
Minimum up/down time constraints are also added, and TV =
TP = 2. To consider all possible initial conditions, the
following Eq. (29 - 31) are used for minimum up/down time
instead of general formulas for this specific example,

x(t=1)—x(t)+x(+1)=>0, (29)

2x(t=D)=x(O)+x(t+1) < 2. u(t-1)—x(¢) <0. (30-31)

With the standard formulation as C1, after constraint-to-
vertex conversion (2 - 3 seconds by Porta), there are 654
vertices in V1, and 45 are binary. Add the tight constraints
obtained in the two-hour problem in Subsection IV.B to C1,
denote the new constraint set as C2, and obtain vertices V2.
There are 314 vertices in V2, with 40 binary ones. Keep binary
vertices as '3 and convert them to constraint C3 via vertex-to-
constraint conversion (2 - 3 seconds by Porta). There are 17
new constraints. After parameterization, there are 14 tight
constraints as three pairs have the same forms applying to
different hours. Two of the 14 constraints only contain binary
variables and can be generalized as revised minimum up/down
time constraints as compared to Eq. (14),

Mon
Mo

Sx(D)=T"", 3 u(r)<x(t),T" <t<T,
7=1 ol

T=t-T"

(32)

Moy

> (I-x(2))=T"", ¥ u(x)<1—x(t=T"),T* +1<1<T.
7" 41

=1 7=1-
(33)
The above constraints are the same as the minimum up/down
time constraints developed in [13].

It can be verified that the remaining 12 constraints are valid
under all possible unit statuses. They further tighten the
formulation on top of the tight constraints obtained in the two-
hour problem. Take one of 12 as an example as follows,

plt+1) <—(P™ —P™ —5R/2u(t—1)

+(P™ —P™ —5R/2)x(t)— (P™ — P™ —3R/ 2)u(?)

+(P™ +5R/ 2)x(¢t+1)=2Ru(t +1),t €[1,T —1]. (34)

Here, P"* - Pmin - 5R/2 has to be non-negative to guarantee that
the constraint is valid under all possible unit statuses.
Based on the analysis in IV.A.3, there are 4 unit categories

for this three-hour problem. Tightened constraints for the other
categories are obtained by repeating the tightening process
through three more examples. For all of them, P"" = 59 MW
and R = 19 MW/hour, while P"* are 101 MW, 83 MW, and 67
MW, respectively. The results are summarized in Fig. 9 below.

5 alegory 1 Category 2
. (32,33) (B1)-(B5)

Figure 9: Tight constraints for four unit categories

c 3
(BeRBI)

For Category 4 (P"* > P™" + 5R/2), there are 14 new tight
constraints beyond Eq. (23 - 28), including Eq. (32) - (34), and
Eq. (B1) - (B11) in Section B of Appendix. Among them, Eq.
(34) and Eq. (B1-B11) are new tightened constraints, beyond
what is in the literature. Category 3 (P™" + 3R/2 < Pmax < pmin
+ 5R/2), there are 13 tight constraints, excluding Eq. (34) from
category 4; Category 2 (P™" + R/2 << P"* < P™in + 3R/2), there
are 7 tight constraints, excluding Eq. (B6)-(B11) from category
3; and Category 1 (P™~ - Pmin < R/2), there are 2 tight
constraints, excluding Eq. (B1)-(B5) from Category 2. All the
tightened constraints are still valid for units with minimum
up/down times larger than 2. For units with minimum up/down
times as 1, tight constraints can be obtained similarly.

To demonstrate tightness, 100 Monte Carlo simulation runs
are performed. For each unit, a pair of two random variables
following U(0,1000) are considered: the smaller one is P, and
the larger one is P"*. A third random variable following U(0,4)
represents (P - P"")/R, and R is calculated correspondingly.
The 100 units are categorized into the four types in Fig. 9, with
26, 27, 18, and 29 for each type. With those unit parameters,
the corresponding constraints are converted to vertices. Results
show that all vertices are binary for all units, demonstrating that
the above simplified three-hour single-unit formulation is tight.
b) Generation depedent ramp rates: One-hour

Consider generation dependent ramp rates for the unit in a)
with two ramp blocks. For Fig. 1, P; is 89 MW, R; and R> are
19 and 17 MW/hour (P; =70 MW, P, =103 MW). Capacity,
start up, ramp-up capability, and Eq. (23) are denoted as C1.
By constraint-to-vertex conversion, obtain vertices V1. In V1,
there are 315 vertices, and 11 are binary. Keep binary vertices
as 72 and convert them to the constraint set C2. As compared
to C1, there are 7 new constraints as shown in Fig. 10.

(6) +59x -70w2  -70w3  -70w4  -70w5 + 1103 +11a5<(
(7) -140x + 3u + 1402 + 140w3 + 140w4 + 140w5 <0
an +wd  +ws - a4 <0
(12)  x +u + a3 +a5<0
(13) -wd - wSs +05<0
(14) +w3 +wd  +w5  -a3 -o5 <

(15) -w3 - w4 - w5 +o4 <

Figure 10: New constraints in C2 of a one-hour problem

Constraints (11), and (13) - (15) in Fig. 10 shows relations
between « and o, and (12) shows relations of x, # and o
Constraints (6) and (7) in Fig. 10 are parameterized below,

P x<(w, +o,+w, +®,)P,—(P.— P™)a, +a,),

(0, + @, +0, +®,)P, < Px—(P,—(P™ +R /2))u. (35-36)
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For Eq. (35), when a3 = a5 = 0, P""x < (@ + w3 + @y + ws)P;
=p;and when as=1loras=1, m+ @3+ s+ @s>1. Itcan
be verified that when P; > P"" + R;/2, Eq. (36) is valid under
all possible combinations of x and u.

Tightening of generation dependent ramp rates was rarely
discussed in the literature, the above tightened constraints are
new. They can be extended to other ramp and reserve capability
functions, and problems with more blocks.

Example 2. 1EEE 118-bus system

This example is based on the IEEE 118-bus system with 54
units [31]. A day-ahead hourly UC problem is considered, and
all units have generation-dependent ramp rates with four blocks.
The problems are solved by using branch-and-cut with different
formulations: (1) standard; (2) adding tightened constraints Eq.
(7-10) as T7; and (3) adding 77 and tightened constraints Eq. (23-
25),(32), (33), (35) and (36) as T». In Cplex, optimization stops
when computational time reaches the pre-set stop time or the
relative mixed-integer programming gap (relative difference
between the objectives of the optimal relaxed solution and
current integer solution) falls below the pre-set gap. Here the
stop time and gap is set as 1800 s and 0.01%, respectively.
Results are compared in Table II below. CPU time is the total
time on data and model loading, problem solving and solution
outputting; and solving time includes root node solving, cutting,
and branching. As tightened constraints can be identified based
on unit parameters through table lookup quickly in the data-

2 m Branch

m Cut
1.5
1
. i1l il

MO OO OO 1R 1)) 1))
(a) (b) () (d (e) ® (&
Figure 11: 118-bus: Cutting and branching time with (1) standard and (2)
tightened formulations under different load scale factors falling in (a) [0.5,
0.7]; (b) [0.7, 0.97; () [0.9, 1.1]; (d) [1.1, 1.3]; (e) [1.3, 1.5]; (D) [1.5, 1.7]; and
(g)[1.7, 1.9].

with those in Table 6 of [14], the CPU time and the total number
of cuts are shown in Table III below. Since the processer and
the version of commercial solver used in the testing could be
different as compared with those in [14], the numbers of nodes
processed are also provided.

TABLE III 118-Bus: CPU TIME, NUMBER OF CUTS, AND NUMBER OF NODES
UNDER DIFFERENT LOAD

Instance (a) Instance (b) Instance (c) Instance (d)

preprocess stage, pre-process time is not included in CPU time. @) @ @ 2 @ 2 (OB

CPU 3.9 3.68 241 2.27 2.52 2.05 241 | 2.01

TABLE II RESULTS OF IEEE 118-BUS SYSTEM Cuts | 751 23 993 59 739 0 929 0

CPU |Gap| Cost [Solve| Cut |Branch| #of| #of | # of Node 27 96 0 0 0 0 0 0
) (W] & | ) | ©6) (s) IBC |[MIRC|Other Instance (e) Instance (f) Instance (g)
()Std 1804 / | / |1802]100| 1632 |2380 | 2844 |15244 ) Ol O] o O]
(2) Std+7; | 1430 |0.01(948,831| 1424 | 123 | 1233 |2878 | 2720 [ 5776 CPU | 3.38 2.25 2.66 2.18 3.34 2.39
(3) Std+T,+T,| 467 [0.01[948,750 461 | 99 | 307 |1837 |2362 |3805 Cuts | 1,316 6 935 20 1,680 131
Node 0 0 0 0 0 0

With the standard formulation, there is no solution after 30
minutes. After adding tightened constraints 77, both CPU and
solving time is reduced. With 7>, branching time is further
reduced by 75%. To model generation-dependent ramp rates
and the corresponding reserve capabilities, many more binary
variables and constraints are needed as introduced in Eq. (6),
making the problem more complicated as compared with the
problem with constant ramp rates. The solving time is much
higher than that of the same problem with constant ramp rates,
even higher than that of a larger system as to be shown later.

To demonstrate the performance of our tightening approach,
another day-ahead hourly UC problem is considered based on
the IEEE 118-bus system, where all units have constant ramp
rates. Following the testing in [14], a scale factor is randomly
generated for each hourly nodal load. Seven instances are
created with load scale factors falling in: (a) [0.5, 0.7]; (b) [0.7,
0.9];(¢)[0.9, 1.1]; (d) [1.1, 1.3]; (e) [1.3, 1.5]; () [1.5, 1.7]; and
(g) [1.7, 1.9]. Time-varying ten-minute spinning reserve
requirement is considered, and it is set as 3% of the total load
at each hour following [14]. The problems are solved with: (1)
the standard UC formulation; and (2) applied cuts and tightened
constraints obtained in the two/three-hour problems. The stop
time is set as 1800 s, and the stop gap is set as 0.01% following
[14]. Cutting and branching time is compared in Fig. 11.

The results show that the cutting time is much reduced after
adding cuts and tightened constraints. To compare the results

It is shown that the CPU time is reduced by 6% - 33% after
adding cuts and tightened constraints, and the total number of
cuts is reduced by 92% - 100%. For instants 3 and 4, there are
no cuts at all, demonstrating good performance of our approach.
As compared with the results in [14], it is shown that the CPU
time, and the numbers of cuts and nodes with our tightened
formulations are much less.

The above results on units with generation dependent and
constant ramp rates demonstrate that our tightening approach is
general, and can be used for other problems in power systems.

Example 3. Polish system

This example is based on the Polish 2383-bus system with
327 units [32]. A day-ahead hourly UC problem is considered,
and all units have constant ramp rates. To test performance of
our tightened formulations for large-scale UC problems, all
units are treated dispatchable. Ramp rates of 227 units are
reduced by 75% to satisfy P"® > P + 5R/2, and ramp rates of
the other 100 units are reduced by 50% to satisfy P™" + 3R/2
< prex < prin + 5R/2. Minimum up/down times are assumed
as 2 or 3 hours. TMSR and TMOR are assumed as150 MW and
300 MW (as unit ramp rates are reduced), respectively.

Results with different formulations are presented in Table
IV bellow: (1) the standard UC formulation (Std); (2) adding
cuts (Cuts); (3) and adding tightened constraints obtained in the
two/three-hour problems (Tightened). From (1) to (3), the
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process is accumulative. To demonstrate the performance of
our tightening approach, the problem with the standard
formulation is also solved with aggressive cuts and heuristics
provided by Cplex as (4) (Cplex Cuts) and (5) (Cplex
heuristics). The heuristics are called every 500 nodes. From
(4) to (5), the process is accumulative. The standard UC
formulation considered here has 2 binary (2-bin) decision
variables for unit on/off and start-up, and formulations with 3
binary (3-bin) decision variables for unit on/off, start-up and
shut-down is also discussed in the literature [3, 12, 13, and 19].
For comparison purposes, the above problem is also solved
with the 3-bin formulation in [19] (without cuts) as (6) (3-bin).

TABLE IV POLISH 2383-BUS SYSTEM

CPU| Gap Cost  [SolvelCut| B [#of | #of | #of

Formulation (s) [ (%) %) (s) |(s) [(s) | IBC|MIRC|Other
1) Std 1174[0.01]31,941,900 [1071]|665|310{3181| 836 | 345
2) Cuts 34710.01 (31,942,300 | 335 [220[ 51 |3001{ 2939 | 1304
3) Tightened 12710.01 (31,942,135 | 117 |22 {40 [2779] 1729 | 757
4) Cplex cuts 588 10.01 (31,942,300 | 492 [223[211|3166( 2959 | 2883
5) Cplex heuristics | 428 |0.01[31,942,200 | 334 |236]37 3330|2728 | 2939
6) 3-bin 1891]0.05 (31,943,000 |1800[969|666(6898| 4537 | 2959

Comparing (1) to (3), it can be seen that CPU, solving,
cutting and branching time is significantly reduced by adding
cuts and tightened constraints, while the solution quality is still
high. With the standard formulation, a feasible solution with a
gap of 0.01% is obtained in 1174 s, while the time on cutting
and branching is 665s and 310s. By adding cuts and tightened
constraints, a feasible solution which is 0.0007% higher than
the above is obtained in 127s, while the cutting and branching
time is only 22s and 40s. It demonstrates that tightening single
unit formulations also improves the computational efficiency
and solution quality when solving the overall UC problems.

Comparing (1), (4) and (5), the results show that CPU time
is reduced by adding aggressive cuts and heuristics in Cplex,
but still higher than that obtained with our cuts and tightened
constraints without adding those aggressive cuts and heuristics.
Comparing (1) and (6), the 2-bin formulation has lower CPU
time and less numbers of cuts as compared with the 3-bin.

The problem is also solved with different reserve
requirements. For the above 6 formulation configurations,
cutting and branching time is compared in Fig. 12, and the
numbers of cuts are shown in Table VI.

1800

® Cut ®Branch
1500
1200
900
600
300 I I I I
0 = I | ] I . -
OO ® G 6 HQG®GEG)  HERBGHG)E)
140TMSR, 150TMSR, 140TMSR,
300TMOR 290TMOR 290TMOR

Figure 12: Polish: Cutting and branching time with different formulations
under different TMSR/TMOR values: (1) Standard; (2) Cuts; (3) Tightened;
(4) Cplex cuts; (5) Cplex heuristics; and (6) 3-bin

TABLE VI POLISH: NUMBER OF CUTS UNDER DIFFERENT TMSR/TMOR

IBC MIRC Other Total

(1) Std 3,060 2,949 2,636 8,645

TMSR = | (2) Cuts 828 2,926 1,820 5,574
140 (3) Tightened 378 1,080 5,74 2,032
TMOR = | (4) Cplex cuts 2,831 2,775 2,774 8,380
300 (5) Cplex heuristics 2,916 | 2805 | 2,764 8,485
(6) 3-bin 7,075 4,745 2,985 14,805

(1) Std 3,015 2,954 2,662 8,631

TMSR = | (2) Cuts 810 2,991 1,777 5,578
150 (3) Tightened 358 1,292 769 2,419
TMOR = | (4) Cplex cuts 3,132 3,076 2,829 9,037
290 (5) Cplex heuristics 3,108 2,900 2,750 8,758
(6) 3-bin 6,888 4,634 2,894 14,416

(1) Std 3,024 | 2,833 | 2,655 8,512

TMSR = | (2) Cuts 697 2,895 1,676 5,268
140 | (3) Tightened 318 | 1,028 | 574 | 1,920
TMOR = | (4) Cplex cuts 2,703 2,813 2,663 8,179
290 (5) Cplex heuristics 2,964 | 2773 | 2,783 8,520
(6) 3-bin 6,898 | 4,639 | 2,974 | 14,511

Comparing (1) to (3), it shows that time on branching and
cutting is both dramatically reduced by adding cuts and
tightened constraints, demonstrating computational efficiency
of our approach. In addition, the total numbers of implied
bound cuts are reduced by 87% - 89%, implying most of this
type of cuts are applied to single units. The total numbers of
mixed integer rounding cuts are reduced by 57% - 63%, and the
remaining may be related to system-level constraints. The total
numbers of other cuts are reduced by 71% - 78%. Results
demonstrate great potential of our systematic approach to
tighten complicated MBLP problems.

Comparing (1), (4) and (5), the results show that the total
cutting and branching time is reduced by 32% - 74% after
adding aggressive cuts and heuristics in Cplex, but it is still
higher than that obtained with our cuts and tightened constraints
and without those aggressive cuts and heuristics. In addition,
after adding Cplex aggressive cuts and heuristics to the standard
2-bin formulation, the total numbers of implied bound cuts,
integer rounding cuts and other cuts are reduced by -5% ~ 3%
(a negative value means that the number of cuts is increased), -
5% ~ -2% and 3% ~ 5%, respectively. After adding our cuts
and tightened constraints to the standard 2-bin formulation,
time on branching and cutting are significantly reduced by 94%
- 96%. In addition, the numbers of implied bound cuts, integer
rounding cuts and other cuts are dramatically reduced by 88%
- 89%, 56% - 64% and 71% - 78%, respectively.

Comparing (1) and (6), it can be seen that the 2-bin performs
better in terms of solving time and numbers of cuts. The total
cutting and branching time with the standard 2-bin formulation
is less than that of the 3-bin by 16% - 45%. In addition, the
total numbers of implied bound cuts, integer rounding cuts and
other cuts with 2-bin before tightening is also less than those of
3-bin by 56% - 57%, 37% - 39% and 8% - 12%, respectively.

VI. CONCLUSION

In this paper, a systematic approach is developed to tighten
single-unit UC formulations in the data pre-processing stage for
the first time. Existing cuts are first applied, and then tightened
constraints are established based on novel “constraint-and-
vertex conversion,” “vertex elimination” and
“parameterization” processes. By analyzing problems with
short-time horizons, e.g., two or three hours, tightened
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formulations for single units with constant and generation-
dependent ramp rates are obtained, beyond what is in the
literature. For each category, its tightened constraints are
developed, and a look-up table is established. Then for each
unit, tightened constraints can be identified through table
lookup based on unit parameters in the data pre-processing
stage. Numerical testing results on IEEE 118-bus and Polish
2383-bus systems demonstrate computational efficiency and
solution quality benefits of formulation tightening. The
approach is general and has great potential for tightening
complicated MBLP problems. We believe that tightened
single-unit formulations can be fully exploited by using our
latest powerful decomposition and coordination approach [33].
This will fundamentally change how we formulate and solve
complicated MBLP problems in power systems and beyond.

According to our knowledge, it is hard to extend the above
approach to tighten the entire unit commitment problem with a
large number of units considering system-level constraints, e.g.,
system demand, reserve requirement, and transmission capacity
constraints. To tighten those system-level coupling constraints,
we have developed another systematic approach [34].

VII. APPENDIX

A. Applied cuts

P () + (1= x(2)) P™™ < P 1, (A1)
P (1) + p(t) < px(t) + P (1-x(1) ), V1. (A2)
2ax, +28y <b

:>;Lajjxj+1/(l—f)i:§<0g,y,,SLbJ,fzb—LbJ. (A3)

B. Tight constraints for single-unit formulations
p(t—=D)<(P™ +R/2)x(t—1)—(P™ —P™ —R/2u(t—1)

H(P™ = P™ — R/ 2)(x(t) —u(t)), Vt. (B1)
—p(t=1)+ p(t) = —(P™ + R/ 2)x(t—1)+ R/ 2u(t 1)
+H(P™™ =R/ 2)x(t)+ R/ 2u(t), Vt. (B2)
p(t+1)= p(t) < —P™"x(t) + (P™ + R)x(t +1)
—R/2u(t+1),¢ €[, T -1]. (B3)
—p(t=1)+ p(t) < —P™"x(t - 1)+ (P™™ + R / 2)x(¢)
—R/2u(t)+ R/ 2(x(t +1)—u(t +1)),¢ €[, T —1]. (B4)

p(t=1)— p(t)+ p(t+1) < (P™ + R/ 2)x(t —1)
—R/2u(t—1)—(P™ — R/ 2)x(t) - (P™ — P™ — R/ 2)u(t)
+P™x(t+1) = (P™ — P™ — R/ Qu(t +1),t €[1,T —1].(B5)
p(t+1) < —(P™ — P™ —3R/ 2)u(t) + P™ x(t +1)

—~(P™ — P™ — R/ 2)u(t +1),¢ €[1,T —1]. (B6)
p(t=1)<(P™ +R/2)x(t—1)— Ru(t-1)

+Rx(t) = (P™ = P™ =R/ 2)u(t) +

(P™ —P™ 3R/ 2)(x(t +1)—u(t+1)),t €[l,T~1]. (B7)
p(t) < —(P™ = P™ —3R/2)u(t—1)+ (P™ — R)x(f)
—~(P™ —P™ — R/ 2)u(t)

+R(x(t+1)—u(t+1)),t €[1, T -1]. (B8)

pt=1)— p(t+1) <(P™ +R/2)x(t—1)— 3R/ 2u(t —1)

(4]

(3]
(6]

(7]
(8]
[9]

[10]

(18]

[19]

[20]

+3R/ 2(x(t) —u(t)) — P™x(t +1),¢ € [1, T —1]. (B9)
p(t—1)— p(t+1) < (P™ + R/ 2)x(t —1)— Ru(t — 1)+ Rx(¢)
“3R/2u(t)— (P™ — R/ 2)x(t +1)

—R/2u(t+1),t €[, T—1]. (B10)
—p(t=1)+ p(t+1) < —P™x(t—1)— R / 2u({)
HP™ +2R)x(t+1)=3R/2u(t+1),t e[LT—-1].  (B11)

VIII. REFERENCES

A. J. Wood, and B. F. Wollenberg, Power generation, operation, and
control, John Wiley & Sons, 2012.

D. P. Bertsekas, Nonlinear programming, 3™ ed, Athena scientific, 2016.
G. Morales-Espafia, J. M. Latorre, and A. Ramos, “Tight and compact
MILP formulation for the thermal unit commitment problem,” /EEE T
Power Syst., Vol. 28. no.4, pp.4897-4908, 2013.

B. Kocuk, S. S. Dey, and X. A. Sun, “New formulation and strong
MISOCP relaxations for AC optimal transmission switching problem,”
IEEE T Power Syst., Vol. 32, no. 6, pp. 4161-4170, 2017.

G. Angulo, S. Ahmed, S. S. Dey, and V. Kaibel, “Forbidden vertices,”
Math. Oper. Res., Vol. 40, no. 2, pp. 350-360, 2014.

A. Frangioni, C. Gentile, and F. Lacalandra, “Tighter approximated MILP
formulations for unit commitment problems,” I[EEE T Power Syst., Vol.
24, no. 1, pp. 105-113, 2008.

C. Zhao, and Y. Guan, “Unified stochastic and robust unit commitment,”
IEEE T Power Syst., Vol. 28, no. 3, pp.3353-3361, 2013.

D. Rajan, and S. Tkriti, “Minimum up/down polytopes of the unit
commitment problem with startup costs,” Report RC23628, IBM, 2005.
J. Lee, L. Leung, and M. Frangois, “Min-up/min-down polytopes,”
Discrete Optim., Vol. 1, no. 1, pp. 77 - 85, 2004.

J. M. Arroyo, and A. Conegjo, “Modeling of start-up and shut-down power
trajectories of thermal units,” IEEE T Power Syst., Vol. 19.n0.3, pp.1562-
1568, 2004.

C. Simoglou, P. Biskas, and A. Bakirtzis, “Optimal self-scheduling of a
thermal producer in short-term electricity markets by MILP,” IEEE T
Power Syst., Vol. 25. no.4, pp.1965-1977, 2010.

P. Damci-Kurt, S. Kiigiikyavuz, D. Rajan, and A. Atamtiirk, “A
polyhedral study of production ramping,” Math. Program., Vol. 158, no.
1, pp. 175-205, 2016.

J. Ostrowski, M. F. Anjos, and A. Vannelli, “Tight mixed integer linear
programming formulations for the unit commitment problem,” /EEE T.
Power Syst., Vol. 27. no.1, pp.39-46, 2012.

K. Pan, and Y. Guan, “A polyhedral study of the integrated minimum-
up/-down time and ramping polytope,” arXiv:1604.02184, 2016.

Y. Guan, K. Pan, and K. Zhou, “Polynomial time algorithms and extended
formulations for unit commitment problems,” IISE Transactions, Vol. 50,
no. 8, pp. 735-751, 2018.

H. Song, T. Zheng, H. Liu, and H. Zhang, “Modeling MW-dependent
ramp rate in the electricity market,” 2014 IEEE PES GM, 2014.

B. Yan, P. B. Luh, E. Litvinov, T. Zheng. D. Schiro, M. A. Bragin, F.
Zhao. J. Zhao, and 1. Lelic, “Effective modeling and resolution of
generation-dependent ramp rates for unit commitment,” 2017 [EEE PES
GM, 2017.

B. Yan, P. B. Luh, E. Litvinov, T. Zheng. D. Schiro, M. A. Bragin, F.
Zhao. J. Zhao, and 1. Lelic, “A systematical approach to tighten unit
commitment formulations,” 2018 IEEE PES GM, 2018.

B. Knueven, J Ostrowski, and J] Wang, “The ramping polytope and cut
generation for the unit commitment problem,” INFORMS Journal on
Computing, 2017.

M. Carrién and J. M. Arroyo, “A computationally efficient mixed-integer
linear formulation for the thermal unit commitment problem,” /EEE T
Power Syst., Vol. 21, no. 3, pp. 1371-1378, Aug. 2006.

ISO-NE, ISO New England Operating Procedure No. 8 Operating
Reserve and Regulation, May 2015, http://www.iso-
ne.com/rules_proceds/operating/isone/op8/op8_rto_final.pdf

D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, Fourth
Edition, Springer, 2015.

Ed Rothberg, “The CPLEX Library: Presolve and Cutting Planes.”

G. Nemhauser and L. A. Wolsey, Integer and Combinatorial
Optimization, John Wiley & Sons, 1988.

G. B. Dantzig, and B. Curtis Eaves, “Fourier-Motzkin elimination and its
dual,” J Comb Theory A, Vol.14, no. 3, pp. 288-297, 1973.

0885-8950 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


http://www.iso-ne.com/rules_proceds/operating/isone/op8/op8_rto_final.pdf
http://www.iso-ne.com/rules_proceds/operating/isone/op8/op8_rto_final.pdf

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2019.2935003, IEEE

Transactions on Power Systems

[26] Heidelberg University,
heidelberg.de/groups/comopt/software/PORTA/

[27] L. Khachiyan, E. Boros, K. Borys, V. Gurvich, and K. Elbassioni,
“Generating all vertices of a polyhedron is hard,” Twentieth Anniversary
Volume, pp. 1-17, Springer, New York, NY, 2009.

[28] A. Schrijver, Combinatorial optimization: polyhedra and efficiency,
Springer Science & Business Media, 2003.

[29] E.Balas, and R. Jeroslow, “Canonical cuts on the unit hypercube, ” SIAM
J Appl Math, Vol.23, no. 1, pp. 61-69, 1972.

[30] IBM ILOG, “IBM ILOG CPLEX Optimization Studio Information
Center,” http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r5/index.jsp.

[31] IEEE 118-bus system. [Online]. Available: http://motor.ece.iit.edu/data/

[32] Polish 2383-bus system. [Online]. Available: http://www.pserc.cornell.
edu/matpower/docs/ref/matpower5.0/case2383wp.html

[33] M. A. Bragin, P. B. Luh, B. Yan, and X. Sun, “A Scalable Solution
Methodology for Mixed-Integer Linear Programming Problems Arising
in Automation,” IEEE T Autom. Sci. Eng., early access.

[34] B. Yan, P. B. Luh, E. Litvinov, T. Zheng. D. Schiro, M. A. Bragin, F.
Zhao. J. Zhao, and 1. Lelic, “Effects of tightening unit-level and system-
level constraints in unit commitment,” 2019 IEEE PES GM, 2019.

http://www.iwr.uni-

Bing Yan (S’11-M’17) received the B.S. degree from Renmin University of
China in 2010, M.S. and Ph.D. degrees from University of Connecticut in 2012
and 2016, respectively. She is currently an assistant professor in the Department
of Electrical and Microelectronic Engineering, Rochester Institute of
Technology. Her research interests include power system optimization, grid
integration of renewables, energy-based operation optimization of distributed
energy systems, and scheduling of manufacturing systems.

Peter B. Luh (S’77-M’80-SM’91-F’95) received the B.S. degree from
National Taiwan University, the M.S. degree from M.LT., and the Ph.D. degree
from Harvard University. He has been with the University of Connecticut since
1980, and is the Board of Trustees Distinguished Professor and SNET Professor
of Communications & Information Technologies. His research interests include
smart power systems—smart grid, design of auction methods for electricity
markets, effective renewable (wind and solar) integration to the grid, electricity
load and price forecasting with demand response, and micro grid. He was the
Vice-President of Publication Activities for the IEEE Robotics and Automation
Society.

Tongxin Zheng (SM’08) received the B.S. degree in electrical engineering
from North China Institute of Electric Power, Baoding, China, in 1993, the M.S.
degree in electrical engineering from Tsinghua University, Beijing, China, in
1996, and the Ph.D. degree in electrical engineering from Clemson University,
Clemson, SC, USA, in 1999. He is currently a Technical Director at ISO New
England. His main research interests include power system optimization and
electricity market design.

Feng Zhao (M’08) received the B.S. degree in automatic control from
Shanghai JiaoTong University, Shanghai, China, in 1998, the M.S. degree in
control theory and control engineering from Tsinghua University, Beijing,
China, in 2001, and the Ph.D. degree in electrical engineering from the
University of Connecticut, Storrs, CT, USA, in 2008. He is currently a Lead
Analyst at ISO New England, Holyoke, MA, USA. His research interests
include mathematical optimization, power system planning and operations, and
economics of electricity markets.

Mikhail A. Bragin (S’11-M’17) received his B.S. and M.S. degrees in
mathematics from the Voronezh State University, Russia, in 2004, the M.S.
degree in physics and astronomy from the University of Nebraska-Lincoln,
USA, in 2006, and the M.S. and Ph.D. degree in electrical and computer
engineering from the University of Connecticut, USA, in 2014 and 2016,
respectively. He is an assistant research professor in electrical and computer
engineering at the University of Connecticut. His research interests include
mathematical optimization, including power system optimization, grid
integration of renewables (wind and solar), energy-based operation
optimization of distributed energy systems, and scheduling of manufacturing
systems.

Jinye Zhao (M’11) received the B.S. degree from East China Normal
University, Shanghai, China, in 2002, the M.S. degree in mathematics from
National University of Singapore, Singapore, in 2004, and the M.S. degree in
operations research and statistics and the Ph.D. degree in mathematics from
Rensselaer Polytechnic Institute, Troy, NY, USA, in 2007. She is currently a
Lead Analyst at ISO New England, Holyoke, MA, USA. Her main interests

include game theory, mathematical programming, and electricity market
modeling.

Dane A. Schiro (M’14) received the B.S. degree in environmental engineering
from the Johns Hopkins University, Baltimore, MD, USA, and the Ph.D. degree
in industrial engineering from the University of Illinois, Urbana, IL, USA. He
is currently a Senior Analyst at ISO New England, Holyoke, MA, USA. His
research interests include the intersection of optimization theory, economics,
and operations.

Izudin Lelic (M’98) received the B.S. and M.S. degrees in electrical
engineering from University of Tuzla, Bosnia-Herzegovina and University of
Belgrade, Serbia. He is currently a Principal Analyst at ISO New England,
Holyoke, MA, USA. His research interests include electricity markets and
power system analysis and simulations.

0885-8950 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/
http://motor.ece.iit.edu/data/

