

Characterizing the Collagen Network Structure and Pressure-Induced Strains of the Human Lamina Cribrosa

Yik Tung Tracy Ling¹, Ran Shi^{1,2}, Dan E. Midgett¹, Joan L. Jefferys³, Harry A. Quigley³, and Thao D. Nguyen¹

¹*Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA*

²*Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China*

³*Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD 21287, USA*

Abstract

Purpose. The purpose of this study was to measure the 2D collagen network structure of the human lamina cribrosa (LC), analyze for the correlations with age, region, and LC size, as well as the correlations with pressure-induced strains.

Methods. The posterior scleral cups of 10 enucleated human eyes with no known ocular disease were subjected to *ex vivo* inflation testing from 5 mmHg to 45 mmHg. The optic nerve head was imaged using second harmonic generation imaging (SHG) to identify the LC collagen structure at both pressures. Displacements and strains were calculated using digital volume correlation of the SHG volumes. Nine structural features were measured using a custom Matlab image analysis program, including the pore area fraction, node density; and beam connectivity, tortuosity and anisotropy.

Results. All strain measures increased significantly with higher pore area fraction, and all but the radial-circumferential shear strain ($E_{r\theta}$) decreased with higher node density. The maximum principal strain (E_{max}) and maximum shear strain (Γ_{max}) also increased with larger beam aspect ratio and tortuosity respectively, and decreased with higher connectivity. The peripheral regions had lower node density and connectivity, higher pore area fraction, tortuosity and strains (except for $E_{r\theta}$) compared to the central regions. The peripheral nasal region had the lowest E_{max} , Γ_{max} , radial strain and pore area fraction.

Conclusions. Features of LC beam network microstructure that are indicative of greater collagen density and connectivity are associated with lower pressure-induced LC strain, potentially contributing to resistance to glaucomatous damage.

²¹ *Pages:31 , Word Count: 7684 ,*

²² *Keywords:* optic nerve head, pore area fraction, beam network, inflation test, digital volume correlation

²³ Supported by: NIH Grants EY01765 & EY02120; NSF CMMI Award 1727104; Brightfocus Foundation
²⁴ G2015132; Public Health Service Research Grants EY021500; and EY001765 Microscopy and Imaging
²⁵ Core Module, Wilmer Core Grant for Vision Research.

²⁶ 1 Introduction

²⁷ The lamina cribrosa (LC) is a connective tissue-containing structure that spans the optic nerve head (ONH)
²⁸ through which pass the unmyelinated retinal ganglion cell (RGC) axons as they go from cell bodies in the
²⁹ retina to the optic nerve. The LC network structure mechanically supports the RGC axons to withstand the
³⁰ translaminar pressure difference between the intraocular and extraocular space and the hoop stresses of the
³¹ adjacent sclera imposed by the intraocular pressure (IOP) [1]. In both human glaucoma and experimental
³² models with increased IOP, RGC axonal injury typically occurs at the LC [2]. Thus, the structure and
³³ biomechanical behavior of the LC are clearly important potential pathogenic features of the disease.

³⁴ In humans and monkeys, the LC is composed of connective tissue beams whose core contains elastin
³⁵ and collagen types I and III fibrils [3]. The beams are organized into a series of stacked cribriform plates,
³⁶ forming a beam and pore network structure. LC beams are covered by astrocytes, while fibroblast-like cells
³⁷ (lamina cribrosocytes) and microglia reside within the beams [4–6]. An intricate network of capillaries
³⁸ consisting of endothelial cells and pericytes also reside within the LC beams [7, 8]. The structure of the
³⁹ LC is deformed by the intraocular pressure and the translaminar pressure gradient. ONH astrocytes and
⁴⁰ lamina cribrosocytes have been shown to become reactive to changes in the mechanical environment in
⁴¹ animal models and *in vitro* experiments [5, 9–12]. Thus, there are both cellular and non-cellular response
⁴² elements that are thought to be involved in mechanism of glaucomatous axonal damage [6, 13–15]. The
⁴³ LC structure also undergoes significant connective tissue remodeling in glaucoma [2]. This may alter the
⁴⁴ physiological support for the resident cells and LC capillaries [16], which are likely contributing factors to
⁴⁵ glaucoma injury.

⁴⁶ Studies of LC structure using scanning electron microscopy suggested that the connective tissue density
⁴⁷ was lower in the inferior and superior regions of the ONH [17]. The authors speculated that the lower
⁴⁸ connective tissue density may subject the axons in these regions to higher pressure-induced strains leading
⁴⁹ to their earlier dysfunction and death. Subsequent studies of the LC pore and beam structure by histology

50 [18–22], scanning electron microscopy [23], polarized light microscopy [24], optical coherence tomography
51 (OCT) [25–28], and confocal adaptive optics scanning laser ophthalmoscopy (AOSLO, [29]) have found
52 similar regional variations, as well as variations between the anterior and posterior regions of the LC. Recent
53 experimental and clinical studies applying image correlation methods to map the deformation response of
54 the human ONH to pressure changes [30–32] have shown that mechanical strains within the LC exhibit local
55 regions of high shear, tensile and compressive strains. Midgett et al. [32] used a laser scanning microscope
56 and second harmonic generation (SHG) imaging to study the collagen beam structure of the LC at a reference
57 pressure and higher pressure. Digital volume correlation (DVC) was used to correlate the image volume at
58 high pressure to the image volume at the reference pressure to calculate the displacement field and strain field
59 of the LC. The maximum shear strain was larger in the peripheral versus central LC, while the maximum
60 principal strain centrally was larger in the inferior and temporal quadrants than in the nasal and superior
61 quadrants. Comparing the quadrants showed that the maximum principal strain was smallest in the nasal
62 quadrant. These findings support the observations that lower levels of connective tissue are associated
63 with greater strain and are consistent with clinical observations that structural and functional glaucoma
64 injury occurs preferentially in RGC axons traversing the infero-temporal ONH [17, 33–36]. However, past
65 investigations have not measured the beam and pore network structure of the LC and compared it to the
66 IOP-induced strain in the ONH of the same specimen.

67 The aim of this work was to characterize the beam network microstructure of the LC of human donor
68 eyes, including 6 eyes tested by inflation in Midgett et al. [32] along with 4 additional eyes, and to correlate
69 measured LC strains with the network structure. We developed methods to analyze the image volume at
70 the reference pressure to measure features of the LC beam and pore network structure, including the area
71 fraction of the pores; node number density, where a node is defined as the junction of collagen beams;
72 connectivity, defined as the number of beams joining at a node; beam width, length, aspect ratio, dominant
73 orientation and degree of alignment. The structural features and strain measures were compared also for the
74 correlations with age, region, and LC size.

Table 1: Human donor posterior sclerae subjected to inflation testing
* indicates left and right eyes from the same donor

Eye ID	Age(yr)	Race	Gender	Side
1	49	Caucasian	F	Right
2	42	Hispanic	M	Right
3	57	Caucasian	M	Right
4	26	Caucasian	F	Right
5*	90+	Caucasian	F	Left
6*	90+	Caucasian	F	Right
7*	64	Caucasian	F	Left
8*	64	Caucasian	F	Right
9	79	Caucasian	M	Right
10	61	Caucasian	M	Right

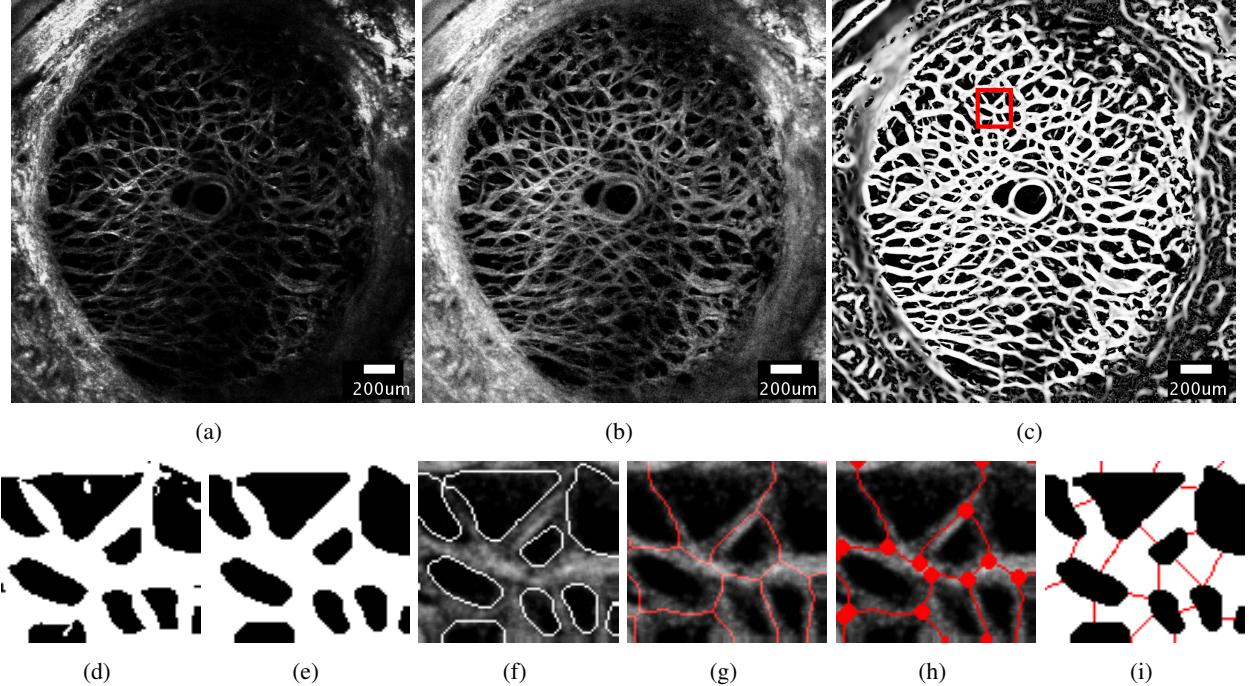
2 Methods

75 The specimen preparation, imaging, DVC, and strain calculation methods were described in detail in [32].
76 The following section briefly summarizes these methods and presents in detail methods for image pre-processing,
77 segmentation and network analysis used to identify and quantify the features of the LC network structure
78 in the imaged volumes, as well as the statistical methods for analysis of age and regional variations, and
79 correlations between measured outcomes.

81 2.1 Specimen Preparation

82 Ten human eyes from 8 donors with no history of glaucoma were obtained from the National Disease
83 Research Interchange (NDRI) and Eversight 12 to 24 hours post-mortem and tested by inflation within
84 48-hours post-mortem (Table 1). These included the 6 specimens presented previously in [32] and 4
85 newly-tested specimens. The optic nerves of the enucleated eyes were cut flush to the sclera to remove
86 the post-LC myelinated optic nerve and to reveal the trabecular structure of the LC. The eyes were glued to
87 a custom plastic ring at a location 2-5mm posterior to the equator. The ONH was aligned with the center
88 of the plastic ring. The anterior chamber and intraocular components were removed by trimming along the
89 coronal plane of the eye with a scalpel.

90


91 **2.2 Image Acquisition**

92 Posterior scleral specimens were mounted in a custom inflation chamber, such that the posterior surface of
93 the LC was aligned with the objective of a Zeiss 710 laser-scanning microscope (LSM 710 NLO, Zeiss,
94 Inc., Oberkochen, Germany). Specimens were kept hydrated with 1M phosphate buffered saline (PBS)
95 throughout the inflation test. Pressure was applied using a water column. Each specimen was pressurized
96 first to a baseline of 5 mmHg then to 45 mmHg. At both pressures, the specimen was allowed to equilibrate
97 for at least 30 minutes before two sets of 2×2 tiled z-stacks were acquired, starting from a z-depth of 300
98 μm below the posterior surface and moved towards the posterior surface with a z-increment of 3 μm , using
99 a Chameleon Ultra II laser tuned to 780 nm, a 390 - 410 nm band pass filter to isolate the SHG signal, and
100 a 10×0.45 NA Apochromat objective. The zoom factor was varied between 0.6-0.8 depending on the size
101 of the LC, which corresponded to an in-plane resolution of 2.08-2.77 $\mu\text{m}/\text{pixel}$. The tiles were imaged at
102 512×512 pixels and stitched with 15% overlap. The resulting 947×947 pixel images were exported as
103 TIFF files (Fig. 1a).

104 **2.3 Image Pre-Processing**

105 The SHG volumes (Fig. 1a) were pre-processed by three-dimensional (3D) deconvolution using a theoretical
106 point spread function in Huygens Essentials (SVI, Hilversum, NL) to reduce noise and blur. Contrast
107 enhancement was then performed by two-dimensional (2D) contrast-limited adaptive histogram equalization
108 (CLAHE) [37] in FIJI [38] (Figure 1b).

109 The SHG image volumes were used for DVC analysis of the 3D displacement field caused by inflation
110 from 5-45 mmHg using the Fast Iterative DVC algorithm by Bar-Kochba et al. [32, 39]. The maximum
111 z-projection of the SHG volume at 5 mmHg was used to generate a 2D LC mask by manually tracing
112 the boundary of the peripapillary sclera (PPS) on the z-projection image, using the Matlab function *roipoly*
113 (Matlab R2017a, Mathworks, Natick, MA, US). The sclera is denser in collagen than the LC and was clearly
114 identifiable as an oversaturated region in the SHG imaged volumes. The number of pixels within the traced
115 LC boundary of each specimen was recorded as the LC area. The pre-processed images acquired at 5 mmHg
116 were further analyzed to measure 2D features of the LC network structure as described below. Unless stated
117 otherwise, all following image processing and structural characterizations were performed on 2D z-slices.

Figure 1: A series of image processing steps were applied to the SHG image of a representative specimen (specimen 6) at 5 mmHg to measure the features of the beam network structure, showing (a) the 30th z-slice of the stitched SHG image acquired by the laser scanning microscope after deconvolution, (b) after contrast-limited adaptive histogram equalization, (c) and after application of the Frangi filter [40] to enhance the contrast of the collagen beams. (d) A $198.9\mu\text{m} \times 219.3\mu\text{m}$ area selected from (c) after binarization using the Otsu thresholding method [41]. (e) Smoothing, dilation and erosion were performed to obtain the final binary mask used to segment the beam network for structural characterization. The accuracy of the binary mask was confirmed by (f) overlaying the outline of the segmented structure on the pre-processed images. (g) Skeletonization of collagen beams was obtained using Matlab function *bwmorph* option *thin*. (h) Nodes were identified as the junctions where two or more skeletonized beams meet. (i) The width of each collagen beam was measured at the midpoint of the beam by searching for black pixels along the direction perpendicular to the measured beam orientation. Scale bar in image (a)-(c) represents a length of 200 μm .

118 **2.4 Segmentation and skeletonization of the LC network structure**

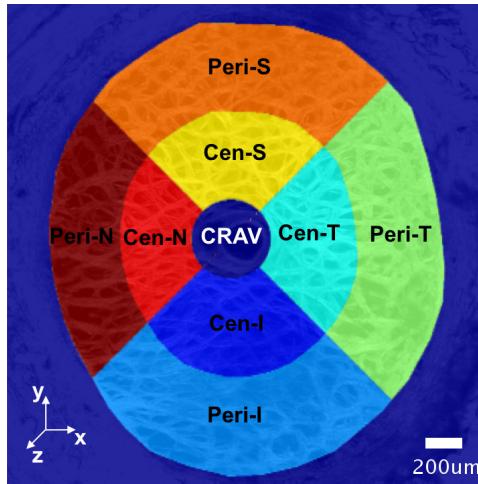
119 A modified 3D Frangi vessel filter [42], with settings $\alpha = 0.05$, $\beta = 1$, and $\gamma = 7.5$, was applied to the
120 pre-processed image stacks at 5 mmHg to further enhance the contrast of the beam structures (Figure 1c)
121 [40, 43]. The Frangi filter vesselness threshold was set to be 1/6 of the brightness of a representative beam
122 [43], and the scale range was set to 0.1- 7.1 with a step size of 1 pixel to account for a wide distribution
123 of beam widths within the LC. The 2D LC mask was applied uniformly through the Frangi-filtered z-stack
124 to segment the LC. A few specimens exhibited locally dark areas with no visible beams in select z-slices.
125 These were further masked and removed from the image volumes to avoid errors in calculating the pore area
126 fraction.

127 A 3 by 3 median filter was applied, replacing the intensity of each pixel with the median intensity of
128 the surrounding 9 pixels, to locally smooth the image volume. The resulting volumes were binarized using
129 the Otsu thresholding method [41] to segment the collagen beams from their background (Figure 1d). The
130 Otsu thresholding method separates grey-scale images into foreground (white) and background (black) by
131 calculating an optimal thresholding value that minimizes the between-class variance. Here, the white pixels
132 designated the collagen beams and black pixels represented the pores.

133 Following the method described in DÀmore et al. [44], a series of morphological operations was
134 performed on the thresholded images in Matlab to remove artifacts generated by binarization, which included
135 removing isolated pixels. The thresholded stacks were first treated with the Matlab function *bwmorph*
136 using the options *thin*, *majority*, *clean* to remove pixel-level noise. Morphological erosion (Matlab function
137 *imerode*), dilation (Matlab function *imdilate*) and a final erosion step were applied to smooth the beam
138 boundaries (Figure 1e). Disk element sizes of 1/6 and 1/3 of the representative beam width were used
139 for the erosion and dilation operations respectively. A representative beam width was first estimated by
140 counting the number of pixels spanning the width of 10 random beams on the 30th z-slice of specimen
141 6. The representative beam width of 8 pixels was then determined by iteratively increasing or decreasing
142 the estimation by a step size of 1 pixel, and verifying the results by overlaying the boundaries of the
143 segmentation on the pre-processed images (Figure 1f). To quantitatively verify the accuracy of the segmentation,
144 the binarization from auto segmentation was compared to that from manual tracing by calculating the
145 percentage differences in the resulting pore area fractions. The calculation of pore area fraction is described

146 in detail in section 2.6. Two local regions of size $200 \mu\text{m} \times 200 \mu\text{m}$ on the 30th z-slice of all specimens
147 were selected for manual segmentation. Resulting pore area fraction from representative beam width of
148 7 and 9 pixels were also calculated for validation. The iterative process ensured that the width of the
149 collagen beams was minimally affected by the image processing steps. The segmented beam network in
150 each z-slice (Figure 1e) was skeletonized using the Matlab function *bwmorph* with options *thin* and *'inf'*
151 (Figure 1g). Skeletonization shrinks the beams to 1 pixel in width. Two-dimensional skeletonization was
152 used since available 3D skeletonization methods for the plate-like meshes produce spurious branches that
153 are not representative of the LC structure.

154 2.5 Regional division


155 The LC was divided into 8 regions centered about the central retinal artery and vein (CRAV) (Figure 2). A
156 CRAV center point was manually picked by marking a point on the maximum intensity projection of the
157 SHG images. The CRAV region was defined as a cylindrical volume of radius of $200\mu\text{m}$ about the CRAV
158 center. The 8 regions were defined by dividing the LC into central and peripheral regions at the radial
159 midpoint between boundary of the CRAV and the LC mask. The central and peripheral regions were further
160 divided into 4 quadrants, superior (S), inferior (I), temporal (T) and nasal (N), using 45° and 135° bisectors.

161 2.6 Structural Measurements

162 Nine structural features were identified and calculated from the segmented beam and pore structures (Figure
163 1e) and the skeletonized network structure (Figure 1g). The collagen structures appeared sparsely in the
164 top-most z-slices because of the roughness of the specimen cut surface. The bottom-most slices were also
165 sparse in features because of light attenuation. We only used the z-slices in which at least 2/3 of the LC was
166 visible to measure the structural features. For the 100-slice ($300 \mu\text{m}$) deep image volume, this included the
167 central 16-26 slices depending on the specimen. The structural features were measured on each z-slice, then
168 averaged either within the 8 regions (Figure 2) or within the LC masked volume for statistical analysis.

169 The structural features were defined as follows.

170 • *Pore area fraction*: The pore area fraction was calculated as the number of black pixels within the
171 area of interest (either the LC masked area or region) by the total number of pixels in that area (Figure

Figure 2: Regional division of the LC for statistical analysis. The center of the CRAV was manually identified on the maximum intensity projection of the SHG volumes acquired at 5 mmHg. The CRAV was defined as the cylindrical region with radius of $200\mu\text{m}$ from the CRAV center. The LC was divided into 8 regions centered about the CRAV by first dividing the LC into central (Cen-) and peripheral (Peri-) regions at the location that was half-way between boundary of the CRAV and the LC mask. The central and peripheral regions were further divided into 4 quadrants, superior (S), inferior (I), temporal (T) and nasal(N), using 45° and 135° bisectors.

1e). A pore area fraction of 1 represents an LC with no collagen beam structures.

- **Node density:** The pixel where two or more skeletonized beams (representing collagen beams) intersect in the skeletonized network were identified initially as a node (Matlab function *bwmorph*, option *branchpoints*) (Figure 3b). Each node was dilated to a disk size of the representative beam width (Figure 1h and Figure 3c) to merge nodes that were closer to each other than a representative beam width. This step was necessary to remove an artifact of skeletonization, where wide beam junctions were separated into two nodes (Figure 3a & b). The node density was defined in the area of interest as the number of nodes divided by the area.
- **Connectivity:** The connectivity was defined as the number of network beams connected to a node. This was calculated by searching for pixels within a 1-pixel radial distance immediately surrounding the boundary of each dilated node and recording the number of white pixels (highlighted in dark green in Figure 3d).
- **Beam length:** The pixels representing each dilated node (highlighted in grey in Figure 3d) were set

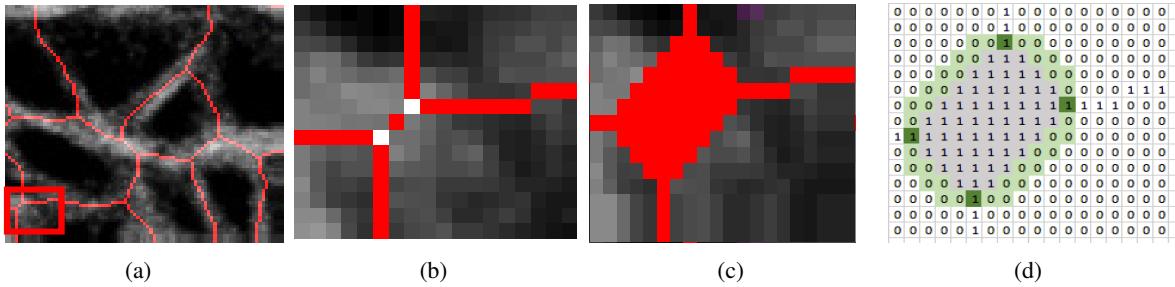


Figure 3: Illustration of the method used for node detection and connectivity measurement, showing (a) the skeletonized collagen beams within a $48.5\mu\text{m} \times 35.7\mu\text{m}$ area from Figure 1g. (b) Nodes were initially identified at every junction of the skeletonized beams. (c) Each node was dilated to a disk to merge nodes that were closer to each other than the representative beam width. (d) The connectivity of a node was calculated as the number of skeletonized beams extruding from the node. The grey region represented the dilated node and the green region were pixels around the boundary of the node that were used to search for a connecting beam represented by a white pixel.

185 to 0 (black) to separate the connected skeletonized beams. The straight line distance of the beam
 186 was calculated as the euclidean distance between the starting and ending pixels of each disconnected
 187 skeletonized beam (Matlab function *pdist2*).

188 • **Beam tortuosity:** The beam tortuosity was defined as the ratio of the contour length divided by the
 189 straight line distance of the skeletonized beam. The contour length of a beam was evaluated as
 190 the sum of the euclidean distance between each pixel in the skeletonized beam (Matlab function
 191 *bwdistgeodesic* option *quasi-euclidean*).

192 • **Beam orientation:** An ellipse was fitted to each skeletonized beam, where the major axis was identified.
 193 The angle between the major axis and the horizontal, nasal-temporal, axis of the LC was defined as
 194 the beam orientation, which ranged from $-\pi/2$ to $\pi/2$ in the X-Y plan (Matlab function *regionprops*
 195 option *orientation*). A preferred beam orientation for an area of interest was calculated as the circular
 196 average of beam orientation weighted by the beam length, using the Matlab circular statistics toolbox
 197 developed by Berens [45].

198 • **Anisotropy:** The anisotropy of the beams was defined for an area of interest by fitting the semicircular
 199 von Mises probability density function to the distribution of beam orientation angles relative to the
 200 areal average beam orientation. The resulting dispersion parameter, which signifies the degree of

201 alignment along the average orientation, was defined as the anisotropy.

202 • *Beam width*: The width of each collagen beam was measured at the midpoint of the skeletonized
203 beam. The beam angle at the midpoint was recorded as the angle between the line connecting points
204 on the skeletonized beam that were 2 pixels away from the midpoint and the nasal-temporal axis. A
205 line perpendicular to the beam angle was drawn at the midpoint and the beam width was defined as
206 the number of white pixels on the perpendicular line extending in both directions from the midpoint
207 until it reached a black boundary (Figure 1i).

208 • *Beam aspect ratio*: The aspect ratio of a beam was determined as the ratio of the beam length over the
209 width.

210 **2.7 Strain Calculations**

211 The methods for DVC analysis, DVC error analysis, and displacement post-processing for strain calculation
212 have been described in detail in previous studies [32, 46]. In the following, we briefly outline the method for
213 strain calculation. The Fast Iterative DVC algorithm, originally developed by Bar-Kochba et al. [39], was
214 applied to the pre-processed SHG volumes at 5mmHg and 45 mmHg to determine the components of the
215 3D displacement field, $U_X(X, Y, Z)$, $U_Y(X, Y, Z)$, and $U_Z(X, Y, Z)$. The (X, Y, Z) directions are aligned with
216 the nasal-temporal, inferior-superior, and anterior-posterior axes, respectively (Figure 2). The components
217 of the Green-Lagrange strain tensor \mathbf{E} in the Cartesian (X, Y, Z) coordinate system were calculated from the
218 displacement gradients as,

$$E_{XX} = \frac{\partial U_X}{\partial X} + \frac{1}{2} \left(\left(\frac{\partial U_X}{\partial X} \right)^2 + \left(\frac{\partial U_Y}{\partial X} \right)^2 + \left(\frac{\partial U_Z}{\partial X} \right)^2 \right) \quad (1)$$

$$E_{YY} = \frac{\partial U_Y}{\partial Y} + \frac{1}{2} \left(\left(\frac{\partial U_X}{\partial Y} \right)^2 + \left(\frac{\partial U_Y}{\partial Y} \right)^2 + \left(\frac{\partial U_Z}{\partial Y} \right)^2 \right) \quad (2)$$

$$E_{XY} = \frac{1}{2} \left(\frac{\partial U_X}{\partial Y} + \frac{\partial U_Y}{\partial X} + \frac{\partial U_X}{\partial X} \frac{\partial U_X}{\partial Y} + \frac{\partial U_Y}{\partial X} \frac{\partial U_Y}{\partial Y} + \frac{\partial U_Z}{\partial X} \frac{\partial U_Z}{\partial Y} \right) \quad (3)$$

219 The strain components E_{XX} and E_{YY} signify the elongation or compression in the nasal-temporal direction

220 and inferior-superior direction respectively, and E_{XY} signifies the angle distortion between the $X - Y$ directions.
 221 We calculated the out-of-plane strain components, E_{ZZ} , but do not report them here because preliminary
 222 analysis showed large errors for E_{ZZ} (Supplemental Section S3). The in-plane strain components were used
 223 to calculate the maximum principal strain, E_{max} , which signifies the tensile strain along the direction in the
 224 $X - Y$ plane at which it is maximum; and the maximum shear strain, Γ_{max} , which signifies the shear strain
 225 in the direction of the $X - Y$ plane at which it is maximum:

$$E_{max} = \frac{E_{XX} + E_{YY}}{2} + \sqrt{\left(\frac{E_{XX} - E_{YY}}{2}\right)^2 + E_{XY}^2} \quad (4)$$

$$\Gamma_{max} = \sqrt{\left(\frac{E_{XX} - E_{YY}}{2}\right)^2 + E_{XY}^2} \quad (5)$$

226 We also calculated the cylindrical components of strain, i.e. the radial strain, E_{rr} , the circumferential
 227 strain, $E_{\theta\theta}$, and the radial-circumferential shear strain, $E_{r\theta}$, using coordinate transformation because of the
 228 cylindrical shape of the ONH. To calculate the cylindrical coordinates of each point in the ONH, we assumed
 229 that the origin of the cylindrical coordinate system was the center of the ellipse fit to the boundary of LC
 230 using the Matlab function *fit_ellipse* (Ohad Gal, 2003). An orientation angle θ was determined for each
 231 point in the LC area by defining a line from the pixel to the center of the ellipse and calculating the angle
 232 between the line and the horizontal X axis. The angle θ was used to transform the strain components as
 233 follows:

$$E_{rr} = E_{XX} \cos^2 \theta + 2E_{XY} \cos \theta \sin \theta + E_{YY} \sin^2 \theta \quad (6)$$

$$E_{\theta\theta} = E_{XX} \sin^2 \theta - 2E_{XY} \cos \theta \sin \theta + E_{YY} \cos^2 \theta \quad (7)$$

$$E_{r\theta} = (E_{YY} - E_{XX}) \cos \theta \sin \theta - E_{XY} (\sin^2 \theta - \cos^2 \theta) \quad (8)$$

234 We estimated the DVC displacement correlation error and strain error for each specimen (Supplemental
 235 Table S3) by applying numerically a rigid body displacement and triaxial strain to one of the duplicate
 236 z-stack acquired at 5 mmHg, correlating the deformed z-stack to the undeformed z-stack using DVC, and

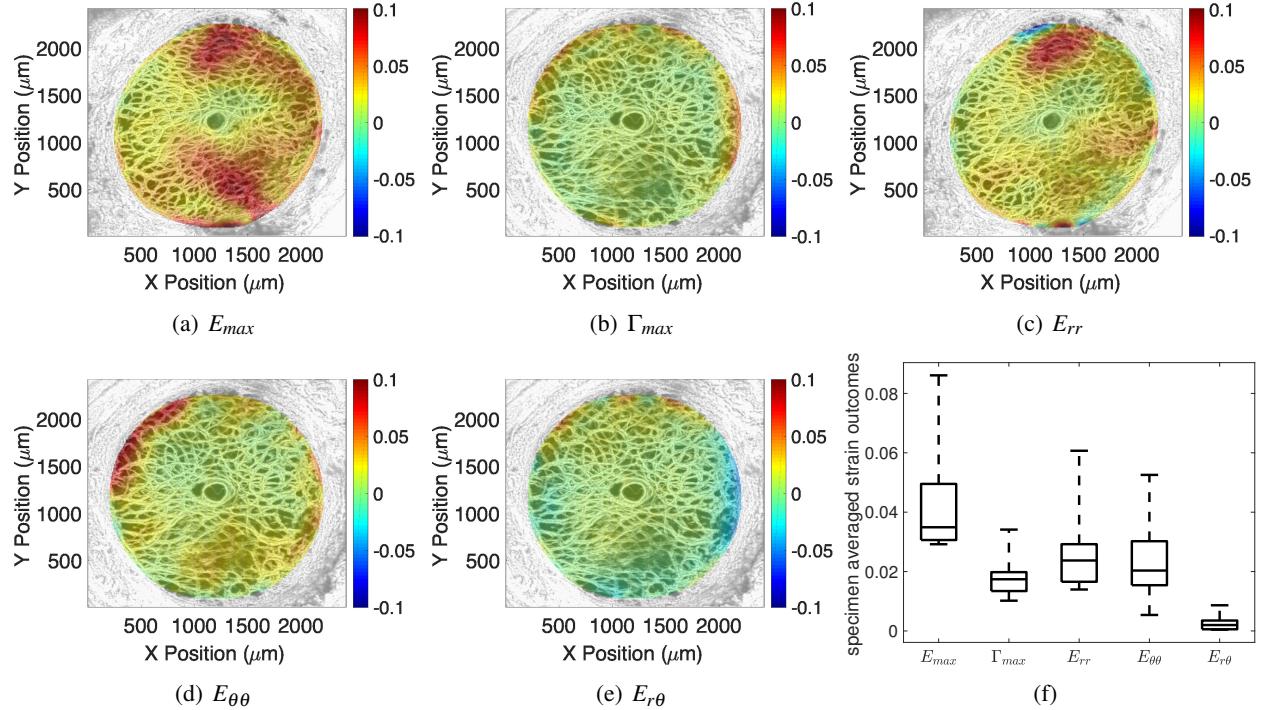
237 calculating the difference between the DVC correlated and the numerically applied displacements and strains
 238 (see Midgett et al. [32] for more details). The absolute displacement $e_{U_{Ij}}$ and strain $e_{E_{IJ_j}}$ error between the
 239 correlated displacement U_I and strain E_{IJ} components and the applied displacement U_I^{app} and strain E_{IJ}^{app}
 240 components are defined at each point j in the LC as,

$$e_{U_{Ij}} = \sqrt{(U_{Ij}^{app} - U_{Ij})^2}, e_{E_{IJ_j}} = \sqrt{(E_{IJ_j}^{app} - E_{IJ_j})^2}; \quad (9)$$

241 where I and J are X , Y and Z . This error includes the effects of tissue creep during imaging, characteristics
 242 of the collagen structure used as the natural speckles for DVC and speckle distortion by deformation. The
 243 average absolute displacement error was under $2.43 \pm 0.95 \mu\text{m}$ (0.88 ± 0.34 pixels) for U_X and U_Y and under
 244 $5.256 \pm 3.232 \mu\text{m}$ (1.90 ± 1.17 pixels) for U_Z for all specimens. The absolute strain error for each specimen
 245 was below 0.003 for E_{XX} , E_{YY} and E_{XY} , and below 0.045 for E_{ZZ} (Supplemental Table S3).

246 2.8 Statistical analysis

247 The 9 structural features, strain components E_{rr} , $E_{\theta\theta}$ and $E_{r\theta}$, maximum principal strain, E_{max} , and maximum
 248 shear strain, Γ_{max} , were averaged for each specimen. Circular mean was used for average branch orientation.
 249 Linear regression was used to estimate the correlations with age and with LC area for each averaged
 250 outcome, and to test correlations between the 9 structural features, as well as correlations between the
 251 structural features and 5 strain measures. The analysis was performed in Matlab using the function *fitlm*. The
 252 correlation between left and right eyes was not taken into account in the linear regression analysis because
 253 of the small sample size ($n = 10$) and because only 2 donors out of 8 contributed data from both eyes.
 254 One-way analysis of variance (ANOVA) was performed using the Matlab function *anova1* and followed
 255 by *multcompare* for multiple comparison test of the specimen-averaged strain outcomes.


256 The strains and structural outcomes were also averaged in the 8 regions of each specimen, resulting in
 257 80 regional measurements for each outcome. Six regional measurements were found to be extreme outliers
 258 and were eliminated for the regional analyses. The extreme outliers were greater than the third quartile for
 259 the measured outcome by more than 3 times the interquartile range. Linear mixed models were used to take

260 into account the clustering of 2 eyes from a single donor and the repeated measurements within a single
261 eye for the regional analyses. Measurements from each of the 8 regions of the LC were assumed to have
262 a compound symmetry correlation structure, in which the measurements from any 2 regions have the same
263 correlation. Least square means were used to estimate the mean outcome for the central region, peripheral
264 region, full quadrants, central quadrants and peripheral quadrants. The Tukey-Kramer method was used to
265 adjust the significance levels upwards to reduce the probability of a type I error to less than 0.05 for the
266 multiple pairwise comparisons [47]. The *p*-values that were adjusted were labelled as "adjusted *p*-values"
267 in all following tables. The mixed models were used to analyze for: (1) the differences in means of each of
268 the 5 strains and 9 structural features between central and peripheral regions, (2) the differences in means
269 of strains and structural features between the quadrants, and (3) the correlations between the 9 structural
270 features and 5 strain measures. The results of (3) were further analyzed to determine which structure has the
271 greatest effect on E_{max} and Γ_{max} . Structural features significantly associated with the average E_{max} and Γ_{max}
272 strains were first identified. For each of these structures, the absolute change in strain for a change of one
273 standard deviation in structure was calculated from the estimated mixed model parameters and the standard
274 deviation of the regional measurements of structure. For each strain, the mixed models for the selected
275 structures were fit using the same set of observations, and the Akaike Information Criteria (AIC) from the
276 mixed models for a strain were then used to identify the structure that best predicts the observed differences
277 in strain. Regional analyses were performed using SAS 9.2 (SAS Institute, Cary, NC). For all analyses, a
278 *p*-value or an adjusted *p*-value lower than 0.05 was considered as a significant observation.

279 3 Results

280 3.1 Strain outcomes

281 The strains showed little variation through the thickness of the imaged volume (through Z) but were highly
282 variable within the nasal-temporal (X-Y) plane (Figure 4 and Supplemental Fig. S1-S10). The normal strain
283 components E_{rr} and $E_{\theta\theta}$ were predominantly positive (tensile) and concentrated at the boundary with the
284 peripapillary sclera. The shear strains Γ_{max} and $E_{r\theta}$ also exhibited localized regions of large positive and
285 negative strains at the boundary. For the 10 specimens, the average radial strain, 0.027 ± 0.014 , was similar

Figure 4: The thickness-averaged strain response for inflation from 5-45 mmHg for specimen 6 showing: a) the maximum principal strain E_{max} , b) maximum shear strain Γ_{max} , (c) radial strain E_{rr} , (d) circumferential strain $E_{\theta\theta}$, and e) radial-circumferential shear strain $E_{r\theta}$. (f) A box plot of the specimen-averaged strains.

Table 2: Results of the linear regression analysis for the correlation between the specimen-averaged structural features ($n = 10$), showing the p -value for the significance of structural correlation and R^2 correlation coefficient. Pore area fraction increased as connectivity and beam orientation decreased and beam aspect ratio increased. Longer beam length was associated with lower node density and larger beam anisotropy and beam aspect ratio.

Structural features	Structural features	Estimate (95%CI)	p -value	R^2
Pore area fraction ($\mu\text{m}^2/\mu\text{m}^2$)	Connectivity (beams/node)	-0.83 (-1.12, -0.54)	0.0002	0.84
	Beam orientation (degree)	-42.03 (-74.68, -9.39)	0.02	0.52
	Beam aspect ratio ($\mu\text{m}/\mu\text{m}$)	2.00 (0.13, 3.88)	0.04	0.43
Beam length (μm)	Node density $\times 10^{-4}$ (nodes/ μm^2)	-0.044 (-0.065, -0.023)	0.001	0.75
	Beam anisotropy (-)	0.032 (0.002, 0.062)	0.04	0.42
	Beam aspect ratio ($\mu\text{m}/\mu\text{m}$)	0.018 (0.004, 0.033)	0.02	0.52

286 in magnitude to the circumferential strain, 0.024 ± 0.014 ($p = 0.99$). The radial-circumferential shear strain,
 287 $E_{r\theta} 0.0026 \pm 0.004$, was one order of magnitude lower than the radial and circumferential strain components
 288 ($p < 0.005$), though it had small, local regions of high negative and positive strains. The specimen averaged
 289 maximum shear strain, Γ_{max} (0.018 ± 0.007), was significantly lower than the maximum principal strain,
 290 E_{max} (0.044 ± 0.018 , $p = 0.0005$), which agrees with prior studies [32, 46], though all specimens exhibited
 291 localized regions of high shear.

292 3.2 Structural features

293 The average pore area fraction for the 10 specimens was $0.43 \pm 0.05 \mu\text{m}^2/\mu\text{m}^2$, while the specimen averaged
 294 connectivity ranged from $3.03 - 3.18$ beams per node. The beams were relatively straight, with an average
 295 tortuosity of $1.13 \pm 0.02 \mu\text{m}/\mu\text{m}$ and had a low aspect ratio (length/width) of $1.59 - 2.13 \mu\text{m}/\mu\text{m}$. The
 296 average beam orientation angle was $-2.22 \pm 2.77^\circ$ with respect to the nasal-temporal axis. However, the
 297 beam orientations were highly dispersed with an average anisotropy of 0.54, where a value of 0 indicates a
 298 random distribution and infinity indicates that all the beams are aligned along the average orientation.

299 Linear regression models were used to examine for pairwise correlations between the specimen-averaged
 300 structural features (Table 2 and Supplemental Table S6). A higher pore area fraction was associated with
 301 fewer beams joining at a node ($p = 0.0002$), a higher beam aspect ratio ($p = 0.04$) and a more negative beam
 302 angle with respect to the nasal-temporal axis ($p = 0.02$). A longer beam was associated with a lower node
 303 density ($p = 0.0001$), a more aligned beam ($p = 0.04$) and a higher beam aspect ratio ($p = 0.02$).

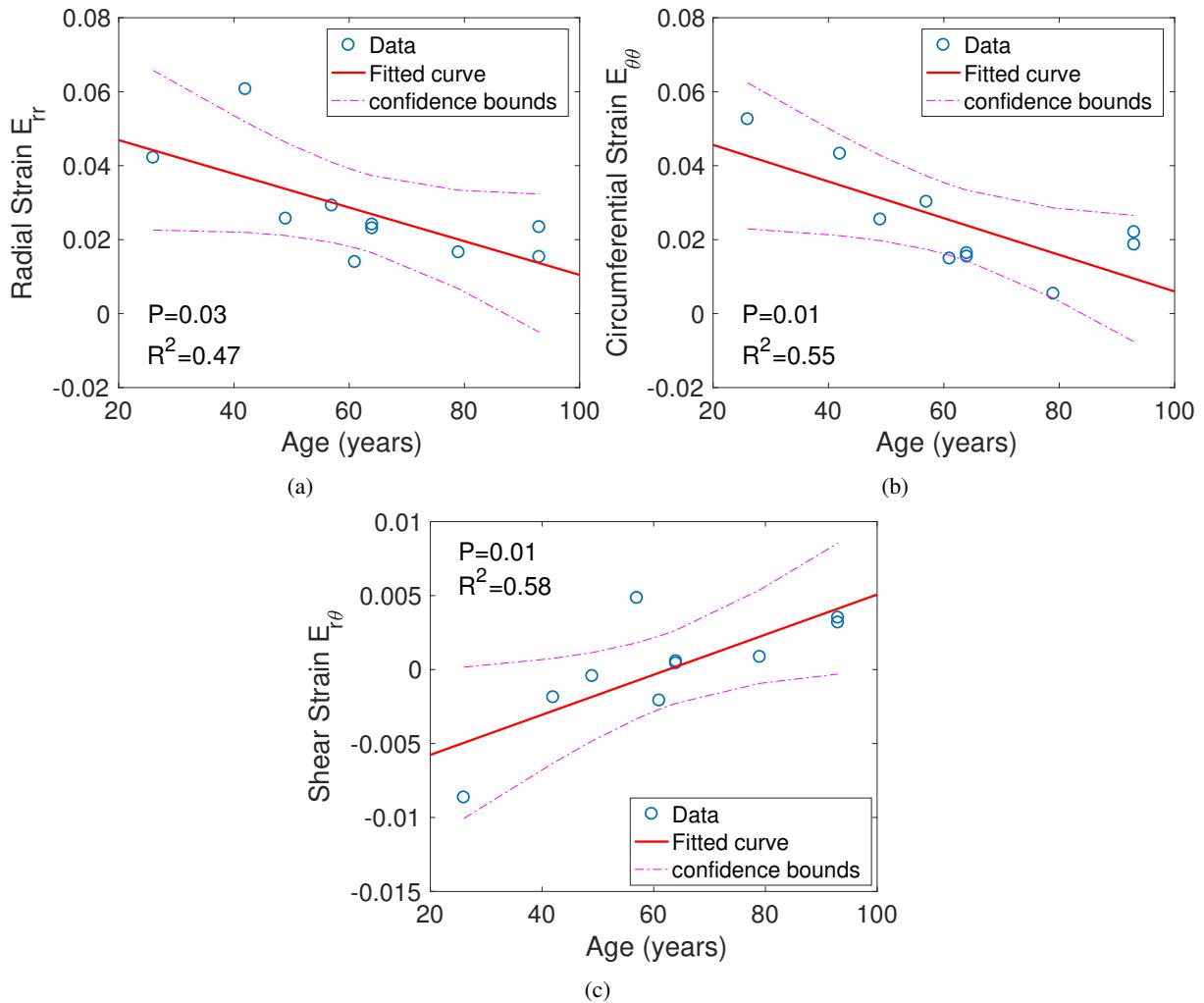


Figure 5: Linear regression analysis of the specimen-averaged strain outcomes for variation with age, showing: (a) E_{rr} radial strain, (b) $E_{\theta\theta}$ circumferential strain, (c) $E_{r\theta}$ radial-circumferential shear strain

3.3 Variations with age

The structural features did not vary significantly with age (Supplemental Fig. S12-13). The radial strain, E_{rr} , circumferential strain, $E_{\theta\theta}$, maximum tensile strain, E_{max} , and maximum shear strain, Γ_{max} , all decreased significantly with age, while $E_{r\theta}$, which was an order of magnitude smaller than E_{rr} and $E_{\theta\theta}$, increased with age (Figure 5 and Supplemental Table. S8).

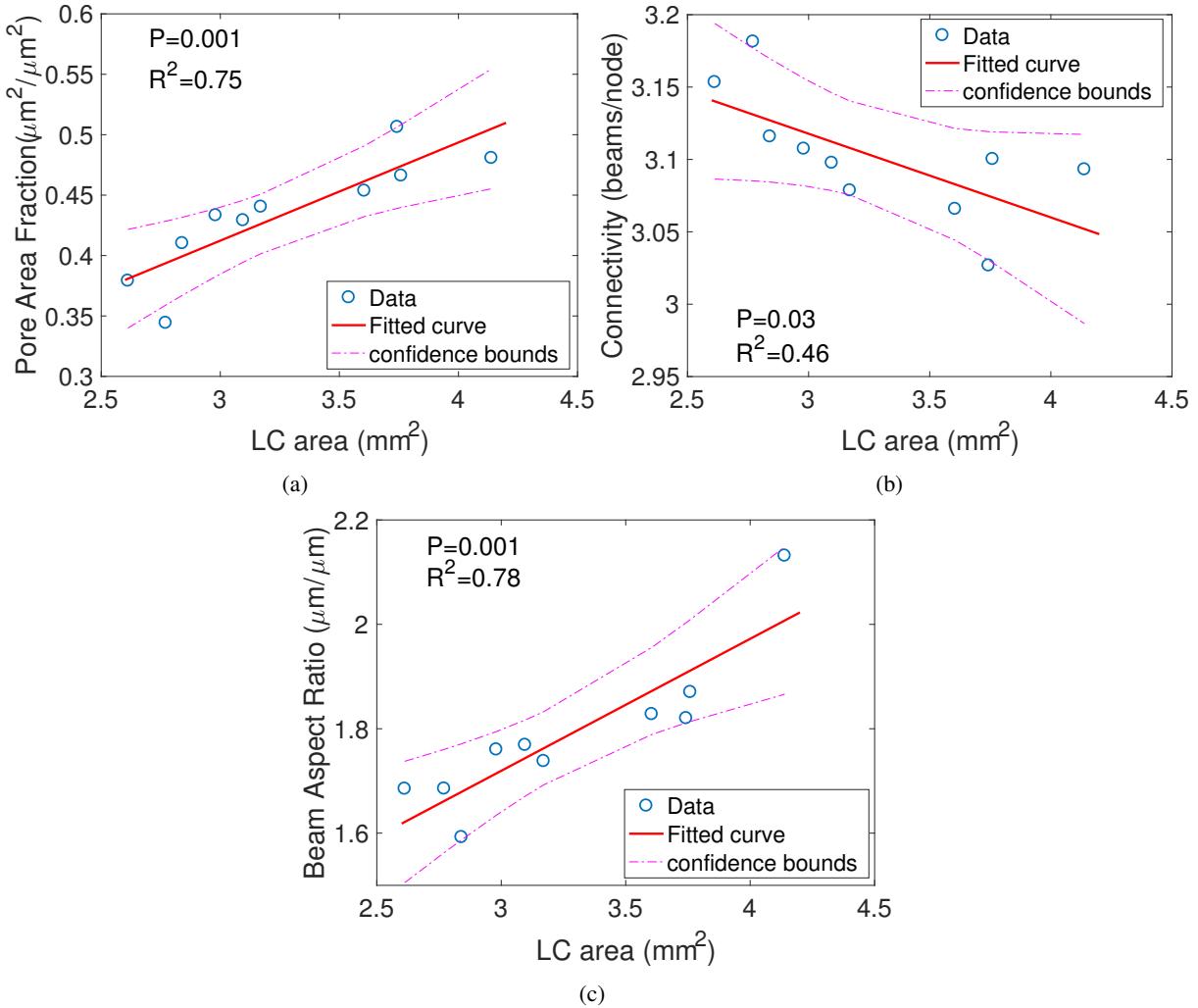


Figure 6: Linear regression analysis of the specimen-averaged structural features for variation with LC area, showing (a) pore area fraction, (b) connectivity, (d) beam aspect ratio.

309 3.4 Variations with LC area

310 The LC area for the 10 specimens ranged from 2.61 to 4.14 mm^2 . The pore area fraction ($p = 0.001$) and
 311 beam aspect ratio ($p = 0.001$) increased with larger LC area, while connectivity decreased with larger LC
 312 area (Figure 6 and Supplemental Fig. S15). Interestingly, higher normal (tensile and compressive) strains,
 313 E_{rr} , $E_{\theta\theta}$ and E_{max} , were also associated with higher LC area, while the shear strains, Γ_{max} and $E_{r\theta}$, did not
 314 vary significantly with the LC area (Figure 7 and Supplemental Fig. S14).

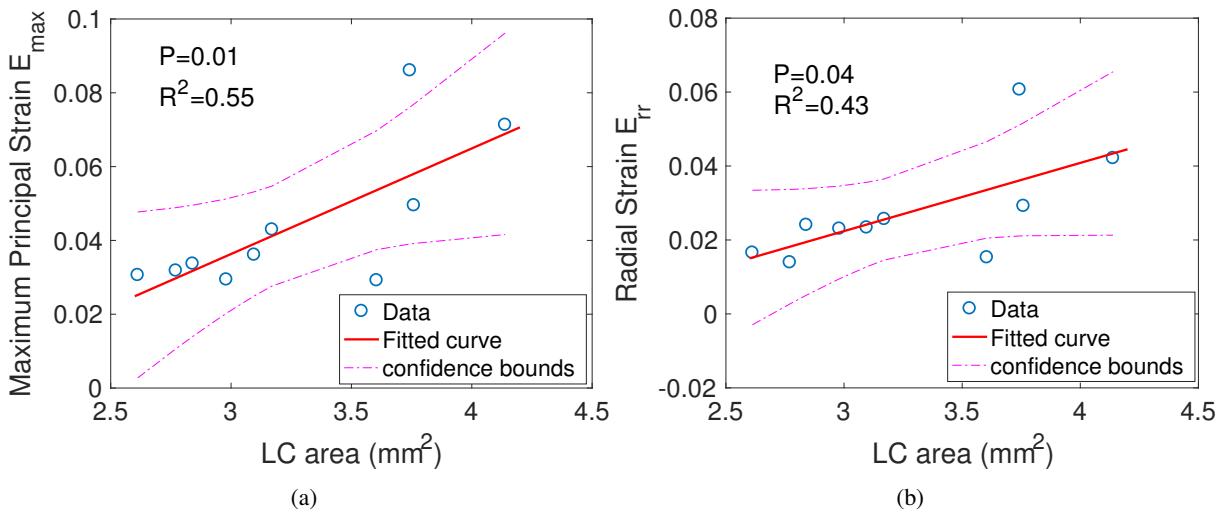


Figure 7: Linear regression analysis of the specimen-averaged strain outcomes for variation with LC area, showing: (a) E_{\max} maximum principal strain, (b) E_{rr} radial strain

³¹⁵ **3.5 Regional variations**

³¹⁶ **3.5.1 Radial variations**

³¹⁷ Compared to the central region, the peripheral region had a 15% higher pore area fraction ($p < 0.0001$),
³¹⁸ 2% higher tortuosity ($p = 0.01$), 21% lower node density ($p < 0.0001$) and 3% lower connectivity ($p <$
³¹⁹ 0.0001) (Figure 8 and Supplemental Fig. S16). The maximum principal strain, E_{\max} , was 37% higher
³²⁰ ($p < 0.0001$), the maximum shear strain, Γ_{\max} , was 46% higher ($p < 0.0001$) and the radial strain was 25%
³²¹ higher ($p = 0.04$) in the peripheral than central LC (Figure 9). The peripheral region also exhibited higher
³²² $E_{\theta\theta}$ ($p = 0.02$). The radial-circumferential shear strain $E_{r\theta}$ was more negative in the peripheral region
³²³ ($p = 0.02$).

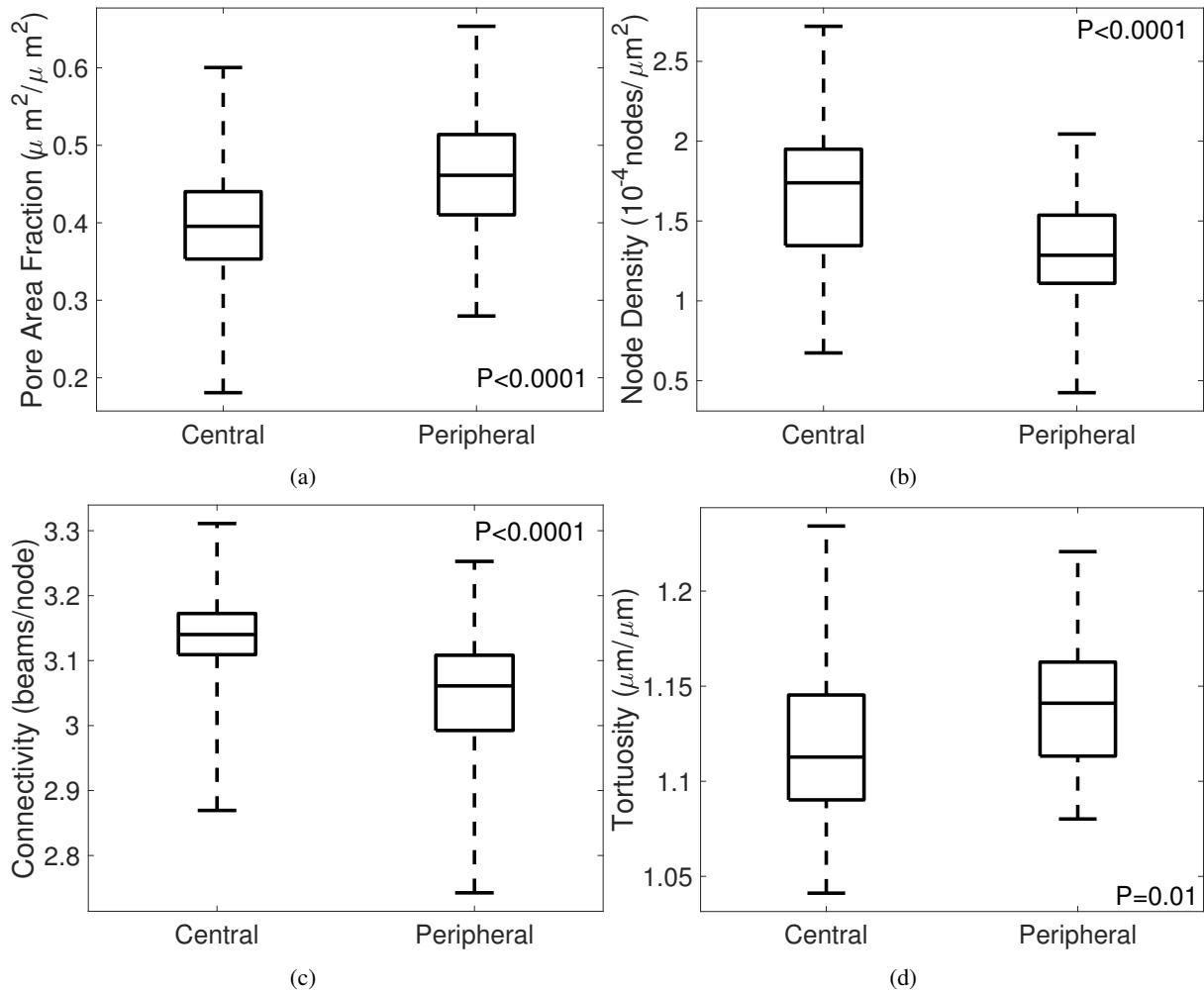


Figure 8: Effects of radial positions on structural features, showing (a) pore area fraction, (b) node density, (c) connectivity, (d) tortuosity

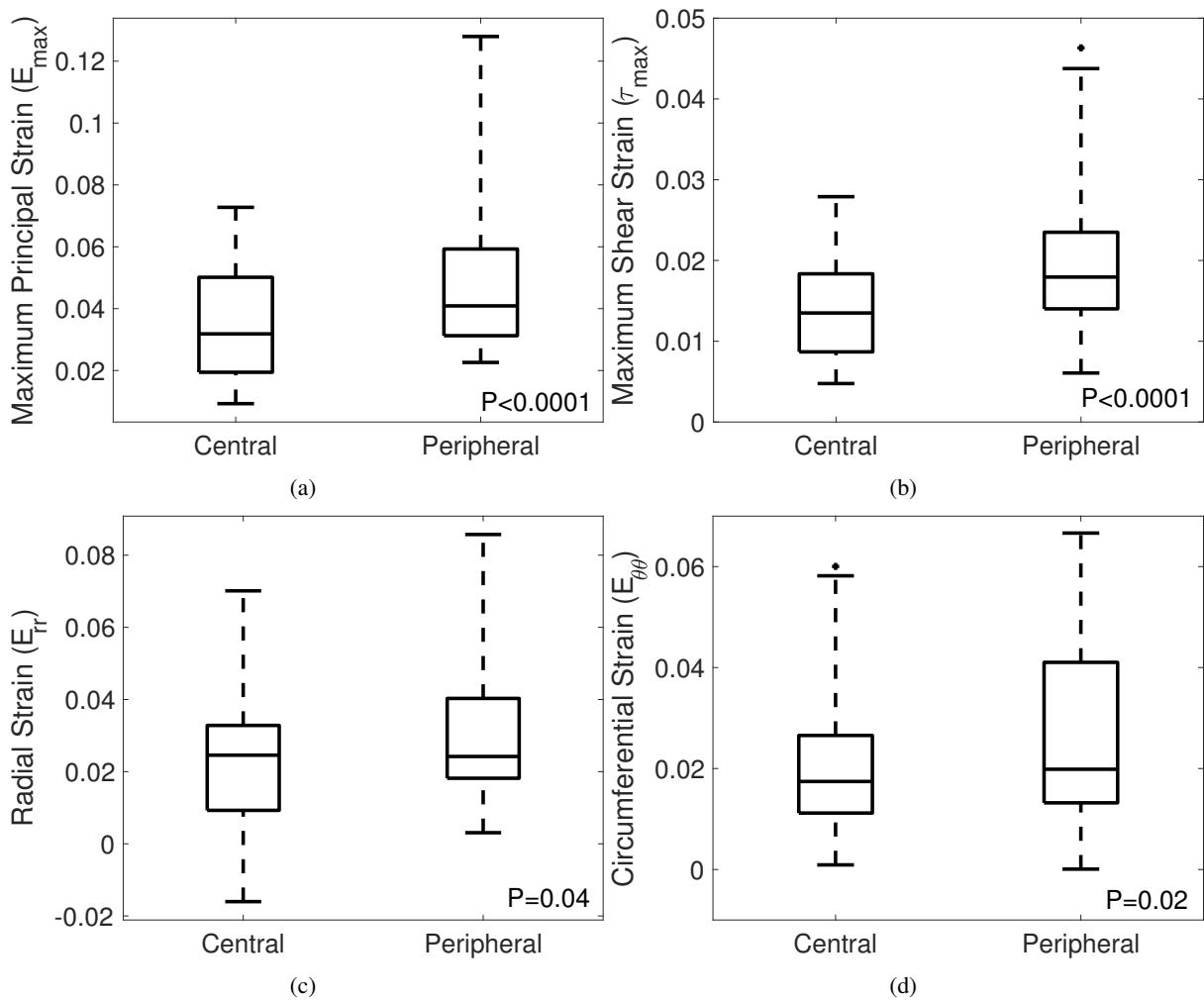


Figure 9: Effect of radial position on strain outcomes, showing: a) E_{max} maximum principal strain, b) Γ_{max} maximum shear strain, (c) E_{rr} radial strain, (d) $E_{\theta\theta}$ circumferential strain, e) $E_{r\theta}$ shear strain.

324 **3.5.2 Quadrant variations**

325 The strain and structural variations were analyzed also for variations between the 4 quadrants within the
 326 central, peripheral and full LC (Supplemental Table S13-18).

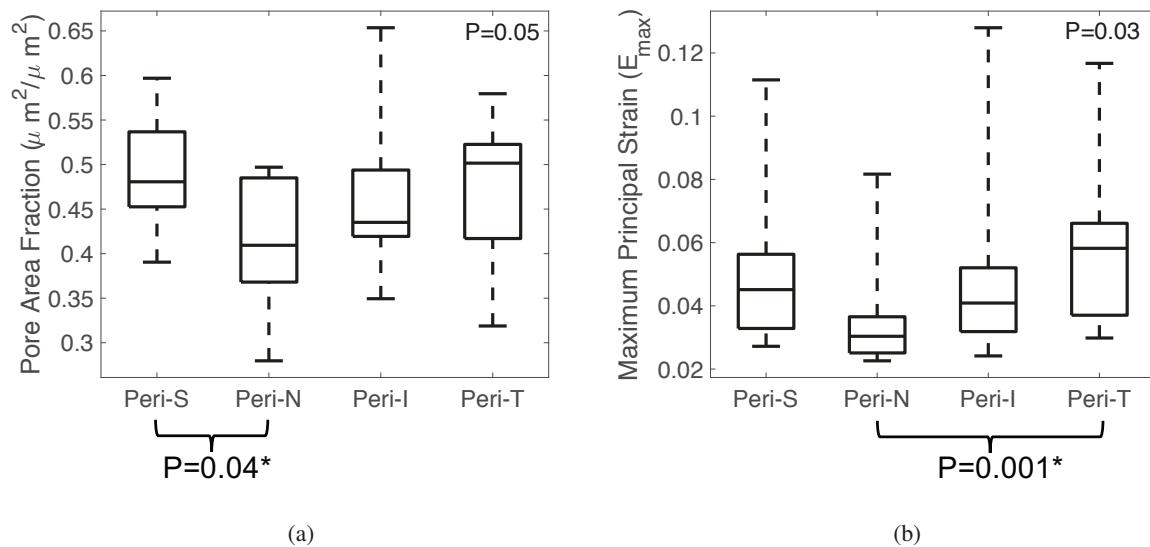


Figure 10: Effect of peripheral quadrant position in (a) pore area fraction and (b) Maximum principal strain. The p -values were calculated from linear mixed models. The superscript * indicates significant adjusted p -value using Tukey-Kramer method for multiple pairwise comparison.

327 In the full LC, the beam orientation ($p = 0.02$), anisotropy ($p = 0.01$), and length ($p = 0.02$) varied
328 significantly among the quadrants (Supplemental Table S13). Multiple post-hoc pairwise comparisons
329 showed that the beam orientation angle was smaller, i.e., more negative with respect to the nasal-temporal
330 direction, in the superior quadrant than the inferior quadrant ($p = 0.02$). Beam anisotropy in the superior ($p =$
331 0.01) quadrants was smaller (less aligned) than that in the inferior quadrant, and beam length was shorter
332 in the temporal quadrant than in the inferior quadrant ($p = 0.01$). However, the differences in anisotropy
333 was small, ranging from 0.56 – 0.87. The maximum principal strain E_{max} , maximum shear strain Γ_{max} , and
334 radial-circumferential shear strain $E_{r\theta}$, also varied significantly among the quadrants (Supplemental Table
335 S16). For all strain outcomes except $E_{r\theta}$, the strain was highest in the temporal quadrant and lowest in the
336 nasal quadrant ($p = 0.03$ for E_{max} and $p = 0.01$ for Γ_{max} from multiple pairwise comparisons).

337 Within the central LC, only the beam anisotropy varied significantly among the quadrants ($p = 0.004$)
338 and was highest in the inferior quadrant and lowest in the superior quadrant ($p = 0.01$, Supplemental
339 Table S14). The maximum principal strain E_{max} ($p = 0.02$), maximum shear strain Γ_{max} ($p = 0.03$), and
340 radial-circumferential shear strain $E_{r\theta}$ ($p = 0.03$), also varied among the central quadrants. The E_{max}
341 ($p = 0.02$) and Γ_{max} ($p = 0.04$) were higher in the inferior region than nasal region. E_{max} was also higher in
342 inferior compared to superior region ($p = 0.05$).

343 In the peripheral LC, the pore area fraction varied significantly between quadrants ($p = 0.05$), and was
344 smaller in the nasal than superior quadrant ($p = 0.04$, Figure 10a). The nasal region also had lower E_{max} ($p =$
345 0.001), Γ_{max} ($p < 0.001$) and E_{rr} ($p = 0.02$) compared to the temporal region (Figure 10b and Supplemental
346 Table S18).

347 3.6 Structure-strain correlations

348 3.6.1 Specimen averages

349 Linear regression models were used to investigate the pair-wise correlations between specimen-averaged
350 strain and structural outcomes (Table 3 and Supplemental Table S19-S23). The maximum principal strain
351 E_{max} increased with higher pore area fraction ($p = 0.01$). The circumferential strain also increased with
352 larger pore area fraction ($p = 0.006$) and beam aspect ratio ($p = 0.004$). The radial strain increased with
353 larger pore area fraction ($p = 0.007$) and tortuosity ($p = 0.03$), and decreased with higher connectivity

Table 3: Results of the linear regression models for correlations between structures measured at 5mmHg and strains measured for inflation from 5-45mmHg using specimen averaged data, showing the estimated regression parameter, *p*-value for likelihood of the predictor variable. E_{max} , E_{rr} and $E_{\theta\theta}$ increased with pore area fraction; E_{rr} also increased with lower connectivity and higher tortuosity.

Response variable: Strain	Predictor variable: Structural features	Estimated regression parameter (95%CI)	p-value	R^2
E_{max}	Pore area fraction ($\mu\text{m}^2/\mu\text{m}^2$)	0.3080 (0.0854, 0.5305)	0.01	0.56
E_{rr}	Pore area fraction ($\mu\text{m}^2/\mu\text{m}^2$)	0.2344 (0.0843, 0.3844)	0.007	0.62
	Connectivity (beams/node)	-0.2286 (-0.4220, -0.0352)	0.03	0.48
	Tortuosity ($\mu\text{m}/\mu\text{m}$)	0.4887 (0.0748, 0.9027)	0.03	0.48
$E_{\theta\theta}$	Pore area fraction ($\mu\text{m}^2/\mu\text{m}^2$)	0.2370(0.0902, 0.3839)	0.006	0.63
	Beam aspect ratio ($\mu\text{m}/\mu\text{m}$)	0.0802 (0.0347, 0.1257)	0.004	0.67

354 ($p = 0.03$). The strongest correlations (highest R^2 values) were between the radial strain E_{rr} and the pore
 355 area fraction and between the circumferential strain $E_{\theta\theta}$ and the beam aspect ratio (Figure 11).

356 **3.6.2 Regional averages**

357 We next applied linear mixed models to investigate the pair-wise correlations between regionally averaged
 358 strain and structural outcomes, because significant regional variations were found for both structural and
 359 strain outcomes (Table 4 and supplemental Table S24-S28). All strain components increased significantly
 360 with increased pore area fraction and all strains, except for $E_{r\theta}$, decreased with higher node density. Moreover,
 361 E_{max} and Γ_{max} decreased with higher connectivity; E_{max} and $E_{\theta\theta}$ increased with higher beam aspect ratio;
 362 and Γ_{max} increased with higher tortuosity (Table 4). The shear strain $E_{r\theta}$ decreased with increasing beam
 363 orientation angle and increased with longer beams.

364 A total of four structural measures were significantly correlated with E_{max} and Γ_{max} . These were
 365 compared to identify the structure with the greatest impact on the average strain. AIC statistics were used
 366 to measure the information lost when the model is used to predict the observed E_{max} and Γ_{max} strain. This
 367 allowed for calculation of the relative likelihood for each model, which is the statistical probability that the
 368 model will best predict the strain outcome, relative to the best fitting model. For E_{max} and Γ_{max} , the structures
 369 that had the greatest estimated absolute change in strain corresponding to a change of one standard deviation
 370 in structure were pore area fraction and connectivity, respectively (Figure 12). The predicted strains using
 371 these structures also best fit the observed strains.

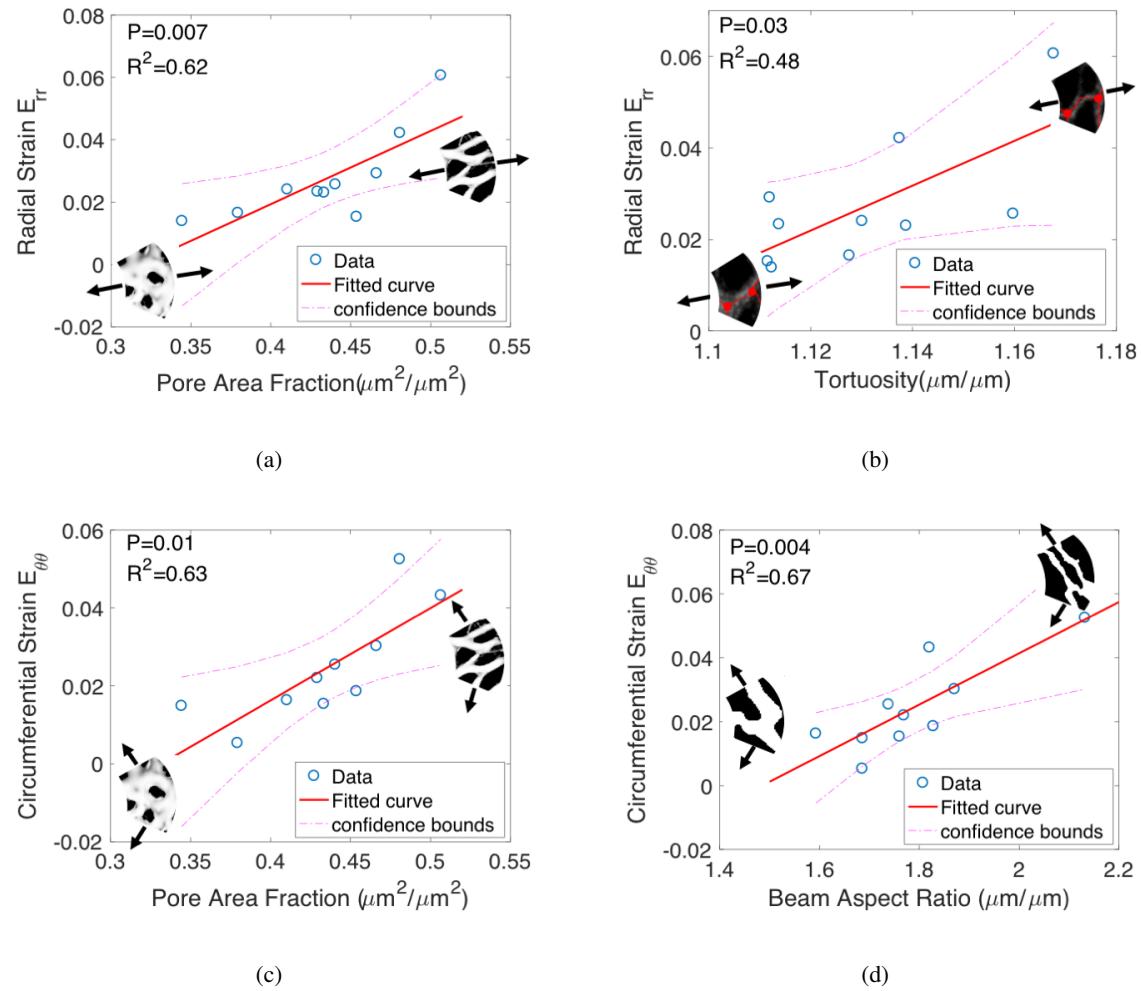


Figure 11: The specimen averaged radial strain E_{rr} increased with (a) larger pore area fraction and (b) larger tortuosity; The specimen averaged circumferential strain $E_{\theta\theta}$ increased with (c) larger pore area fraction and (d) higher beam aspect ratio ($n = 10$).

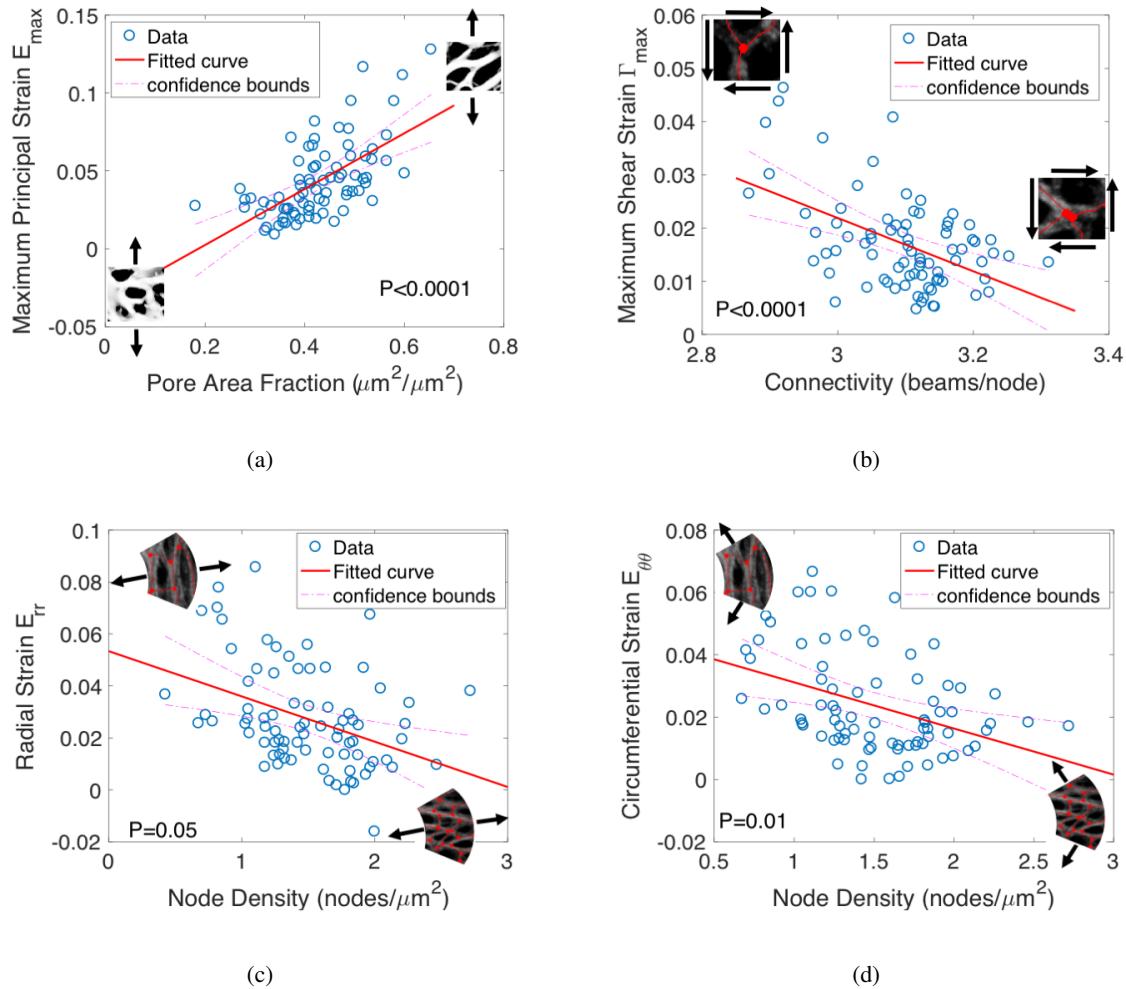


Figure 12: (a) The maximum principal strain E_{max} increased with larger pore area fraction ($n = 80$); (b) The maximum shear strain Γ_{max} increased with lower connectivity ($n=79$); (c) The radial strain E_{rr} ($n=80$) and (d) the circumferential strain $E_{\theta\theta}$ ($n=79$) decreased with larger node density.

Table 4: Results of the linear mixed models for correlations between regionally averaged structural features measured at 5mmHg and strains measured for inflation from 5-45mmHg, showing the number of measurements after elimination of outliers. All of the strain outcomes increased with pore area fraction. E_{max} , Γ_{max} , E_{rr} and $E_{\theta\theta}$ increased with lower node density; and E_{max} and Γ_{max} increased with lower connectivity.

Response variable: Strain	Predictor variable: Structural features	number of measurements	Estimated regression parameter (95%CI)	p-value
E_{max}	Pore area fraction ($\mu\text{m}^2/\mu\text{m}^2$)	80	0.1191(0.0700,0.1683)	< 0.0001
	Node density $\times 10^{-4}$ (nodes/ μm^2)	80	-0.0208(-0.0305,-0.0111)	< 0.0001
	Connectivity (beams/node)	80	-0.0922(-0.1310,-0.0534)	< 0.0001
	Beam aspect ratio ($\mu\text{m}/\mu\text{m}$)	79	0.0224(0.0025,0.0423)	0.03
Γ_{max}	Pore area fraction ($\mu\text{m}^2/\mu\text{m}^2$)	79	0.0459(0.0250,0.0668)	< 0.0001
	Node density $\times 10^{-4}$ (nodes/ μm^2)	79	-0.0081(-0.0121,-0.0040)	0.0002
	Connectivity (beams/node)	79	-0.0408(-0.0583,-0.0233)	< 0.0001
	Tortuosity ($\mu\text{m}/\mu\text{m}$)	79	0.0542(0.0145,0.0939)	0.01
E_{rr}	Pore area fraction ($\mu\text{m}^2/\mu\text{m}^2$)	80	0.0536(0.0081,0.0992)	0.02
	Node density $\times 10^{-4}$ (nodes/ μm^2)	80	-0.0091(-0.0179, -0.0002)	0.05
$E_{\theta\theta}$	Pore area fraction ($\mu\text{m}^2/\mu\text{m}^2$)	79	0.0458(0.0067,0.0848)	0.02
	Node density $\times 10^{-4}$ (nodes/ μm^2)	79	-0.0095(-0.0169,-0.0021)	0.01
	Beam aspect ratio ($\mu\text{m}/\mu\text{m}$)	78	0.0153(0.0010,0.0296)	0.04
$E_{r\theta}$	Pore area fraction ($\mu\text{m}^2/\mu\text{m}^2$)	80	0.0127(0.0064,0.0191)	0.0002
	Beam orientation (degree)	80	-0.00007(-0.0008,-0.00005)	< 0.0001
	Beam aspect ratio ($\mu\text{m}/\mu\text{m}$)	79	0.0033(0.0010,0.0056)	0.01
	Beam length (μm)	79	0.00015(0.00014,0.00016)	< 0.0001

4 Discussion

Our method for measuring the LC microstructure from SHG image volumes of the human LC produced quantitative findings similar to those previously reported by other methods. The average beam width was $36.23 \pm 2.65 \mu\text{m}$, which is comparable to previous beam width measurements by OCT ($38.1 \pm 1.4 \mu\text{m}$ by Nadler et al. [48] and $46.7 \pm 3.2 \mu\text{m}$ by Wang et al. [28]). The average pore area fraction, 0.43 ± 0.05 , also was similar to the 0.48 value for proportionate pore area for the posterior LC in histological sections [18], but somewhat higher than the $34.5 \pm 7.6\%$ measured by SEM [23]. The average tortuosity of the collagen beams (1.13 ± 0.02) was also larger than the range of tortuosities (1 to 1.12) measured by Brazile et al. [49] for the collagen fibers within the LC beams of sheep eyes. While our specimens had been inflation tested, they were not chemically fixed and remained in a fully hydrated state, compared to histological sections or dried scanning microscopy specimens. Differences in the structural measures between methods could also be caused by variations between species, differences in the imaging and segmentation approaches, and differences in the specimen preparation methods. We confirmed that the segmentation method was

385 appropriate by comparing the difference in resulting pore area fraction from manual segmentation and
386 that from the Matlab algorithm. Two local regions of size 200 $\mu\text{m} \times 200 \mu\text{m}$ on the 30th z-slice of all
387 specimens were selected for manual segmentation. For a representative beam width of 7, 8 (used in this
388 study) and 9 pixels, the average absolute percentage difference in resulting pore area fraction when compare
389 to manual segmentation was 16.91%, 3.87%, and 37.97% respectively; while the average difference between
390 two manual tracings by the same operator on ten of the regions was 4.37%. This showed that despite an
391 overestimation or underestimation that may be uniformly applied across images during auto-segmentation,
392 the approach eliminates human error in manual identification especially in regions with lower beam contrast.
393 In addition, we compared the resulting pore area fraction from the three representative beam widths (7, 8, and
394 9 pixels) with the maximum principal strain E_{max} in our linear regression model. The change in parameter
395 did not affect the conclusion that specimen averaged pore area fraction increased with increasing pore area
396 fraction. Overlaying the segmented structures onto the original SHG image volume also served to visually
397 verify that the segmentation method was sound.

398 There were significant correlations between LC structural features and strains measured in the same
399 specimens, both globally and regionally. Strains were larger with higher pore area, lower beam connectivity,
400 and more tortuous, thinner beams. These findings show that an LC network structure with a lower connective
401 tissue content and fewer beam connections is associated with greater IOP-induced strains. All strain measures
402 increased significantly with larger pore area, and greater pore area and greater connectivity were the most
403 predictive factors determining regional maximum principal and maximum shear strains, respectively. Our
404 measurements reflected the tissue structure and mechanical behavior at a single point in time for each LC.
405 It is reasonable to speculate that areas with larger tensile and shear strains would induce stretch activation
406 of astrocytes and lamina cribrosacytes that reside on and within the LC beams. Such stimulation would
407 potentially cause regionally greater connective tissue remodeling of the beam structure, with either protective
408 or adverse effects on RGC axons passing through those zones [50–53].

409 We found correlations among LC structural features that have not been detected previously. Lower
410 connectivity and longer beam length were associated with larger pore area fraction, while a longer beam
411 length was associated with a higher degree of beam alignment. Regions with higher pore area fraction likely
412 have longer, but fewer beams to form junctions and connections, and regions with longer but fewer beams

413 would increase anisotropy. We also observed that longer beams were associated with a lower node density
414 and a higher beam aspect ratio.

415 In both the analysis of the specimen-averaged and regionally averaged outcomes, variations in structural
416 features that would lead to a more compliant network structure were associated with greater strains. Different
417 structural features affected the normal strains, E_{rr} and $E_{\theta\theta}$, and shear strain $E_{r\theta}$. We found significant
418 differences between the central and peripheral LC regions for four structural features and for all five strain
419 measures. The pore area fraction was 15% larger in the peripheral region, which agrees with the findings
420 of lower connective tissue volume fraction in the periphery in previous studies using SEM and histology
421 [17, 54]. We also found that the peripheral LC had more curved beams and lower connectivity and node
422 density than the central LC, which may contribute to its more compliant network structure and higher strains.
423 Strains and structural features also covaried among LC quadrants. In the peripheral LC, the nasal quadrant
424 had the lowest E_{max} , Γ_{max} and E_{rr} strains, the lowest pore area fraction, and highest node density. Lower
425 pore area fraction and higher node density both suggest a stiffer network structure, which can lead to lower
426 strains in the peripheral nasal region of the LC and may promote the resilience of the nasal neural-retinal
427 rim in advanced glaucoma [34, 35]. While the strains were more uniform in the central LC, its inferior
428 quadrant had the highest E_{max} and Γ_{max} . The beam alignment (anisotropy) was highest in the central inferior
429 region. Computational modeling is needed to evaluate the extent that the small, but significant variation in
430 the anisotropy contributed to the more compliant strain response of the central inferior quadrant.

431 The correlations between LC structure and strain suggest that these parameters may be useful predictors
432 of the risk and progression of glaucoma damage. As described above, the zones of greater RGC axon
433 damage correspond to the inferior and peripheral LC in glaucoma. The regional findings of our analysis are
434 consistent with this greater susceptibility. *In vivo* measurements of the pore area fraction and beam width
435 are becoming more accessible with the developments of adaptive optics scanning laser ophthalmoscopy
436 (AOSLO) [29], swept source (SS)-OCT [28], and adaptive optics (AO) spectral-domain (SD)-OCT [55–57].
437 These advanced imaging methods permit high quality visualization of the LC structure, including beam
438 thickness and pore geometry and depth variations of these features [58].

439 However, variations in structural features could not explain all of the observed strain variations. All
440 strain components varied significantly with age, but none of the structural features varied with age. While

441 the differences in the structural features between the central and peripheral LC were modest (3-20%), the
442 strains differed by 25-50%. Larger differences were also measured for strains than for structural features
443 among the 4 LC quadrants. These suggest that factors other than LC microstructure as measured by the
444 present methods contributed to variations in strains. The increased stiffness of the LC may be caused by
445 an increase in the modulus of the extracellular matrix material of the LC, for example by the loss of GAGs
446 [46], accumulation of elastin and collagen with age [59] or by age-related crosslinking of the collagen
447 structure. Previous *ex vivo* inflation tests have also shown that the inflation response (pressure-strain) of
448 the sclera became stiffer with age [60]. The anisotropy of the collagen structure of the posterior sclera
449 also decreased with age, and inverse FEA analysis using specimen specific collagen structure and scleral
450 shape showed that the elastic modulus of the sclera, specifically of the components not associated with
451 the aligned collagen fibers, increased with age [61, 62]. While a similar inverse analysis is needed to
452 determine the material properties of the LC, the findings here suggest that the age-related stiffening of the
453 pressure-strain response of the LC is not caused by changes in the pore and beam microstructure of the LC.
454 In addition, the LC strain is influenced by the behavior of the peripapillary sclera. The peripapillary sclera is
455 thicker than the LC, has a higher connective tissue density, and has a highly aligned circumferential collagen
456 structure. The mismatch between peripapillary sclera and LC in response to IOP change likely induces a
457 strain concentration at the scleral junction that produces a significant difference between the central and
458 peripheral LC strain independent of LC internal structure [63, 64].

459 Another parameter that affected the relationship between LC structural elements and strains was the LC
460 area, which varies dramatically among human eyes and has been shown to be an epidemiological risk factor
461 for glaucoma prevalence, with larger discs at greater risk [65, 66]. In larger LCs, there were larger values for
462 pore area fraction, tortuosity and beam aspect ratio, and lower connectivity. Each of these tendencies were
463 associated with higher strains. Our previous study did not find a statistically significant variation between
464 the strain and LC area [32], perhaps because of the smaller sample size.

465 There were several limitations to this study. The strain and structural features were measured from
466 SHG images of the LC collagen structure, which suffers from significant blurring in the Z direction. We
467 applied a series of image processing techniques to reduce the blur and noise and to enhance contrast, but
468 the features remained elongated in the anterior-posterior direction of the LC. This resulted in higher errors

469 for the out-of-plane compressive strain E_{ZZ} , and E_{ZZ} was excluded from the analysis for age and region
470 variations and for strain and structure correlations. We estimated the DVC displacement and strain error for
471 every specimen to ensure that the strain variations measured here were all larger than the specimen averaged
472 absolute error (Supplemental Section S3). The blurring in Z should not have affected the measurement of
473 the beam structures, because we assumed that the beams mainly lie in the plane.

474 The LC mask was segmented using the maximum z-projection image of each LC volume which could
475 result in a smaller LC area and hide the beams in the peripheral LC from the microstructural analysis. We
476 then applied a 2D skeletonization method to each z-slice to generate the skeletonized beam network that
477 was used to calculate the node density, beam length, aspect ratio, tortuosity, connectivity, orientation and
478 anisotropy. Histology, polarized light microscopy and SHG images of LC longitudinal- and cross-sections
479 of normal human eyes showed that the beams mainly lie in the plane [67–69]. However, a small out of plane
480 orientation of the beam may lead to a shorter beam length and other errors in the connectivity and pore
481 density. The LC undergoes significant remodeling in glaucoma and can appear deeply cupped in donors
482 with advanced glaucoma. The present study examined eyes that had no history of glaucoma. The 2D
483 skeletonization method may underestimate the beam length, orientation, anisotropy and tortuosity in the LC
484 of glaucoma eyes.

485 The specimens contained one eye from a Hispanic donor. There may be racioethnic differences in
486 the structural features and biomechanical responses of the LC between the Hispanic donor and Caucasian
487 donors. We repeated the statistical analysis for correlations between the specimen averaged strain outcomes
488 and pore area fraction and beam aspect ratio. Removing the Hispanic donor eye changed the p -values but
489 did not alter the significant findings of this analysis.

490 While structural features were not associated with age for the 10 specimens in the age range of 26-90,
491 we found a borderline significant ($p=0.06$) decrease in the specimen averaged tortuosity with increasing age.
492 The comparison may become significant with more specimens from younger donors.

493 Finally, the biomechanical response could be affected by the thickness of the LC after enucleation. If
494 a sizable stump was left on the inflation tested specimen, the dura may increase the stiffness of the sclera
495 canal opening and the RGC axons may constrain the posterior deflection of the LC under inflation. We
496 removed the optic nerve up to the LC posterior surface to image the LC structure for strain and structural

497 measurements. To ensure that we did not remove a significant portion of the LC, the specimen was imaged
498 after each thin cut under a dissecting microscope during the specimen preparation process. The SHG method
499 was able to image through 300 μm of the posterior LC surface, but the more anterior and posterior z-slices
500 had large DVC error and unreliable structural measurements, either because of surface roughness or light
501 attenuation, and were excluded from the average strain and structure calculations. For all specimens, the
502 most anterior slice used for structural characterization was between 225-270 μm from the posterior surface,
503 and the most posterior slice used was between 150-210 μm from the posterior surface. Previous histological
504 studies have shown that the number of pores increases and the pore size decreases anterior-posteriorly [18].
505 There may be differences in structural parameters between more anterior and more posterior sections that
506 were not captured within the slices selected for structural analysis. Further, the thickness of LC was not
507 measured since the tissues were preserved for wide-angle X-ray scattering analysis [70] after inflation
508 testing. Variation in regional LC thickness may contribute to the regional variation in inflation strain
509 response. Improved depth penetration of the imaging method is needed to investigate the differences across
510 z-depth.

511 4.1 Conclusions

512 A total of 9 structural features and 5 strain outcomes were measured in 10 inflation tested human LC
513 specimens. The structural features measured in 2D sections were found to vary with LC area, region, and to
514 be correlated with strains. Specifically, the main findings include:

- 515 1. Of the nine structural features, pore area fraction was the most predictive of maximum principal strain
516 E_{max} while connectivity was most predictive of maximum shear strain Γ_{max} .
- 517 2. The peripheral regions had higher pore area fraction, tortuosity, maximum principal strain E_{max} ,
518 maximum shear strain Γ_{max} , radial strain E_{rr} , and circumferential strain $E_{\theta\theta}$. The peripheral region
519 also had a lower node density and connectivity compared to the central region.
- 520 3. The maximum principal strain, E_{max} , radial strain, E_{rr} , and pore area fraction were larger in the
521 inferior, superior and temporal quadrants than in the peripheral nasal quadrant.

522 4. Maximum principal strain, E_{max} , radial strain, E_{rr} , circumferential strain, $E_{\theta\theta}$, pore area fraction and
523 beam aspect ratio were larger with larger LC area; connectivity and beam orientation were smaller as
524 with larger LC area.

525 5. All strain outcomes except for radial circumferential strain $E_{r\theta}$ decreased with age but none of the
526 structural measures decreased significantly with age.

527 6. The pore area increased as the connectivity and beam orientation decreased and beam aspect ratio
528 increased. A longer beam length was associated with lower node density and a larger beam anisotropy
529 and aspect ratio.

530 Overall, variations in the LC network structure were associated with variations in strains, which may affect
531 the biomechanical and physiological support for RGC axons. Thus, variations in the LC beam structure may
532 be predictive of the susceptibility and progression of glaucomatous axonal damage. The difference between
533 central and peripheral regions may explain the early vision loss in mid-peripheral regions associated with
534 glaucoma [71].

535

536 5 Acknowledgement

537 This work was supported by: NIH Grants EY01765 & EY02120; NSF CMMI Award 1727104; Brightfocus
538 Foundation G2015132; Public Health Service Research Grants EY021500; and EY001765 Microscopy and
539 Imaging Core Module, Wilmer Core Grant for Vision Research. The authors are grateful for the generous
540 contributions of eye donors and their families who graciously provided ocular tissue to our project through
541 Eversight.

542 Disclosures

543 The authors declare that they have no conflicts of interest.

544 **References**

545 [1] Burgoyne CF. The morphological difference between glaucoma and other optic neuropathies. *J neuro-ophthalmology Off J*
546 *North Am Neuro-Ophthalmology Soc*, 35(0 1):S8, 2015.

547 [2] Quigley HA and Green WR. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation
548 in 21 eyes. *Ophthalmology*, 86(10):1803–1827, 1979.

549 [3] Albon J, Karwatowski WS, Avery N, Easty DL, and Duance VC. Changes in the collagenous matrix of the aging human
550 lamina cribrosa. *Br J Ophthalmol*, 79(4):368–375, 1995.

551 [4] Hernandez MR, Igoe F, and Neufeld AH. Cell culture of the human lamina cribrosa. *Invest Ophthalmol Vis Sci*, 29(1):78–89,
552 1988.

553 [5] Hernandez MR. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. *Prog Retin Eye Res*, 19:297—321,
554 2000.

555 [6] Wallace DM and O'Brien CJ. The role of lamina cribrosa cells in optic nerve head fibrosis in glaucoma. *Exp Eye Res*,
556 142:102–109, 2016.

557 [7] Burgoyne CF, Downs JC., Bellezza AJ., Suh JK, and Hart RT. The optic nerve head as a biomechanical structure: A new
558 paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head
559 damage. *Prog Retin Eye Res*, 24(1):39–73, 2005.

560 [8] Tamm ER, Ethier CR, Dowling JE, and et al. Biological aspects of axonal damage in glaucoma: A brief review. *Exp Eye Res*,
561 157:5–12, 2017.

562 [9] Hernandez MR, Pena JD, Selvidge JA, Salvador-Silva M, and Yang P. Hydrostatic pressure stimulates synthesis of elastin in
563 cultured optic nerve head astrocytes. *Glia*, 32(2):122–136, 2000.

564 [10] Morgan JE. Optic nerve head structure in glaucoma: astrocytes as mediators of axonal damage. *Eye*, 14:437–444, 2000.

565 [11] Sun D, Moore S, and Jakobs TC. Optic nerve astrocyte reactivity protects function in experimental glaucoma and other nerve
566 injuries. *J Exp Med*, 214(5):1411–1430, 2017.

567 [12] Clissmann D, Murphy R, Low R, and et al. Biomimetic modelling of the glaucomatous lamina cribrosa region of the optic
568 nerve head using tissue engineered scaffolds. In *8th World Congr Biomech*, volume 186, pages S479—S479, 2017.

569 [13] Varela HJ and Hernandez MR. Astrocyte responses in human optic nerve head with primary open-angle glaucoma. *J*
570 *Glaucoma*, 6(5):303–313, 1997.

571 [14] Hernandez MR, Agapova OA, Yang P, Salvador-Silva M, Ricard CS, and Aoi S. Differential gene expression in astrocytes
572 from human normal and glaucomatous optic nerve head analyzed by cDNA microarray. *Glia*, 38(1):45–64, 2002.

573 [15] Tovar-Vidales T, Wordinger RJ, and Clark AF. Identification and localization of lamina cribrosa cells in the human optic
574 nerve head. *Exp Eye Res*, 147:94–97, 2016.

575 [16] Anderson DR. Ultrastructure of human and monkey lamina cribrosa and optic nerve head. *Arch Ophthalmol*, 82(6):800–814,
576 1969.

577 [17] Quigley HA and Addicks EM. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous
578 optic nerve damage. *Arch Ophthalmol*, 99(1):137–143, 1981.

579 [18] Ogden TE, Duggan J, Danley K, Wilcox M, and Minckler DS. Morphometry of nerve fiber bundle pores in the optic nerve
580 head of the human. *Exp Eye Res*, 46(4):559–568, 1988.

581 [19] Yan DB, Coloma FM, Metheetraiturit A, Trope GE, Heathcote JG, and Ethier CR. Deformation of the lamina cribrosa by
582 elevated intraocular pressure. *Br J Ophthalmol*, 78(8):643–648, 1994.

583 [20] Downs JC, Yang H, Girkin C, and et al. Three-dimensional histomorphometry of the normal and early glaucomatous monkey
584 optic nerve head: neural canal and subarachnoid space architecture. *Invest Ophthalmol Vis Sci*, 48(7):3195–3208, 2007.

585 [21] Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, and Burgoyne CF. Anterior scleral canal geometry in
586 pressurised (IOP 10) and non-pressurised (IOP 0) normal monkey eyes. *Br J Ophthalmol*, 87(10):1284–1290, 2003.

587 [22] Sun D, Lye-Barthel M, Masland RH, and Jakobs TC. The morphology and spatial arrangement of astrocytes in the optic nerve
588 head of the mouse. *J Comp Neurol*, 516(1):1–19, 2009.

589 [23] Jonas JB, Mardin CY, Schlotzter-Schrehardt U, and Naumann GO. Morphometry of the human lamina cribrosa surface. *Invest*
590 *Ophthalmol Vis Sci*, 32(2):401–405, 1991.

591 [24] Jan NJ, Lathrop K, and Sigal IA. Collagen architecture of the posterior pole: high-resolution wide field of view visualization
592 and analysis using polarized light microscopy. *Invest Ophthalmol Vis Sci*, 58(2):735–744, 2017.

593 [25] Inoue R, Hangai M, Kotera Y, and et al. Three-dimensional high-speed optical coherence tomography imaging of lamina
594 cribrosa in glaucoma. *Ophthalmology*, 116(2):214–222, 2009.

595 [26] Strouthidis NG, Fortune B, Yang H, Sigal IA, and Burgoyne CF. Effect of acute intraocular pressure elevation on the monkey
596 optic nerve head as detected by spectral domain optical coherence tomography. *Invest Ophthalmol Vis Sci*, 52(13):9431–9437,
597 2011.

598 [27] Fatehee N, Paula KY, Morgan WH, Cringle SJ, and Yu DY. The impact of acutely elevated intraocular pressure on the porcine
599 optic nerve head. *Invest Ophthalmol Vis Sci*, 52(9):6192–6198, 2011.

600 [28] Wang B, Nevins JE, Nadler Z, and et al. In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as
601 assessed by optical coherence tomography. *Invest Ophthalmol Vis Sci*, 54(13):8270–8274, 2013.

602 [29] Ivers KM, Li C, Patel N, and et al. Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman
603 primates with in vivo adaptive optics imaging. *Invest Ophthalmol Vis Sci*, 52(8):5473–5480, 2011.

604 [30] Sigal IA, Grimm JL, Jan NJ, Reid K, Minckler DS, and Brown DJ. Eye-specific IOP-induced displacements and deformations
605 of human lamina cribrosa. *Invest Ophthalmol Vis Sci*, 55(1):1–15, 2014.

606 [31] Girard MJ, Beotra MR, Chin KS, and et al. In vivo 3-dimensional strain mapping of the optic nerve head following intraocular
607 pressure lowering by trabeculectomy. *Ophthalmology*, 123(6):1190–1200, 2016.

608 [32] Midgett DE, Pease ME., Jefferys JL., and et al. The pressure-induced deformation response of the human lamina cribrosa:
609 Analysis of regional variations. *Acta Biomater*, 53:123–139, 2017.

610 [33] Drance SM. The glaucomatous visual field. *Br J Ophthalmol*, 56(3):186, 1972.

611 [34] Jonas JB, Fernández MC, and Stürmer J. Pattern of glaucomatous neuroretinal rim loss. *Ophthalmology*, 100(1):63–68, 1993.

612 [35] Jonas JB, Budde WM, and Panda-Jonas S. Ophthalmoscopic evaluation of the optic nerve head. *Surv Ophthalmol*,
613 43(4):293–320, 1999.

614 [36] Quigley HA. Glaucoma. *Lancet*, 377(9774):1367–1377, 2011.

615 [37] Zuiderveld K. Contrast limited adaptive histogram equalization. *Graph gems*, pages 474–485, 1994.

616 [38] Schindelin J, Arganda-Carreras I, Frise E, and et al. Fiji: an open-source platform for biological-image analysis. *Nat Methods*,
617 9(7):676, 2012.

618 [39] Bar-Kochba E, Toyjanova J, Andrews E, Kim KS, and Franck C. A fast iterative digital volume correlation algorithm for large
619 deformations. *Exp Mech*, 55(1):261–274, 2015.

620 [40] Campbell IC, Coudrillier B, Mensah J, Abel RL, and Ethier CR. Automated segmentation of the lamina cribrosa using
621 Frangi's filter: a novel approach for rapid identification of tissue volume fraction and beam orientation in a trabeculated
622 structure in the eye. *J R Soc Interface*, 12(104):20141009, 2015.

623 [41] Otsu N. A Threshold Selection Method from Gray-Level Histograms. *IEEE Trans Syst Man*, 20(1):62–66, 1979.

624 [42] Kroon DJ. Fork of "Hessian-based Frangi Vesselness Filter", 2013.

625 [43] Antiga L. Generalizing vesselness with respect to dimensionality and shape. *Insight J*, 3:1–14, 2007.

626 [44] D'Amore A, Stella JA, Wagner WR, and Sacks MS. Characterization of the complete fiber network topology of planar fibrous
627 tissues and scaffolds. *Biomaterials*, 31(20):5345–5354, 2010.

628 [45] Berens P. CircStat : A MATLAB Toolbox for Circular Statistics. *J Stat Softw*, 31(10), 2009.

629 [46] Midgett DE, Jefferys JL, Quigley HA, and Nguyen TD. The Contribution of Sulfated Glycosaminoglycans to the Inflation
630 Response of the Human Optic Nerve Head. *Invest Ophthalmol Vis Sci*, 59(7):3144–3154, 2018.

631 [47] Kramer CY. Extension of multiple range tests to group means with unequal numbers of replications. *Biometrics*,
632 12(3):307–310, 1956.

633 [48] Nadler Z, Wang B, Schuman JS, and et al. In vivo three-dimensional characterization of the healthy human lamina cribrosa
634 with adaptive optics spectral-domain optical coherence tomography. *Invest Ophthalmol Vis Sci*, 55(10):6459–6466, 2014.

635 [49] Brazile BL, Hua Y, Jan NJ, Wallace J, Gogola A, and Sigal IA. Thin lamina cribrosa beams have different collagen
636 microstructure than thick beams. *Invest Ophthalmol Vis Sci*, 59(11):4653–4661, 2018.

637 [50] Rogers RS, Dharsee M, Ackloo S, Sivak JM, and Flanagan JG. Proteomics analysis of human optic nerve head astrocytes
638 following biomechanical strain. *Molecular & Cellular Proteomics*, pages mcp—M111, 2011.

639 [51] Balaratnasingam C, Kang MH, Yu P, and et al. Comparative quantitative study of astrocytes and capillary distribution in optic
640 nerve laminar regions. *Exp Eye Res*, 121:11–22, 2014.

641 [52] Wang R, Seifert P, and Jakobs TC. Astrocytes in the optic nerve head of glaucomatous mice display a characteristic reactive
642 phenotype. *Invest Ophthalmol Vis Sci*, 58(2):924–932, 2017.

643 [53] Tehrani S, Davis L, Cepurna WO, and et al. Astrocyte Structural and Molecular Response to Elevated Intraocular Pressure
644 Occurs Rapidly and Precedes Axonal Tubulin Rearrangement within the Optic Nerve Head in a Rat Model. *PLoS One*, pages
645 1–22, 2016.

646 [54] Lockwood H, Reynaud J, Gardiner S, and et al. Lamina cribrosa microarchitecture in normal monkey eyes part 1: Methods
647 and initial results. *Invest Ophthalmol Vis Sci*, 56(3):1618–1637, 2015.

648 [55] Hermann B, Fernández EJ, Unterhuber A, and et al. Adaptive-optics ultrahigh-resolution optical coherence tomography. *Opt
649 Lett*, 29(18):2142–2144, 2004.

650 [56] Nadler Z, Wang B, Wollstein G, and et al. Automated lamina cribrosa microstructural segmentation in optical coherence
651 tomography scans of healthy and glaucomatous eyes. *Biomed Opt Express*, 4(11):2596–2608, 2013.

652 [57] Nadler Z, Wang B, Wollstein G, and et al. Repeatability of in vivo 3D lamina cribrosa microarchitecture using adaptive optics
653 spectral domain optical coherence tomography. *Biomed Opt Express*, 5(4):1114–1123, 2014.

654 [58] Duan XJ, Jefferys JL, and Quigley HA. Evaluation of Automated Segmentation Algorithms for Optic Nerve Head Structures
655 in Optical Coherence Tomography Images. *Invest Ophthalmol Vis Sci*, 59(10):3816–3826, 2018.

656 [59] Albon J, Karwatowski WS, Easty DL, Sims TJ, and Duance VC. Age related changes in the non-collagenous components of
657 the extracellular matrix of the human lamina cribrosa. *Br J Ophthalmol*, 84(3):311–317, 2000.

658 [60] Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA, and Nguyen TD. Biomechanics of the human posterior sclera:
659 age-and glaucoma-related changes measured using inflation testing. *Invest Ophthalmol Vis Sci*, 53(4):1714–1728, 2012.

660 [61] Fazio MA, Grytz R, Morris JS, Bruno L, Girkin CA, and Downs JC. Human scleral structural stiffness increases more rapidly
661 with age in donors of african descent compared to donors of european descent. *Invest Ophthalmol Vis Sci*, 55(11):7189–7198,
662 2014.

663 [62] Coudrillier B, Pijanka J, Jefferys JL, and et al. Collagen structure and mechanical properties of the human sclera: analysis for
664 the effects of age. *J Biomech Eng*, 137(4):41006, 2015.

665 [63] Jonas JB and Budde WM. Diagnosis and pathogenesis of glaucomatous optic neuropathy: morphological aspects11. *Prog
666 Retin Eye Res*, 19(1):1–40, 2000.

667 [64] Pijanka JK, Coudrillier B, Ziegler K, and et al. Quantitative mapping of collagen fiber orientation in non-glaucoma and
668 glaucoma posterior human sclerae. *Invest Ophthalmol Vis Sci*, 53(9):5258–5270, 2012.

669 [65] Quigley HA, Varma R, Tielsch JM, Katz J, Sommer A, and Gilbert DL. The relationship between optic disc area and
670 open-angle glaucoma: the Baltimore Eye Survey. *J Glaucoma*, 8(6):347–352, 1999.

671 [66] Healey PR and Mitchell P. The relationship between optic disc area and open-angle glaucoma. *J Glaucoma*, 9(2):203–204,
672 2000.

673 [67] Dandona L, Quigley HA, Brown AE, and Enger C. Quantitative regional structure of the normal human lamina cribrosa: a
674 racial comparison. *Arch Ophthalmol*, 108(3):393–398, 1990.

675 [68] Jones HJ, Girard MJ, White N, and et al. Quantitative analysis of three-dimensional fibrillar collagen microstructure within
676 the normal, aged and glaucomatous human optic nerve head. *J R Soc Interface*, 12(106):20150066, 2015.

677 [69] Gogola A, Jan NJ, Lathrop KL, and Sigal IA. Radial and circumferential collagen fibers are a feature of the peripapillary
678 sclera of human, monkey, pig, cow, goat, and sheep. *Invest Ophthalmol Vis Sci*, 59(12):4763–4774, 2018.

679 [70] Pijanka JK, Markov PP, Midgett DE, and et al. Quantification of collagen fiber structure using second harmonic generation
680 imaging and two-dimensional discrete fourier transform analysis: Application to the human optic nerve head. *J Biophotonics*,
681 page e201800376, 2018.

682 [71] Brais P and Drance SM. The temporal field in chronic simple glaucoma. *Arch Ophthalmol*, 88(5):518–522, 1972.