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Abstract: Reconfigurable photonic processors promise orders of magnitude improvements in both 
speed and energy efficiency over digital electronics for applications in neuromorphic computing 
and machine learning. We will provide an overview of neuromorphic photonic systems and their 
application to optimization and machine learning problems. 

 
Renewed interest in neuromorphic photonics has been heralded by advances in photonic integration technology [1-3], 
roadblocks in conventional computing performance [4,5], the return of neuromorphic electronics [6-9], and the 
inundation of machine learning (ML) with neural models [10]. Neural networks have held some role in ML (e.g. image 
and voice recognition, language translation, pattern detection, and others) since the 1950s [11, 12]. They fell out of 
favor in the 90’s because they are difficult to train. 
Over the past decade, neural network models have decisively retaken the helm of ML under the alias of “deep 

networks”. There are three main reasons: 1) major algorithmic innovations [13, 14], 2) the Internet: an inexhaustible 
source of millions of training examples, and 3) new hardware, specifically graphical processing units (GPUs) [15]. 
Central processing units (CPUs) are woefully inefficient at evaluating these models because they are centralized and 
instruction-based, whereas networks are distributed and capable of adaptation without a programmer. GPUs are more 
parallel, but, today, even they have been pushed to their limits [16]. 
Today’s demand for evaluating neural network models necessitates new hardware. High-tech juggernauts and 

research agencies have heavily invested in massively parallel application-specific integrated circuits (ASICs) for 
evaluating neural network models more efficiently, notably IBM [6], HP [17], Intel [9], Google [18,19], the Human 
Brain Project [20], and DARPA SyNAPSE [21]. Some of these architectures aim to be ML number crunchers [18,22], 
and others have enabled novel neuroscientific tools [23,24] and previously unforeseen low-power mobile applications 
[25]. 
The primary performance driver for the neuromorphic electronics community is computational power efficiency; 

speed is a secondary consideration. Neuromorphic electronics have largely focused on biological-timescale neural 
networks: kHz (with one 10MHz exception [23]). They universally rely on digital time-and event-multiplexing, which 
means they cannot simply run faster by turning up the clock. Nevertheless, there are compelling applications for neural 
networks with nanosecond latency. Some applications could be offline (i.e. number crunching) such as accelerators 
for deep network training and inference; others could be online (i.e. real-time) such as pattern detectors for wideband 
radio frequency (RF) signals and feedback controllers for systems subject to short-timeconstant instabilities. Moving 
beyond the nanosecond will require moving beyond purely electronic physics. 
Photonic processors can outperform electronic systems that fundamentally depend on interconnects. Silicon 

photonic waveguides bus data at the speed of light. The associated energy costs are currently on the order of 
femtojoules per bit [26] and, in the near future, attojoules per bit [27]. Aggregate bandwidths continue to increase by 
combining multiple wavelengths of light (i.e., wavelength-division multiplexing (WDM)), theoretically topping out 
at 10 Tb/s per single-mode waveguides using 100 Gb/s per channel and up to 100 channels. On-chip scaling of many-
channel dense WDM (DWDM) systems may be possible with comb generators in the near future [28]. 
Recently, there has been much work on photonics processors to accelerate information processing and reduce 

power consumption using: artificial neural networks [29–34], spiking neural networks [35–42], and reservoir 
computing [43-46]. By combining the high bandwidth and efficiency of photonic devices with the adaptive, 
parallelism and complexity attained by methods similar to those seen in the brain, photonic processors have the 
potential to be at least ten thousand times faster than state-of-the-art electronic processors while consuming less energy 
per computation [35,36]. 
In neuromorphic photonics [47,48], there is an isomorphism between the analog artificial neural networks and the 

underlying photonic hardware, which allows continuous functions to be fully represented in an analog way. An analog 
representation of information avoids overhead energy consumption and speed reduction caused by sampling and 
digitization into binary streams processed by clocked logic gates. But because of this analog representation, we cannot 
dissociate the information that flows through the neural network from the photonic physics that impacts distortion, 
noise and loss. Integration platforms for photonics also dictate how practical and how efficient neuromorphic photonic 
circuits can be. The most mature technology is silicon photonics [50], whose high-volume manufacturing allows for 
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the most repeatable and robust platform for photonic circuits. Using silicon as a substrate also enables greater 
compatibility with digital electronic technology, allowing more compact solutions for neuromorphic hardware [51]. 
A great disadvantage of silicon photonics is the reliance on external lasers, typically built in III–V platforms, which 
require difficult and expensive co-packaging solutions. There are many applications driving the research community 
to find an industry-compatible solution for lasers-on-silicon, with good candidates such as III–V/Si hybrid 
fabrications, or quantum dot lasers grown directly on silicon. Industrial experts predict enabling innovations in the 
next five years that will allow neuromorphic photonic processors to be fabricated in a single die. 
This talk will provide an overview of neuromorphic photonic systems and their application to optimization and 

machine learning problems. We will discuss the physical advantages of photonic processing systems, and we will 
describe underlying device models that allow practical systems to be constructed. We also describe several real-world 
applications for control and deep learning inference. Lastly, we will discuss scalability in the context of designing a 
full-scale neuromorphic photonic processing system, considering aspects such as signal integrity, noise, and hardware 
fabrication platforms. 
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