
Abstract—Unit Commitment is an important problem faced by 
independent system operators. It is usually formulated as a Mixed 
Binary Linear Programming (MBLP) problem, and is believed to 
be NP hard. To solve UC problems efficiently, an idea is through 
formulation tightening. If constraints can be transformed to 
directly delineate an MBLP problem’s convex hull during data 
preprocessing, then the problem can be solved by using linear 
programming methods. The resulting formulation can be reused 
for other data sets, tremendously reducing computational 
requirements. To achieve the above goal, both unit- and system-
level constraints are tightened with synergistic combination in 
this paper. Unit-level constraints are tightened based on existing 
cuts and novel “constraint-and-vertex conversion” and vertex 
projection processes. To tighten system-level constraints, selected 
cuts are applied and some potentially powerful cuts are identified. 
Numerical results demonstrate the effectiveness of tightening 
unit- and system-level constraints.  

Index Terms—Unit commitment, mixed binary linear 
programming, convex hull, formulation tightening.1 

I.  INTRODUCTION 

nit Commitment (UC) is an important problem faced by 
independent system operators.  It is to minimize the total 

commitment and dispatch cost by committing appropriate units 
while satisfying system demand and other constraints [1].  The 
problem is usually formulated as a Mixed Binary Linear 
Programming (MBLP, with binary and continuous variables) 
problem, and is believed to be NP hard.  For such difficult 
problems to be solved daily within short amount of time, the 
state-of-the-practice in the industry is to use commercial 
solvers generally based on the branch-and-cut method.  For 
problems with a large number of units, the solvers may 
experience difficulties.  

To solve the UC problem efficiently, most research focuses 
on solution methodology, and limited results have been 
reported on problem formulation.  Formulation, however, is 
critically important since if constraints directly delineate an 
MBLP problem’s convex hull (i.e., the formulation is “tight”), 
the problem can be solved by using linear programming (LP) 
methods without combinatorial difficulties.  Formulation 
tightening, the process of transforming constraints to delineate 
the convex hull during data preprocessing, thus has a great 
potential.  If it can be done, then the resulting formulation can 
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be reused for other data sets, tremendously reducing 
computational requirements.   

In this paper, both unit-level and system-level constraints 
are tightened.  The problem, however, is challenging.  For a 
given formulation, it is difficult to obtain the convex hull, even 
for a single-unit problem.  Also it is hard to get tight constraints 
in generic forms in terms of unit parameters explicitly.  If a 
specific unit is considered and tightened constraints are 
obtained in terms of numerical values, the tightened constraints 
obtained cannot apply to other units.  As for system-level 
constraints such as system demand and reserve requirements, 
they only contain continuous variables, and cannot be 
tightened alone. Also there are a lot of candidates for existing 
cuts, and most of them are not helpful.   

Section II of this paper presents a literature review, where a 
few tightened formulations for single-units were presented 
without explaining how they were generated.  Very few studies 
were reported on tightening system-level constraints.  In 
Section III, unit-level constraints are tightened without system-
level constraints.  The idea is first to apply data independent 
and easily implementable existing cuts based on constraint 
characteristics.  More importantly, tightened constraints are 
established based on novel “constraint-and-vertex conversion” 
and vertex projection processes.  For a problem with given unit 
parameters, the idea is to relax integrality requirements; 
generate vertices from constraints; project vertices onto the 
original convex hull; convert these vertices back to tightened 
constraints; and represent the numerical coefficients in terms 
of unit parameters.  Tightened formulations for individual units 
can then be obtained through simple table lookup.  To tighten 
system-level constraints, unit on/off variables and unit 
capacity constraints are incorporated.  Selected cuts are applied 
and some potential powerful cuts (e.g., cover cuts for peak load 
hours) are identified.    

In Section IV, two examples are presented.  The first 5-bus 
problem is to illustrate the idea of tightening unit- and system-
level constraints.  The second IEEE 118-bus problem is to 
demonstrate the performance of tightening.  Numerical results 
demonstrate effectiveness of tightening unit- and system-level 
constraints, and great potential for tightening MBLP problems. 
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II.  LITERATURE REVIEW 

In the following, tightened unit-level and system-level 
formulations are reviewed.  Our recent work is also presented.   
Tightened unit-level formulations.  In the literature, a few 
tightened formulations were presented without explaining how 
they were generated.  Simplified UC with start-up and 
minimum up/down-time constraints was considered in [3].  
New start-up/shut-down constraints were developed by 
analyzing a 7-hour formulation, and proved to be tight for the 
simplified UC problem.  UC with capacity, ramp rate, and 
minimum up/down-time constraints was studied in [4], and 
new ramp rate constraints were established for two-hour 
problems.  In [5], similar tightened constraints were presented 
for a three-hour problem.  For a two/three-hour problem, 
combined minimum-up/down time and ramp rate constraints 
were established under different parameter settings in [6].  In 
[4-6], with specific assumptions on unit parameters, 
formulations were proved tight for short-period problems, and 
shown computationally efficient for overall UC problems.   
Tightened system-level formulations.  Very few studies were 
reported on tightening system-level constraints and the overall 
UC formulation.  In [7], after projecting the power generation 
level onto [0, 1], the overall formulation without considering 
transmission capacity constraints was tightened iteratively 
online by using the lift-and-project method.  Numerical results 
demonstrated the effectiveness and validity of the method. 
Our recent work.  In [8], a systematic approach was 
developed based on “constraint-and-vertex conversion” and 
“vertex projection” processes.  The focus is on single units 
assuming system-wide constraints are relaxed. Innovative 
aspects also include elimination of dependence on initial 
conditions, and handling of different types of units.  Numerical 
simulation demonstrates effectiveness of the approach.   

III.  FORMULATION TIGHTENING  

In Subsection A, a standard UC formulation is presented.  
Unit-level constraints are tightened by applying existing cuts 
and generating tightened constraints by “constraint-and-vertex 
conversion” and vertex projection processes as to be discussed 
in Subsection B.  System-level constraints are then tightened 
by applying selected cuts in Subsection C.   
A.  UC formulation [1] 

For unit k at node i, at each time t, major decision variables 
include unit on/off status x (binary), startup decision u (binary), 
and generation level p (continuous).  Unit-level and system-
level constraints are presented in first two subsubsections.  The 
objective function is discussed in Subsubsection c. 
a) Unit-level constraints   

Unit-level constraints include generation capacity, offer 
price block, startup, ramp rate, minimum up/down-time, and 
reserve capability.  Indices i and k are omitted for brevity.  
1). Generation capacity: If a unit is online, its generation level 
should be within its minimum value Pmin and maximum value 
Pmax; otherwise, its generation level has to be zero, i.e  

min max( ) ( ) ( ) , .x t P p t x t P t              (1) 

2). Offer price block: Energy generation cost of a unit is 
usually a piecewise-linear function of p.  To maintain linearity, 
a few offer price blocks are considered, where the price is a 
constant in each block (assume offer prices are monotonically 
non-decreasing).  For each block, a new continuous decision 
variable pb is needed, and their sum equals p, i.e.,  

max( ) , ( ) ( ), ,b b b
b

p t P p t p t t              (2) 

where Pmax
b (MW) is the maximum generation of block b. 

3). Ramp rate constraints: The generation level change 
between two consecutive hours cannot exceed hourly ramp 
rate R.  Also it cannot exceed Pmin plus 30-minute ramp upon 
starting up or at shutting down following standard industrial 
practice.  The above is formulated in a linear way below, 

min min( ) ( 1) ( / 2 ) ( 1) ( / 2) ( ), ,p t p t R P x t P R x t t         
min min( 1) ( ) ( / 2) ( 1) ( / 2 ) ( ), .p t p t P R x t R P x t t        (3) 

4). Start up constraints: Binary startup variable u(t) equals 1 if 
the unit is turned on from offline at hour t, i.e., 

( ) ( ) ( 1).u t x t x t               (4) 
5). Minimum up/down-time: The unit must remain online or 
offline for its minimum up or down time, respectively.  The 
minimum up time is modeled as follows [9],  
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In the above, TMU denotes the minimum up time, and TMOn 
denotes the number of hours the unit must be on at the 
beginning of the time horizon (assume given).  The modeling 
of minimum down time is similar.  
6). Reserve capability: To ensure system reliability under 
contingencies, ten-minute spinning reserve (TMSR) and 
thirty-minute operating reserve (TMOR) are considered.  For 
TMSR, designation pTMSR cannot exceed capability PTMSR 
(calculated based on R) and is zero when the unit is off, i.e., 

max( ) , ( ) ( ) ( ), .TMSR TMSR TMSRp t P p t p t P x t t             (6) 
The modeling of TMOR is similar, and the difference is 

that the unit can provide TMOR when it is off.  
b) System-level constraints  

System-level constraints include system demand, reserve 
requirement, and transmission capacity.   
1). System demand: Total generation equals total demand, i.e.,  

,
,

( ) ( ), .D
i k i

i k i
p t P t t               (7) 

where Pi
D(t) is the demand of node i at time t.  

2). Reserve requirement: The total TMSR of all units has to 
satisfy the requirement PS,TMSR, i.e, 

,
,

,
( ) ( ), .TMSR S TMSR

i k
i k

p t P t t             (8) 

TMOR is modeled similarly.  
3). Transmission capacity: For line l, DC power flow fl(t) is a 
linear combination of nodal injections Pi(t) from all nodes 



weighted by generation shift factors i,l, and it cannot exceed 
capacity fl

max at every t, i.e., 
max max

,( ) , ( ) ( ),l l l l i l i
i

f f t f f t a P t      

,( ) ( ) ( ), .D
i i k i

k
P t p t P t t              (9) 

c) Objective function  
The total cost to be minimized is the commitment cost plus 

the dispatch cost, i.e., 
 , , , , , , , ,( ) ( ) ( ),NL

i k i k i k i k i k b i k b
t i k t i k b

u t S x t S C p t         (10) 

where Si,k, Si,k
NL, and Ci,k,b are start-up, no-load, and generation 

costs, respectively.   
The above UC problem (1)-(10) is an MBLP problem.   

B.  Tighten unit-level constraints  
In this subsection, unit-level constraints are tightened by 

applying existing cuts and by “constraint-and-vertex 
conversion” and vertex projection processes.  
a) Apply existing cuts 

Based on the characteristics of unit-level constraints, 
implied bound and mixed integer rounding cuts are applied. 
1) Implied bound cuts (IBC) [10] 

Implied bound cuts reflect the relationship between binary 
and continuous variables when the binary imply bounds on the 
continuous.  Consider the continuous offer price block variable 
pb with an upper bound Pmax

b, i.e., pb  Pmax
b.  In addition, the 

on/off variable x implies a new upper bound on pb, e.g., x = 0 
 pb  0 (= 0).  The idea is to lift x into pb  Pmax

b as follows,  
  max max( ) 0 1 ( ) , .b b bp t P x t P t             (11) 

Eq. (11) guarantees that when x(t) = 1, pb(t)  Pmax
b; and 

when x(t) = 0, pb(t)  0 (= 0).  
Implied bound cuts can also be applied to the reserve 

capability constraints.   
2) Mixed-integer rounding cuts (MIRC) [11] 

Mixed-integer rounding cuts apply integer rounding on 
coefficients of integer variables and the constant of a 
constraint.  Consider a constraint z - y ≤ b with integer variable 
z and continuous variable y (z ≥ 0, y ≥ 0).  After relaxing the 
integrality requirement on z, (b, 0) is a vertex of the convex 
hull of the LP-relaxation problem.  If constant b is not an 
integer, the vertex is a non-integer vertex.  To avoid this, a 
mixed-integer rounding cut that goes through the two points 
(b, 0) and (b + 1, b + 1 - b) ( is the floor function that 
outputs the greatest integer less than or equal to b) on the 
convex hull of the LP-relaxation problem is applied below,  

 
1 .

1
z y b

b b
    

    

         (12) 

For the UC problem, mixed integer rounding cuts can be 
applied to the offer price block constraints as follows, 

min ( ) ( ) 0, .b
b

P x t p t t               (13) 

b) Establish tight constraints [8] 
Tight constraints are established through four steps 

following our approach developed in [8].  For a unit with given 
parameters in numerical values, the first step is to relax 
integrality requirements, and generate vertices of the convex 

hull of the LP-relaxation problem from constraints (constraint-
to-vertex conversion).  The second step is to project this set of 
vertices onto the original convex hull.  For MBLP problems, 
this projection is simply done by dropping vertices with 
fractional values for binary variables.  The projected vertices 
are the vertices of the original convex hull.  The third step is to 
convert those vertices back to tight constraints (vertex-to-
constraint conversion).  In the last step, to make those tight 
constraints reusable for other units, their numerical 
coefficients are represented in terms of unit parameters.  It is 
done through analyzing these constraints and the relationship 
between numerical coefficients and unit parameters.  To 
guarantee that resulting constraints are valid under all possible 
unit statuses (on, off, start-up or shut-down), the 
parameterization process may impose conditions on unit 
parameters (e.g., Pmin, Pmax; and R).  A few sets of tightened 
constraints are thus developed based on unit parameters.  
Tightened formulations for individual units can then be 
obtained through simple table lookup.  For practical 
applications, our goal is to obtain “near-tight” formulations by 
analyzing short time horizon problems, e.g., 3 hours.   
C.  Tighten system-level constraints  

As mentioned earlier, system-level constraints only contain 
continuous variables (generation level and reserve), and cannot 
be tightened alone.  To tighten them, unit on/off variables and 
unit capacity constraints are incorporated.  Given these 
characteristics, cover and flow cover cuts are applied.   
a) Cover cuts (CC) [10]    

Cover cuts apply to constraints take the form of a knapsack 
constraint with a set of binary variables z shown as follows:   

, {0,1}, 0, 0.j j j j
j N

a z b z a b


            (14) 

A minimal cover C is a subset of z such that if all the subset 
z are set to one, the knapsack constraint would be violated, but 
if any one subset z is excluded, the constraint would be 
satisfied.  A cover cut is defined as,  

1, , 0, , .j j j
j C j C

z C C N a b a j C
 

             (15) 

Here the cover cuts cannot be directly applied to system-
level constants as they do not follow the structure of cover cuts.  
The idea of cover cuts can still be explored.  For example, 
without considering other constraints, a cover UCap is a subset 
of units such that if all the subset units are set to be on with 
Pmax, the demand can be covered (may exceed), but if any one 
subset unit is excluded, the demand cannot be satisfied.  In 
practice, UCap can be obtained by sorting units based on their 
generation capacities in an ascending order during the data 
preprocessing stage, and |UCap| represents the smallest number 
of units that is needed to satisfy demand.  This type of “cover 
cuts” is defined as follows (t is omitted, and j is used as the unit 
index instead of (i, k) for brevity), 

max, , 0,
Cap

Cap Cap Cap D
j j i

j U j U i
x U U U P P

 

          

max , .Cap Cap
jP j U              (16) 

In the above, U is the set of units.   
The above cut can be also applied to TMSR with UTMSR 

obtained by sorting units based on their TMSR capacities 



ascendingly.  The total number of online units should be no 
less than the larger of |UCap| and |UTMSR|.   

There is also another way to explore the idea of cover cuts.  
Consider UTMSR’ as a subset of units.  If all the subset units are 
set to be on with reserve capability as PTMSR, the reserve 
requirement cannot be satisfied.  Also there exists at least one 
unit in the remaining unit set U\UTMSR’: if the unit is added to 
UTMSR’, the demand can be covered.  Therefore at least one unit 
in U\UTMSR’ must be on, i.e., 

' '

' ' ,

\
1, , 0,

TMSR TMSR

TMSR TMSR S TMSR TMSR
j j

j U U j U
x U U P P

 

         

' ', \ .TMSR TMSR TMSR
jP j U U             (17) 

Here two types of UTMSR’ can be obtained by sorting units based 
on their TMSR capacities ascendingly and descendingly.  
b) Flow cover cuts (FCC) [12]   

Flow cover cuts are for constraints that contain continuous 
variables with their lower and upper bounds depending on the 
values of binary variables.  The idea is to treat such a constraint 
as a single node in a network where continuous variables are 
in/out-flows that can be on or off based on binary variables.  
Flows and demand imply a knapsack constraint to generate 
cuts on the flows.  In UC, the TMSR capability constraints and 
reserve requirements can be rewritten as follow, 

,0 , .TMSR TMR TMSR S TMSR
j j j j j

j
x p P x p P             (18) 

In the above, the lower and upper bounds of continuous 
pTMSR depend on binary x, and pTMSR is the out-flow in the 
network.  This fits the format of flow cover cuts, and one type 
of flow cover cuts established in [12] is defined as, 

' '
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\
.

TMSR TMSR

TMSR TMSR S TMSR
j j j

j U U j U
p P x P

 

             (19) 

The above flow cover cuts and cover cuts in Subsubsection 
III-C-a work well for peak load hours.  

In addition, the key idea of flow cover cuts can be used to 
filter transmission lines with large capacities.  Without 
considering energy balance, the largest possible power flow for 
line l is calculated as follows,  

 
,
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, ,

: 0
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i l

NPB max D
i l i k iti a k

f a P P t


    
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,
: 0

max ( ) , .
i l

D
i l iti a

a P t l


            (20) 

If fl
max,NPB is smaller than the line capacity fl

max for every t, then 
the transmission capacity constraint is always satisfied at the 
positive flow direction, no matter how the units are committed 
and dispatched.  The transmission capacity constraint for this 
line can be thus removed.  The transmission constraints in the 
opposite flow direction can be handled in a similar way.   

IV.  TESTING RESULTS 

The method developed above has been implemented by 
using IBM ILOG CPLEX Optimization Studio V 12.8.0.0 on 
a PC with 2.90GHz Intel Core(TM) i7 CPU and 16G RAM.  
Two examples are presented.  The first small 5-bus problem 
illustrates the idea of tightening unit- and system-level 
constraints.  The second IEEE 118-bus problem demonstrates 
the performance of our constraint tightening approach.   
Example 1.  5-bus system: One hour  

This example is based on a 5-bus system with 9 units.  Unit 
parameters Pmin, Pmax, R, and PTMSR are shown in Table I below.  
For the peak hour, total load is 1422 MW, and it is assumed 
that the TMSR requirement is 130 MW.   

 

TABLE I 5-BUS SYSTEM: UNIT PARAMETERS 
 1 2 3 4 5 6 7 8 9 

Pmin  80 102 139 76 123 426 158 158 105.6 
Pmax  181 183 240 245 123 426 295 295 338 

R 72.4 73.2 96 98 123 426 118 118 135.2 
PTMSR 12.07 12.2 16 16.33 20.5 71 19.67 19.67 22.53 

 

To tighten unit-level constraints, consider a two-hour (t - 1, 
t) problem for unit 4.  Capacity, ramp rate and start up 
constraints are considered as shown at the top left corner of 
Fig. 1 (x(t-1), u(t-1), p(t-1), x(t), u(t), p(t) (the first three are 
initial conditions)): x1-x6).  Other constraints are not considered 
for simplicity, and ranges for binary variables (0 ≤ x ≤ 1) are 
not presented for brevity.  By constraint-to-vertex conversion, 
the vertices obtaind are shown at the bottom of Fig. 1 (only the 
last 10 vertices are shown).  By keeping only binary vertices, 
the tight constraints that directly delineate the problem convex 
hull is shown at the top right corner of Fig.1. 

 

      

 
Figure 1: Constraints-and-vertex conversion 

 

There are four new constraints (1, 2, 10, and 11) as 
compared to the original.  Take (2) as an example, it can be 
generalized to the following constraint (24), 

max max min( ) ( ) ( / 2) ( ), .p t P x t P P R u t t            (21) 
In the above, when x(t) = u(t) = 0, p(t) = 0; when x(t) = 1 and 
u(t) = 0, it represent the maximum generation level; and when 
x(t) = u(t) = 1, it represents the maximum generation limit upon 
starting up.  With Eq. (21), the right-hand side of capacity 
constraint Eq. (1) can be deleted. 

To tighten system-level constraints, the units are sorted in 
an ascending order based on their generation capacities, and 
UCap = {6, 9, 7, 8, 4}.  The order of units based on reserve 
happens to be the same: UTMSR = {6, 9, 7, 8}; UTMSR’

1 = {6, 9, 
7}; and UTMSR’

2 = {7, 8, 4, 3, 2, 1, 5}.  Given these, the three 
cover cuts and two flow cover cuts are shown as follows, 
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p P x P m

 

             (22) 

Example 2.  IEEE 118-bus system: 96-hour 
This example is based on the IEEE 118-bus system with 54 



units.  To test the performance of our unit-level tightened 
constraints, ramp rates of units are reduced by 2/3.  The 
problem is solved by using branch-and-cut with: (1) standard 
formulations presented in Subsection III-A; (2) additional unit-
level cuts and tightened constraints obtained in Subsection III-
B; (3) additional system-level cuts and transmission constraint 
filter obtained in Subsection III-C; and (4) additional 
constraints from (2) and (3).  The stop time is 600 seconds and 
the stop gap is 0.01%.  Results are compared in Table II below.  
CPU time is the total time including data and model loading, 
problem solving and solution outputting time, and the solving 
time excludes loading and outputting time.   

 

TABLE II IEEE 118-BUS SYSTEM: NOMINAL CASE 
 (1): Standard 

formulation 
(2): Tighten 
unit-level  

(3): Tighten 
system-level 

(4) Tighten 
both  

CPU time (s) 120.82 17.38 65.17 17.32 
Solving time (s) 112.3 11.98 55.69 11.88 

Cost ($) 3,925,757 3,925,896 3,925,767 3,925,795 
Gap (%) 0.01 0 0.01 0 
# of IBC 4,428 0 5,154 0 

# of MIRC 482 79 801 68 
# of CC 255 2 82 6 

# of FCC 3,170 1 3,289 1 
# of other cuts 261 19 275 9 

 

As shown in Table II, both CPU and solving time are 
reduced by tightening unit- and system-level constraints, while 
the former contributes much more than the latter.  In addition, 
the numbers of the cuts are significantly reduced by tightening.   

The problem is also solved with different reserve 
requirements.  CPU and solving time are compared in Fig. 2 
(Other = CPU - Solving), and the numbers of various cuts 
generated by the solver are show in Table III below.  

 

 
Figure 2: CPU and solving time under different reserve requirements 

 

TABLE III NUMBER OF CUTS UNDER DIFFERENT RESERVE REQUIREMENTS 
 110% Reserve 120% Reserve 130% Reserve 
 (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) 

IBC 4428 0 5410 0 5626 0 4857 0 5995 0 5188 0 
MIRC 482 79 743 68 468 97 433 49 409 77 371 52 

CC 255 2 186 6 155 2 235 5 166 167 182 138 
FCC 3170 1 3284 1 3759 26 2862 10 4050 24 2677 7 

Other 261 19 285 9 394 11 556 3 360 30 370 22 
 

According to the results, CPU and solving time are 
dramatically reduced by constraint tightening.  In addition, the 
numbers of different types of cuts are reduced.  Especially, 
implied bound cuts are all gone, and the total number of flow 
cover cuts is reduced by more than 99%.  Results demonstrate 
great potential of our approach to tighten MBLP problems.   

To further test our approach, some stress cases are 
constructed by dropping the load by 50% to represent a high 

level of renewable penetration in the system. The results with 
different formulations are presented in Table IV.  

 

TABLE IV IEEE 118-BUS SYSTEM: STRESS CASES 
  CPU (s) Solve (s) Cost ($) Gap (%) # of cuts 
100% 
reserve 

(1) 605.97 600.27 1,923,691 0.11 9,909 
(4) 606.15 600.31 1,923,115 0.08 372 

110% 
reserve 

(1) 608.84 603.45 1,983,544 0.08 11,070 
(4) 605.82 600.34 1,983,053 0.08 390 

120% 
reserve 

(1) 608.71 603.25 2,049,100 0.08 10,947 
(4) 606.16 600.33 2,048,024 0.07 446 

130% 
reserve 

(1) 604.88 601.72 N/A N/A 13,287 
(4) 606.21 600.38 2,139,220 0.21 473 

 

Since the stop gap is not satisfied, all the problems are 
solved to the stop time, i.e., 10 minutes.  According to Table 
IV, after tightening, better solutions are obtained within the 
same amount of time as compared to the standard formulation.  
Also the numbers of cut are significantly reduced.  

V.  CONCLUSION 

This paper is a pioneering effort toward obtaining high 
quality UC solutions fast by synergistic combination of 
tightening unit- and system-level constraints.  Unit-level 
constraints are tightened based on existing cuts and novel 
“constraint-and-vertex conversion” and vertex projection 
processes.  To tighten system-level constraints, unit on/off 
variables and unit capacity constraints are incorporated. 
Selected cuts are applied and some potential powerful cuts are 
identified. Resulting formulations can be reused, tremendously 
reducing computational requirements.  Numerical results 
demonstrate the effectiveness of tightening unit- and system-
level constraints, and the great potential for tightening other 
complicated MBLP problems in power systems and beyond. 
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