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Abstract—Silicon photonics presents an opportunity for com-
plex, multi-purpose information processing with optoelectronics.
Using foundry devices, some photonic neural networks support
sub-nanosecond signals. Using cryogenic devices, others support
single-photon signals. We compare these platforms and summa-
rize recent experimental results on programmability in photonic
neurons and networks.

Silicon photonics is capable of supporting integrated sys-
tems of large scale, not just large volume. The prospect
of information processing based on integrated photonics de-
pends on advances in programmable hardware. Programmable
systems for filtering [1] and matrix multiplication [2], [3]
have demonstrated new, extensible architectures for analog
processing. To surpass a certain scale, a processing model
must contain nonlinear elements to prevent the accumulation
of noise. Neural network models are well-matched to the
qualities of optics, particularly in their heavy-reliance on com-
munication that is linear, parallel, and asynchronous. Photonic
devices mathematically isomorphic to a neuron–the nonlinear
element–have received significant research attention over the
past seven years [4]. Until recently, however, research on the
dynamics of isolated photonic neurons has outpaced experi-
mental progress on neurons that can drive other alike neurons
and that co-integrate with scalable routing architectures.

Here, we consider two neuromorphic architectures based
on silicon optoelectronics: silicon photonic neural networks
(SiPhNNs) [5] and superconducting optoelectronic networks
(SOENs) [6]. All SiPhNN components have been demon-
strated on currently available silicon photonic foundry plat-
forms. They can leverage mainstream datacom. and tele-
com. technology, including ultrafast modulators and photodi-
odes [7], in-ring photoconductive heaters [8], [9], and pack-
aging techniques. SOEN components have been demonstrated
on an emerging cryogenic silicon photonic platform. Using
superconducting nanowire single-photon detectors (SNSPDs),
SOENs communicate at the lowest light levels possible. SOEN
can then employ other low temperature devices (e.g. all-silicon
emitters, superconducting switches, Josephson junctions) to
accomplish neural functions. Cryogenic photonic platforms
could conceivably be offered by foundries with relatively
minor process modification: a superconducting metal layer and
a Si+ ion bombardment step.

The primary form of configurability in neural networks is

in the weighted network connections. SOEN and SiPhNN take
complementary approaches to configurable weights. SiPhNNs
configure the weight matrix with tunable transmission ele-
ments called microring resonator (MRR) weight banks. It was
recently shown that MRR weight banks can achieve better
accuracy and environmental robustness by lightly doping the
MRR, shown in Fig. 1(b), so that a fraction of circulating light
is absorbed, sensed, and used as a feedback signal [9]. Optical
domain weights simplify the electronic pathway, but they are
only capable of simple multiplication. In contrast, synapses
in the electronic domain can perform more sophisticated
functions. Low temperature Josephson junction (JJ) circuits
exhibit a variety of features believed to be critical in biology,
namely heterogeneous time constants, synaptic plasticity, and
synaptic desensitization [10]. SOEN has proposed to use a
combination of JJ circuits for configuration/adaptation and
fixed optical routing manifolds for signal transport. These
manifolds can be fabricated to have a desired connectivity
pattern, as demonstrated with a 10×10 interconnect (see
Fig. 1(f)) whose weight matrix is shown in Fig. 1(e) [11].

A key commonality between SiPhNN and SOEN architec-
tures is their use of optical-electrical-optical (O/E/O) neuron
signal pathways. The electronic and optoelectronic domains
present several mechanisms for neuron programming and
learning. A MRR modulator neuron can be tuned to exhibit
enhancing or saturating nonlinearities, adjustible by the offset
between MRR resonance and pump wavelengths [7] (see
Fig. 1(d)). The superconducting-to-normal transition exhibits
a sharp threshold in resistance at the critical current. This
threshold is adjustable by the difference between bias and crit-
ical currents. A superconducting switch, called an hTron, can
drive an LED while exhibiting this threshold response [12].
Threshold configuration has also been demonstrated in III-V
O/E/O neurons [13], which are potentially compatible with
silicon networks using heterogeneous Si/III-V integration.

The O/E/O neuron approach shared by SiPhNN and SOEN
also provides nonlinearity at light levels much weaker than
needed for all-optical nonlinearities. Using an O/E/O signal
pathway, light can be used for communication while op-
toelectronic devices provide strong nonlinearity, wavelength
conversion, optical phase regeneration, fan-in, and net optical-
to-optical gain. Bandwidth is minimally affected because elec-
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Fig. 1. a) Two-channel weight control with 5.1 bit accuracy in a microring (MRR) weight bank, from [9]. b) One MRR weight in which weak absorption in
the ring provides a feedback control signal [8]. c) A silicon photonic modulator neuron with programmable responses to coincident pulses in (d), from [7]. e)
A 10x10 transmission weight matrix of a multi-planar routing manifold, shown in (f), from [11]. g) The signal pathway of a superconducting optoelectronic
neuron using a single-photon detector, hTron, and an all-silicon LED, shown producing pulses with near-unity gain in (h), from [12].

trical wires within the signal pathway are much shorter than
the electrical transmission line wavelength. These properties
were instrumental in recent demonstrations of cascadability.

Cascadability is the ability of a neuron or gate to drive alike
devices, including itself, with sufficient strength. The physical
principle of SOEN cascadability was shown in an LED-to-
SNSPD link [14]. A net gain near unity was shown after incor-
porating an hTron into the pathway [12], shown in Fig. 1(g, h).
The cascadability of the SiPhNN modulator neuron was shown
using an autapse technique [7]: one neuron driving itself into
a bistable state corresponding to unity gain. Parts of these
demonstrations were not monolithically integrated, yet they lay
a clear path towards monolithic demonstrations of cascadable
photonic neurons on silicon.

SOEN and SiPhNN, while based on starkly distinct sets of
optoelectronic physics and devices, share conceptual overlaps
in information processing models, silicon platforms, O/E/O
neurons, and demonstrated programmability. A diversity of
approaches to neuromorphic photonics could address com-
plementary regimes of machine information processing where
speed, complexity, and reconfigurability are crucial.
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