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Abstract—Unit Commitment is an important problem faced by
independent system operators. It is usually formulated as a Mixed
Binary Linear Programming (MBLP) problem, and is believed to
be NP hard. To solve UC problems efficiently, an idea is through
formulation tightening. If constraints can be transformed to
directly delineate an MBLP problem’s convex hull during data
preprocessing, then the problem can be solved by using linear
programming methods. The resulting formulation can be reused
for other data sets, tremendously reducing computational
requirements. To achieve the above goal, both unit- and system-
level constraints are tightened with synergistic combination in
this paper. Unit-level constraints are tightened based on existing
cuts and novel “constraint-and-vertex conversion” and vertex
projection processes. To tighten system-level constraints, selected
cuts are applied and some potentially powerful cuts are identified.
Numerical results demonstrate the effectiveness of tightening
unit- and system-level constraints.

Index Terms—Unit commitment, mixed binary
programming, convex hull, formulation tightening.
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1. INTRODUCTION

Unit Commitment (UC) is an important problem faced by
independent system operators. It is to minimize the total
commitment and dispatch cost by committing appropriate units
while satisfying system demand and other constraints [1]. The
problem is usually formulated as a Mixed Binary Linear
Programming (MBLP, with binary and continuous variables)
problem, and is believed to be NP hard. For such difficult
problems to be solved daily within short amount of time, the
state-of-the-practice in the industry is to use commercial
solvers generally based on the branch-and-cut method. For
problems with a large number of units, the solvers may
experience difficulties.

To solve the UC problem efficiently, most research focuses
on solution methodology, and limited results have been
reported on problem formulation. Formulation, however, is
critically important since if constraints directly delineate an
MBLP problem’s convex hull (i.e., the formulation is “tight”),
the problem can be solved by using linear programming (LP)
methods without combinatorial difficulties. Formulation
tightening, the process of transforming constraints to delineate
the convex hull during data preprocessing, thus has a great
potential. If it can be done, then the resulting formulation can

be reused for other data sets, tremendously reducing
computational requirements.

In this paper, both unit-level and system-level constraints
are tightened. The problem, however, is challenging. For a
given formulation, it is difficult to obtain the convex hull, even
for a single-unit problem. Also it is hard to get tight constraints
in generic forms in terms of unit parameters explicitly. If a
specific unit is considered and tightened constraints are
obtained in terms of numerical values, the tightened constraints
obtained cannot apply to other units. As for system-level
constraints such as system demand and reserve requirements,
they only contain continuous variables, and cannot be
tightened alone. Also there are a lot of candidates for existing
cuts, and most of them are not helpful.

Section II of this paper presents a literature review, where a
few tightened formulations for single-units were presented
without explaining how they were generated. Very few studies
were reported on tightening system-level constraints. In
Section II1, unit-level constraints are tightened without system-
level constraints. The idea is first to apply data independent
and easily implementable existing cuts based on constraint
characteristics. More importantly, tightened constraints are
established based on novel “constraint-and-vertex conversion”
and vertex projection processes. For a problem with given unit
parameters, the idea is to relax integrality requirements;
generate vertices from constraints; project vertices onto the
original convex hull; convert these vertices back to tightened
constraints; and represent the numerical coefficients in terms
of unit parameters. Tightened formulations for individual units
can then be obtained through simple table lookup. To tighten
system-level constraints, unit on/off variables and unit
capacity constraints are incorporated. Selected cuts are applied
and some potential powerful cuts (e.g., cover cuts for peak load
hours) are identified.

In Section IV, two examples are presented. The first 5-bus
problem is to illustrate the idea of tightening unit- and system-
level constraints. The second IEEE 118-bus problem is to
demonstrate the performance of tightening. Numerical results
demonstrate effectiveness of tightening unit- and system-level
constraints, and great potential for tightening MBLP problems.
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II. LITERATURE REVIEW

In the following, tightened unit-level and system-level
formulations are reviewed. Our recent work is also presented.
Tightened unit-level formulations. In the literature, a few
tightened formulations were presented without explaining how
they were generated. Simplified UC with start-up and
minimum up/down-time constraints was considered in [3].
New start-up/shut-down constraints were developed by
analyzing a 7-hour formulation, and proved to be tight for the
simplified UC problem. UC with capacity, ramp rate, and
minimum up/down-time constraints was studied in [4], and
new ramp rate constraints were established for two-hour
problems. In [5], similar tightened constraints were presented
for a three-hour problem. For a two/three-hour problem,
combined minimum-up/down time and ramp rate constraints
were established under different parameter settings in [6]. In
[4-6], with specific assumptions on unit parameters,
formulations were proved tight for short-period problems, and
shown computationally efficient for overall UC problems.
Tightened system-level formulations. Very few studies were
reported on tightening system-level constraints and the overall
UC formulation. In [7], after projecting the power generation
level onto [0, 1], the overall formulation without considering
transmission capacity constraints was tightened iteratively
online by using the lift-and-project method. Numerical results
demonstrated the effectiveness and validity of the method.
Our recent work. In [8], a systematic approach was
developed based on “constraint-and-vertex conversion” and
“vertex projection” processes. The focus is on single units
assuming system-wide constraints are relaxed. Innovative
aspects also include elimination of dependence on initial
conditions, and handling of different types of units. Numerical
simulation demonstrates effectiveness of the approach.

III. FORMULATION TIGHTENING

In Subsection A, a standard UC formulation is presented.
Unit-level constraints are tightened by applying existing cuts
and generating tightened constraints by “constraint-and-vertex
conversion” and vertex projection processes as to be discussed
in Subsection B. System-level constraints are then tightened
by applying selected cuts in Subsection C.

A. UC formulation [1]

For unit & at node 7, at each time 7, major decision variables
include unit on/off status x (binary), startup decision « (binary),
and generation level p (continuous). Unit-level and system-
level constraints are presented in first two subsubsections. The
objective function is discussed in Subsubsection c.

a) Unit-level constraints

Unit-level constraints include generation capacity, offer

price block, startup, ramp rate, minimum up/down-time, and
reserve capability. Indices i and & are omitted for brevity.
1). Generation capacity: If a unit is online, its generation level
should be within its minimum value P"" and maximum value
P otherwise, its generation level has to be zero, i.e

x(O)P™ < p(t) < x(t)P™, V1. (1)

2). Offer price block: Energy generation cost of a unit is
usually a piecewise-linear function of p. To maintain linearity,
a few offer price blocks are considered, where the price is a
constant in each block (assume offer prices are monotonically
non-decreasing). For each block, a new continuous decision
variable pj is needed, and their sum equals p, i.e.,

P, =B, 2 p, () = p), V1, @

where P, (MW) is the maximum generation of block b.

3). Ramp rate constraints: The generation level change
between two consecutive hours cannot exceed hourly ramp
rate R. Also it cannot exceed P™" plus 30-minute ramp upon
starting up or at shutting down following standard industrial
practice. The above is formulated in a linear way below,

p()—p(t -1 <(R/2-P™)x(t—1)+(P™ + R/2)x(1),Vt,
p(t=1)—p) <(P™ +R/2)x(t=1)+(R/2—P"™)x(1),Vt. (3)
4). Start up constraints: Binary startup variable u(t) equals 1 if

the unit is turned on from offline at hour ¢, i.e.,

u(t) = x(t)—x(¢-1). 4
5). Minimum up/down-time: The unit must remain online or
offline for its minimum up or down time, respectively. The

minimum up time is modeled as follows [9],

> x(r) =T,
=1

t+T‘Z:71 x(T) > TMU (X(t)_x(t_l)),t < [1+TM0n,T—TMU +1],

> (x(0) ~ (x() ~x(t =1))) 2 0, € [T~ T +2,T], (5)

In the above, 7MY denotes the minimum up time, and 79"
denotes the number of hours the unit must be on at the
beginning of the time horizon (assume given). The modeling
of minimum down time is similar.
6). Reserve capability: To ensure system reliability under
contingencies, ten-minute spinning reserve (TMSR) and
thirty-minute operating reserve (TMOR) are considered. For
TMSR, designation p™S® cannot exceed capability PSR
(calculated based on R) and is zero when the unit is off, i.e.,
p™ () < P™SF p™F (1) + p(t) < P™ x(¢), V. (6)
The modeling of TMOR is similar, and the difference is
that the unit can provide TMOR when it is off.
b) System-level constraints
System-level constraints include system demand, reserve
requirement, and transmission capacity.
1). System demand: Total generation equals total demand, i.e.,

WNOEWAORA ™

where P(f) is the demand of node i at time .
2). Reserve requirement: The total TMSR of all units has to
satisfy the requirement PSR e,

;:‘piT:ISR (t) > SIS (t), vt (8)

TMOR is modeled similarly.
3). Transmission capacity: For line I, DC power flow fi(¢) is a
linear combination of nodal injections P{(¢) from all nodes



weighted by generation shift factors ¢;;, and it cannot exceed
capacity f/"* at every ¢, i.e.,

—ST S SO L0 =2a, E0),

P = p, 0~ .V ©)

¢) Objective function
The total cost to be minimized is the commitment cost plus
the dispatch cost, i.e.,

XX (u, (S, +x,k<z)s7;)+;;;;qk,,,p,_k‘,,(t>, (10)

where S;, S; M, and C; 5 are start-up, no-load, and generation
costs, respectively.

The above UC problem (1)-(10) is an MBLP problem.

B. Tighten unit-level constraints

In this subsection, unit-level constraints are tightened by
applying existing cuts and by “constraint-and-vertex
conversion” and vertex projection processes.

a) Apply existing cuts

Based on the characteristics of unit-level constraints,
implied bound and mixed integer rounding cuts are applied.
1) Implied bound cuts (IBC) [10]

Implied bound cuts reflect the relationship between binary
and continuous variables when the binary imply bounds on the
continuous. Consider the continuous offer price block variable
p» with an upper bound P"*}, i.e., pp < P™™}. In addition, the
on/off variable x implies a new upper bound on ps, e.g., x =0
= p» <0 (=0). The idea is to lift x into p, < P, as follows,

p, ) +(B™ —0)(1-x(0)) < B™ V1. (11)

Eq. (11) guarantees that when x(¢) = 1, p’(¢) < P"*; and
when x(£) = 0, p?(£) < 0 (= 0).

Implied bound cuts can also be applied to the reserve
capability constraints.

2) Mixed-integer rounding cuts (MIRC) [11]

Mixed-integer rounding cuts apply integer rounding on
coefficients of integer variables and the constant of a
constraint. Consider a constraint z - y < b with integer variable
z and continuous variable y (z > 0, y > 0). After relaxing the
integrality requirement on z, (b, 0) is a vertex of the convex
hull of the LP-relaxation problem. If constant b is not an
integer, the vertex is a non-integer vertex. To avoid this, a
mixed-integer rounding cut that goes through the two points
(6], 0y and (6] + 1,1 6]+ 1 - b) (] is the floor function that
outputs the greatest integer less than or equal to ) on the
convex hull of the LP-relaxation problem is applied below,

b (12)
EED

For the UC problem, mixed integer rounding cuts can be

applied to the offer price block constraints as follows,

| P |x(t) =% p,(1)<0,v1.

b) Establish tight constraints 8]

Tight constraints are established through four steps
following our approach developed in [8]. For a unit with given
parameters in numerical values, the first step is to relax
integrality requirements, and generate vertices of the convex

(13)

hull of the LP-relaxation problem from constraints (constraint-
to-vertex conversion). The second step is to project this set of
vertices onto the original convex hull. For MBLP problems,
this projection is simply done by dropping vertices with
fractional values for binary variables. The projected vertices
are the vertices of the original convex hull. The third step is to
convert those vertices back to tight constraints (vertex-to-
constraint conversion). In the last step, to make those tight
constraints reusable for other wunits, their numerical
coefficients are represented in terms of unit parameters. It is
done through analyzing these constraints and the relationship
between numerical coefficients and unit parameters. To
guarantee that resulting constraints are valid under all possible
unit statuses (on, off, start-up or shut-down), the
parameterization process may impose conditions on unit
parameters (e.g., P™", P"=; and R). A few sets of tightened
constraints are thus developed based on unit parameters.
Tightened formulations for individual units can then be
obtained through simple table lookup.  For practical
applications, our goal is to obtain “near-tight” formulations by
analyzing short time horizon problems, e.g., 3 hours.
C. Tighten system-level constraints

As mentioned earlier, system-level constraints only contain
continuous variables (generation level and reserve), and cannot
be tightened alone. To tighten them, unit on/off variables and
unit capacity constraints are incorporated. Given these
characteristics, cover and flow cover cuts are applied.
a) Cover cuts (CC) [10]

Cover cuts apply to constraints take the form of a knapsack
constraint with a set of binary variables z shown as follows:

>az <b,z €{0,1},a, 20,b=0. (14)

jeN

A minimal cover C is a subset of z such that if all the subset
z are set to one, the knapsack constraint would be violated, but
if any one subset z is excluded, the constraint would be
satisﬁed A cover cut is defined as,

,<|C|-1,CeN,A=Fa,-b>0,a,2A,VjeC. (15)

jeC /
Here the cover cuts cannot be directly applied to system-
level constants as they do not follow the structure of cover cuts.
The idea of cover cuts can still be explored. For example,
without considering other constraints, a cover U% is a subset
of units such that if all the subset units are set to be on with
P the demand can be covered (may exceed), but if any one
subset unit is excluded, the demand cannot be satisfied. In
practice, U’ can be obtained by sorting units based on their
generation capacities in an ascending order during the data
preprocessing stage, and |U%| represents the smallest number
of units that is needed to satisfy demand. This type of “cover
cuts” is defined as follows (¢ is omitted, and j is used as the unit
index instead of (i, k) for brevity),
Z x > |UCap UCa]I - U ACap = z ijux

jeU jeuen

P/mg\x > ACap’\v/j = UCap.

-XP” >0,

(16)
In the above, U is the set of units.

The above cut can be also applied to TMSR with U™5R
obtained by sorting units based on their TMSR capacities



ascendingly. The total number of online units should be no
less than the larger of |U“%| and |U™5.

There is also another way to explore the idea of cover cuts.
Consider U™SF" a5 a subset of units. If all the subset units are
set to be on with reserve capability as P™5% the reserve
requirement cannot be satisfied. Also there exists at least one
unit in the remaining unit set \U"™5R; if the unit is added to
U™SE' the demand can be covered. Therefore at least one unit
in O\U™5F" must be on, i.e.,

X Z l,UTMSRI c U, ATMSR' = PS,T.MSR _

. PTMSR > 0,

P J

})/TMSR > ATMSR"HJ- cU\U™* (17)

Here two types of U5’ can be obtained by sorting units based
on their TMSR capacities ascendingly and descendingly.
b) Flow cover cuts (FCC) [12]

Flow cover cuts are for constraints that contain continuous
variables with their lower and upper bounds depending on the
values of binary variables. The idea is to treat such a constraint
as a single node in a network where continuous variables are
in/out-flows that can be on or off based on binary variables.
Flows and demand imply a knapsack constraint to generate
cuts on the flows. In UC, the TMSR capability constraints and
reserve requirements can be rewritten as follow,

TMSR TMR TMSR S .TMSR
Ox,<p;” <P "x,,-2p,~ <-P .
J

ISR
Jjeu

(18)

In the above, the lower and upper bounds of continuous
p™5R depend on binary x, and p™5R is the out-flow in the
network. This fits the format of flow cover cuts, and one type
of flow cover cuts established in [12] is defined as,

TMSR TMSR S . TMSR
ey P x, < =P

J jelmse

: (19)
jeU\u™t

The above flow cover cuts and cover cuts in Subsubsection
I1-C-a work well for peak load hours.

In addition, the key idea of flow cover cuts can be used to
filter transmission lines with large capacities. =~ Without
considering energy balance, the largest possible power flow for
line / is calculated as follows,

f‘mux‘NPB — z au (; B’rzav _rn’ln RD (t))

i .
ia, 20

+Y a, (—mlaxRD(t)),Vl. (20)

i-a, <0
If f+NPB is smaller than the line capacity f7"* for every ¢, then
the transmission capacity constraint is always satisfied at the
positive flow direction, no matter how the units are committed
and dispatched. The transmission capacity constraint for this
line can be thus removed. The transmission constraints in the
opposite flow direction can be handled in a similar way.

IV. TESTING RESULTS

The method developed above has been implemented by
using IBM ILOG CPLEX Optimization Studio V 12.8.0.0 on
a PC with 2.90GHz Intel Core(TM) i7 CPU and 16G RAM.
Two examples are presented. The first small 5-bus problem
illustrates the idea of tightening unit- and system-level
constraints. The second IEEE 118-bus problem demonstrates
the performance of our constraint tightening approach.

Example 1. 5-bus system: One hour

This example is based on a 5-bus system with 9 units. Unit
parameters P, P> R and P™5E are shown in Table I below.
For the peak hour, total load is 1422 MW, and it is assumed
that the TMSR requirement is 130 MW.

TABLE I 5-BUS SYSTEM: UNIT PARAMETERS
1 2 3 4 5 6 7 8 9
P | 80 102 | 139 76 123 | 426 158 | 158 | 105.6
P | 181 183 | 240 245 | 123 | 426 295 | 295 338
R | 724 | 732 | %6 98 123 | 426 118 | 118 [ 135.2
P™MSRI12.07 [ 122 16 16.33 | 20.5 71 19.67]19.67 | 22.53

To tighten unit-level constraints, consider a two-hour (¢ - 1,
f) problem for unit 4. Capacity, ramp rate and start up
constraints are considered as shown at the top left corner of
Fig. 1 (x(¢z-1), u(z-1), p(t-1), x(¢), u(¢), p(¢) (the first three are
initial conditions)): x1-xs). Other constraints are not considered
for simplicity, and ranges for binary variables (0 < x < 1) are
not presented for brevity. By constraint-to-vertex conversion,
the vertices obtaind are shown at the bottom of Fig. 1 (only the
last 10 vertices are shown). By keeping only binary vertices,
the tight constraints that directly delineate the problem convex
hull is shown at the top right corner of Fig.1.

( 1) -125x1 +Xx3-120x4+120x5 <= 0
( 2) -245X4+120X5+X6 <= 0
76X1 - X3 <=0 ( 3 -x2 <= 0
245x1 - X3 »>= 0 ( 4) . x5 e
x1- x2 >=0 ( 5 + 76x4 -X6 <= O
76x4 - x6 <=0 ( 6) + 76x1 -x3 <=0
245x4 - x6 >= 0 ( 7) -125x1 +X3+ 27X4+ 49%5-%6 <= 0
x4 - x5 <= x1 ( 8) - X1+X2 <=0
X1 + X5 <=1 9 - X4+ x5 <= 0
125x4 -27x1 - X6 + X3 }=0| ( 10) + 76x1 -X3-174x4+ 49x5+x6 <= 0
27x4 - 125x1- x6 + x3 <= 8 ( 11) - x1 + x4- X5 <= 0
X4 - X5 >=0 (12) + x1 + x5 <=1

( 26) ‘ 1 1 )76 0 t 0 ]

( 27) 1 1 76 49/120 o 2401/ 24

( 28) 1 1 125 0 0 ]

( 29) 1 1 245 60/109 0 14700/109

( 30) 1 1 76 1 0 76

( 31) 1 1 76 1 0 174

( 32) 1 1 147 1 0 245

( 33) 1 1 174 1 0 76

( 34) 1 1 245 1 ] 147

( 35) 1 1 245 1 0 245

Figure 1: Constraints-and-vertex conversion

There are four new constraints (1, 2, 10, and 11) as
compared to the original. Take (2) as an example, it can be
generalized to the following constraint (24),

p(t) < P™ x(t) — (P™ — P™ — R/ 2)u(t),Vt. (21)
In the above, when x(¢) = u(¢) = 0, p(¢f) = 0; when x(¢) = 1 and
u(f) = 0, it represent the maximum generation level; and when
x(f) =u(f) =1, it represents the maximum generation limit upon
starting up. With Eq. (21), the right-hand side of capacity
constraint Eq. (1) can be deleted.

To tighten system-level constraints, the units are sorted in
an ascending order based on their generation capacities, and
U = 16,9, 7, 8, 4}. The order of units based on reserve
happens to be the same: U™R = {6, 9, 7, 8}; U™R'; = {6, 9,
7%; and U™SR', = {7,8,4,3,2,1,5}. Given these, the three
cover cuts and two flow cover cuts are shown as follows,

Yx, 25 Y x=2l, ¥ x =l
v JeU\ums J e j
MS S s
— TSR ISRy o pSTMSR L D 22)
jevw™™ ’ e J J

Example 2. 1EEE 118-bus system: 96-hour
This example is based on the IEEE 118-bus system with 54



units. To test the performance of our unit-level tightened
constraints, ramp rates of units are reduced by 2/3. The
problem is solved by using branch-and-cut with: (1) standard
formulations presented in Subsection I1I-A; (2) additional unit-
level cuts and tightened constraints obtained in Subsection I1I-
B; (3) additional system-level cuts and transmission constraint
filter obtained in Subsection III-C; and (4) additional
constraints from (2) and (3). The stop time is 600 seconds and
the stop gap is 0.01%. Results are compared in Table II below.
CPU time is the total time including data and model loading,
problem solving and solution outputting time, and the solving
time excludes loading and outputting time.

TABLE II IEEE 118-BUS SYSTEM: NOMINAL CASE

(1): Standard | (2): Tighten | (3): Tighten | (4) Tighten
formulation | unit-level | system-level both
CPU time (s) 120.82 17.38 65.17 17.32
Solving time (s) 112.3 11.98 55.69 11.88
Cost ($) 3,925,757 3,925,896 3,925,767 3,925,795
Gap (%) 0.01 0 0.01 0
# of IBC 4,428 0 5,154 0
# of MIRC 482 79 801 68
# of CC 255 2 82 6
# of FCC 3,170 1 3,289 1
# of other cuts 261 19 275 9

As shown in Table II, both CPU and solving time are
reduced by tightening unit- and system-level constraints, while
the former contributes much more than the latter. In addition,
the numbers of the cuts are significantly reduced by tightening.

The problem is also solved with different reserve
requirements. CPU and solving time are compared in Fig. 2
(Other = CPU - Solving), and the numbers of various cuts
generated by the solver are show in Table III below.

Other,

OO NONOMONCRONBCORONGNONCO!

110%reserve 120% reserve 130% reserve
Figure 2: CPU and solving time under different reserve requirements

120.0
100.0
80.0
60.0
400
20.0
0.0

® Solve

TABLE III NUMBER OF CUTS UNDER DIFFERENT RESERVE REQUIREMENTS

110% Reserve 120% Reserve 130% Reserve
DA BHO|A] B [H DA [H
IBC (4428 0 |5410| 0]5626| 0 | 4857 | 0 | 5995| 0 |5188] 0O
MIRC| 48279 | 743 | 68| 468 | 97| 433 | 49| 409 | 77 | 371| 52

CC |255]12 | 186 | 6
FCC |3170] 1 3284 1
Other | 26119 | 285 | 9

155 2 | 235 | 5| 166 |167| 182|138
3759| 26| 2862 | 10| 4050 | 24 |2677| 7
394 | 11| 556 | 3 | 360 | 30 |370| 22

According to the results, CPU and solving time are
dramatically reduced by constraint tightening. In addition, the
numbers of different types of cuts are reduced. Especially,
implied bound cuts are all gone, and the total number of flow
cover cuts is reduced by more than 99%. Results demonstrate
great potential of our approach to tighten MBLP problems.

To further test our approach, some stress cases are
constructed by dropping the load by 50% to represent a high

level of renewable penetration in the system. The results with
different formulations are presented in Table IV.

TABLE IV IEEE 118-BUS SYSTEM: STRESS CASES

CPU (s)| Solve (s) Cost ($) Gap (%)| # of cuts
100% ()| 605.97 600.27 1,923,691 0.11 9,909
reserve | (4)| 606.15 600.31 1,923,115 0.08 372
110% ()| 608.84 603.45 1,983,544 0.08 11,070
reserve | (4)| 605.82 600.34 1,983,053 0.08 390
120% ()| 608.71 603.25 2,049,100 0.08 10,947
reserve | (4)| 606.16 600.33 2,048,024 0.07 446
130% ()| 604.88 601.72 N/A N/A 13,287
reserve | (4)| 606.21 600.38 2,139,220 0.21 473

Since the stop gap is not satisfied, all the problems are
solved to the stop time, i.e., 10 minutes. According to Table
IV, after tightening, better solutions are obtained within the
same amount of time as compared to the standard formulation.
Also the numbers of cut are significantly reduced.

V. CONCLUSION

This paper is a pioneering effort toward obtaining high
quality UC solutions fast by synergistic combination of
tightening unit- and system-level constraints. Unit-level
constraints are tightened based on existing cuts and novel
“constraint-and-vertex conversion” and vertex projection
processes. To tighten system-level constraints, unit on/off
variables and unit capacity constraints are incorporated.
Selected cuts are applied and some potential powerful cuts are
identified. Resulting formulations can be reused, tremendously
reducing computational requirements. Numerical results
demonstrate the effectiveness of tightening unit- and system-
level constraints, and the great potential for tightening other
complicated MBLP problems in power systems and beyond.
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