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Abstract 

It is well established that thermal comfort is an influential factor in human health and wellbeing. 
Uncomfortable thermal environments can reduce occupants’ comfort and productivity, and cause symptoms 
of sick building syndrome. To harness the built environment as a medium to support human health, well-
being, and engagement, it is significantly important to understand occupants’ thermal comfort in real time. 
To this end, this study proposes a non-intrusive method to collect occupants’ facial skin temperature and 
interpret their thermal comfort conditions by fusing the thermal and RGB-D images collected from multiple 
low-cost thermographic and Kinect sensors. This study distinguishes from existing methods of thermal 
comfort assessment in three ways: 1) it is a truly non-intrusive data collection approach which has a minimal 
interruption or participation of building occupants; 2) the proposed approach can simultaneously identify 
and interpret multiple occupants’ thermal comfort; 3) it uses low-cost thermographic and RGB-D cameras 
which can be rapidly deployed and reconfigured to adapt to various settings. This approach was 
experimentally evaluated in a transient heating environment (room temperature increased from 23 to 27 °C) 
to verify its applicability in real operational built environments. In total, all 6 subjects observed moderate 
to strong positive correlations between the ambient room temperature and subjects’ facial skin temperature 
collected using the proposed approach. Additionally, all 6 subjects have voted different thermal sensations 
at the beginning (the first 5 minutes) and at the end (the last 5 minutes) of the heating experiment, which 
can be reflected by the significant differences in the mean skin temperature of these two periods (p < .001). 
Results of this pilot study demonstrate the feasibility of applying the proposed non-intrusive approach to 
real multi-occupancy environments to dynamically interpret occupants’ thermal comfort and optimize the 
operation of building heating, ventilation and air conditioning (HVAC) systems. 
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1. Introduction 

Heating, ventilation, and air conditioning (HVAC) systems represent the biggest energy end use in 
buildings, which account for approximately 48% of the total energy required to operate residential and 
commercial buildings (DOE 2017, Li et al. 2017a). Despite the significant energy footprint of building 
HVAC systems, the lack of thermal comfort is still a common problem where studies show that up to 43% 
of occupants are dissatisfied with the thermal environment in their workplace (Karmann et al. 2018).  
 
The importance of thermal comfort cannot be overemphasized. Several studies have suggested that 
satisfying thermal environments can lead to a reduced number of complaints, absenteeism, and improved 
work productivity (Roulet et al. 2006). On the other hand, It is also not surprising that thermal comfort is 
an influential factor of occupants’ health and well-being, especially given that people spend more than 90% 
of time indoors. For example, the reports of sick building syndrome symptoms, such as a headache, eye and 
throat irritation, have been found to be correlated with the high room temperature (Fang et al. 2004).  
 
The crucial impacts of thermal comfort on human satisfaction, health, and productivity demonstrate the 
importance of understanding occupants’ thermal comfort in real time to allow for autonomous control of 
indoor environments that enhance occupants’ experience. Thermal comfort is defined as “the condition of 

mind which expresses satisfaction with the thermal environment” (ASHRAE 2010), which implies that it is 
one’s subjective assessment of the environmental condition (e.g., air temperature, relative humidity). In 
addition, an individual’s thermal comfort is also significantly affected by personal conditions including 
physiological (e.g., gender, age), psychological (e.g., expectation, stress), and behavioral factors (e.g., 
clothing and activity level) (Parsons 2014). As a result, both personal and temporal variations should be 
considered when assessing occupants’ thermal comfort.  
 
To date, researchers have proposed different methods for thermal comfort assessment. The most well-
known approach is the Predicted Mean Vote (PMV) model, which was developed based on the heat transfer 
between the human body and environments (Fanger 1970). Brager and de Dear (2000) proposed the 
adaptive comfort models to account for the adaptive behaviors from occupants to maintain thermally 
comfortable states in naturally ventilated environments. Recently, researchers also investigated the personal 
comfort models in which the comfort condition of an occupant was exclusively predicted based on his/her 
previous feedback of thermal comfort under various environmental and human conditions (Kim et al. 2018, 
Li et al. 2017b). In general, personal comfort models demonstrated better predictive powers than the PMV 
and adaptive models as they account for the personal uniqueness and subjectivity in evaluating thermal 
comfort. 
 
Human physiological data, such as skin temperature, heart rate, respiration rate, and activity level, are 
typically collected as the parameters of personal comfort models. These parameters can be measured using 
wearable bio-sensors, infrared thermometers, thermographic cameras, Doppler radars, and many other 
devices (e.g., Ghahramani 2016, Jung and Jazizadeh 2017, Li et al. 2017b and 2017c). However, one 
significant limitation of existing physiological data collection methods is that they can cause different levels 
of intrusiveness on the occupants. The “intrusiveness” mainly comes from 1) the continuous requirement 
of human participation for real-time thermal comfort evaluation, and 2) the dependence on wearable devices 
or personal equipment for physiological data collection. In our previous work (Li et al. 2017b), we observed 
that occupants’ participation decreases with time as the novelty of the approach fades away, which 
emphasizes the needs to reduce human participation or interruption while collecting human physiological 
data. To this end, this study proposes a truly non-intrusive method to collect occupants’ facial skin 
temperature and interpret their thermal comfort conditions by fusing the thermal and RGB-D images 
collected from multiple low-cost thermographic and Kinect sensors. Skin temperature is selected as the 
main physiological parameter as it has a strong correlation with the ambient room temperature and the 
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subjective thermal comfort (Li et al. 2018). The sensor fusion provides accurate detection of human 
occupants and allows robust extraction of facial skin temperature under flexible body postures and 
movements. 
 

2. Background 

The human body maintains its core internal temperature at around 37 °C. When thermoreceptors detect heat 
or cold stress, the hypothalamus will control body muscles, organs, and nervous system to adjust heat 
production and heat loss to maintain the homeostasis state, which can cause variations in skin temperature 
(Parsons 2014). Thus, skin temperature is commonly adopted as a proxy of the thermoregulation process. 
Moreover, the human face has a higher density of blood vessels than other body parts and it is not covered 
by clothing, which makes it an ideal location to measure the skin temperature variations. 
 
Existing studies have explored various devices and approaches to collect skin temperature, which can be 
summarized into two main categories: the contact and non-contact approaches. The contact approaches 
typically use wearable bio-sensors or thermocouples that directly contact the skin surface. For example, Li 
et al. (2017b) adopted a wrist-worn fitness tracker to continuously measure occupants’ wrist skin 
temperature under different thermal conditions and suggested the personal comfort model can achieve a 
higher prediction accuracy when incorporating skin temperature and other physiological parameters. On 
the other hand, the non-contact approaches typically use infrared thermometers or thermographic cameras 
to infer the skin temperature from infrared radiations, which reduce the intrusiveness caused by wearing 
body sensors. For example, Ghahramani (2016) developed an eyeglass which is equipped with infrared 
thermometers on its frame to collect the skin temperature of the front face, cheek, nose, and ear regions and 
observed significant differences in skin temperature under heat and cold stress conditions. Thermographic 
cameras gained attention in recent years as they can capture a full thermal image consisting of temperature 
values of each pixel and can also measure the temperature from a longer distance compared to infrared 
thermometers. However, commodity thermographic cameras are generally expensive (over $ 5000) and 
cannot be directly incorporated in the building management system due to their large sizes and compatibility 
issues. To overcome these two limitations, Li et al. (2018) proposed a framework which adopts a low-cost 
thermographic camera (FLIR Lepton®, cost: $ 200, dimension: 8.5 x 11.7 x 5.6 mm) as an alternative to 
assess the thermal comfort of building occupants. The proposed framework can automatically and 
continuously detect human faces, measure the skin temperature of each facial region, clean and process raw 
skin temperature data, and interpret thermal comfort using personal comfort models. Results from this study 
suggested an 85% accuracy in predicting the three-point thermal preferences using the facial skin 
temperature. 
 
Despite the contributions of exploring low-cost thermographic cameras in thermal comfort assessment, 
there are still two unaddressed issues which limit their applications in real operational environments. First, 
existing studies only focus on single occupant experiments rather than multi-occupancy scenarios. This is 
due to the fact that a single thermographic camera has a limited field of view which cannot cover a large 
indoor space. Second, thermographic cameras are generally placed in front of the occupants to measure the 
frontal face temperature. However, thermal images of frontal faces are not guaranteed in real operational 
environments especially in large open spaces where occupants do not remain static over time. To overcome 
these limitations, this study proposes a networked camera system to simultaneously interpret multiple 
occupants’ thermal comfort with minimum intrusiveness of building occupants. The technical details and 
experimental validations are detailed in Sections 3 and 4. 

3. Technical Approach 
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The proposed networked camera system consists of multiple camera nodes to collectively and 
simultaneously measure the facial skin temperature of each occupant in a multi-occupancy environment 
(see Figure 1). The camera nodes are placed at different locations to achieve comprehensive coverage of 
the environment such that each occupant can be seen (but not necessarily obtain a full frontal view of the 
face) by at least one camera node.  
 

 

Figure 1: Overview of the Proposed Camera Network 

3.1 Thermal and RGB-D dual camera system 

Each camera node in the network is called a dual camera system. It comprises a FLIR Lepton 2.5 
thermographic camera and a Microsoft Kinect (a type of RGB-D camera). As shown in Figure 2, the 
thermographic camera is rigidly mounted on top of the Kinect. In this dual camera system, the Kinect is 
responsible for detecting occupants in the RGB-D images and locating the coordinates that contain faces as 
our previous work showed that thermographic camera alone can only detect the frontal face at a short 
distance (1 meter) (Li et al. 2018), which is not ideal as occupants can have flexible distances and angles 
to the camera. The face coordinates are subsequently mapped to the thermal images to extract facial skin 
temperature measured by the thermographic camera. In this study, we adopted the deep neural network 
based face detectors in the OpenCV library. However, other algorithms such as the FastRCNN and 
DeepFace can also be applied to guide the thermographic camera in the face detection task. 
 

 

Figure 2: The Dual Camera System 

3.2 Kinect and thermographic camera registration 

As the Kinect and the thermographic camera have different field of view and image resolutions, these two 
cameras need to be calibrated to find the point correspondences. Both the Kinect and the thermographic 
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Figure 5: The Experimental Setup 
 
The room temperature was initially set at a low level (approximately 23 °C) before the experiment started. 
During the 20-minute preparation phase, subjects remained seated to reach a steady-state skin temperature. 
Then, during the following 50-minute data collection phase, the thermostat was set at a high level (27 °C) 

to create a transient heating environment. During this period, subjects were asked to perform daily office 
activities such as reading, typing, browsing, or chatting with each other and report their five-point thermal 
sensation and three-point thermal preference through a phone application every five minutes. For more 
details about the phone application, please refer to Li et al. (2017b).  
 
It is worth noting that unlike existing experimental studies which typically require subjects to remain in the 
same posture and refrain from movements, in this study the subjects were encouraged to move freely (e.g., 
stretching), change their posture and facing directions, or even move around in the room. The objective is 
to represent a real office environment and let subjects feel as comfortable as possible (to remove any 
intrusiveness caused by the system). We believe such an experimental protocol can verify the applicability 
of the proposed system to the greatest extent. 

5. Results and Discussion 

Figure 6 showed the room temperature and relative humidity during the heating experiment. For each 

subject, we calculated the mean facial skin temperature of the first five minutes (denoted as 𝑇̅𝑠𝑡𝑎𝑟𝑡) and last 

five minutes (denoted as 𝑇̅𝑒𝑛𝑑) in the transient heating experiment to represent one’s starting and ending 
physiological states, respectively. As shown in Table 1, results of the two-tailed t-test showed that all 6 

subjects experienced significantly different mean facial skin temperature (𝑝  < .001) in the heating 
experiment. Also, all subjects provided distinct thermal sensation votes at the beginning and the end of the 

experiment (denoted as 𝑇𝑆𝑉𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑆𝑉𝑒𝑛𝑑). This finding suggests that facial skin temperature captured 
by our proposed camera network can be used to interpret a subject’s thermal sensation. This result is 
promising especially given that the room temperature only changes within a relatively small range. 
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Figure 6: Room Temperature and Relative Humidity during the Heating Experiment 

 
Table 1: T-tests between the Starting and Ending Mean Facial Skin Temperature in the Experiment 

Subject Camera Id 𝑇̅𝑠𝑡𝑎𝑟𝑡  (°C) 𝑇̅𝑒𝑛𝑑  (°C) p-value 𝑇𝑆𝑉𝑠𝑡𝑎𝑟𝑡 𝑇𝑆𝑉𝑒𝑛𝑑  

E
x
p
er

im
en

t 
1
 

Id1 
1 31.6 33.4 < 0.001 

Cold Hot 
2 31.2 32.9 < 0.001 

Id2 
1 31.5 33.6 < 0.001 

Cold Warm 
2 31.4 32.8 < 0.001 

E
x
p
er

im
en

t 
2
 

Id3 
1 31.8 33.6 < 0.001 

Cold Warm 
2 31.6 32.6 < 0.001 

Id4 
1 31.4 33.5 < 0.001 

Cold Neutral 
2 31.7 32.6 < 0.001 

E
x
p
er

im
en

t 
3
 

Id5 
1 32.1 33.4 < 0.001 

Cool Warm 
2 31.5 33.5 < 0.001 

Id6 
1 32.1 33.2 < 0.001 

Cool Neutral 
2 31.3  32.9 < 0.001 

 
To visualize the variations of skin temperature in the heating experiment, the facial mean skin temperature 
was fitted using the polynomial regression. Specifically, the lower degree of polynomials was selected if 

the coefficient of determination 𝑅2 did not increase significantly with a higher degree. As shown in Figure 
7, all 6 subjects’ facial mean skin temperature was fitted using polynomials of degree ranged from 1 to 3. 
All fitted curves (denoted in thin yellow lines) in Figure 7 demonstrated an increasing trend, which implies 
that facial skin temperature is increasing over time in the heat experiment. 
 
Pearson correlation between the skin temperature of each subject and the corresponding room temperature 
in the experiment was also reported in Figure 7. In total, all 6 subjects observed moderate to strong positive 

correlations (𝑅2 ranged from 47.0 % to 82.2 %, 𝑝 < .001) between the facial mean skin temperature (shown 
in blue lines) and the ambient room temperature (shown in thick orange curves), which suggests the 
proposed approach is capable of non-intrusively measuring multiple occupants’ skin temperature variations 
in dynamic environments without any constraints on occupants’ activities or engagements. 
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Figure 7: The Polynomial Fit of the Mean Facial Skin Temperature of Each Subject 

6. Conclusions 

In this study, we proposed a networked camera system to non-intrusively measure occupants’ facial skin 
temperature in a multi-occupancy environment. Each camera node in the network fuses the RGB-D and 
thermal images collected from the Kinect and a low-cost thermographic camera. The experimental results 
from 6 subjects showed that the facial skin temperature collected under flexible body postures and 
movements has moderate to strong positive correlations with the ambient room temperature (ranged from  
23 to 27 °C), which verified the capability of our proposed method to collect skin temperature for real-time 
thermal comfort interpretation. This pilot study has the potential to transition the human physiological data 
collection from an intrusive and wearable device driven approach to a truly non-intrusive and scalable 
approach, and also demonstrates its applicability in the operation of building HVAC systems to improve 
the indoor thermal environment. 
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