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Dose is the nexus between exposure and all upstream processes that deter-

mine pathogen pressure, and is thereby an important element underlying

disease dynamics. Understanding the relationship between dose and disease

is particularly important in the context of spillover, where nonlinearities in

the dose–response could determine the likelihood of transmission. There

is a need to explore dose–response models for directly transmitted and

zoonotic pathogens, and how these interactions integrate within-host factors

to consider, for example, heterogeneity in host susceptibility and dose-

dependent antagonism. Here, we review the dose–response literature and

discuss the unique role dose–response models have to play in understand-

ing and predicting spillover events. We present a re-analysis of dose–

response experiments for two important zoonotic pathogens (Middle East

respiratory syndrome coronavirus and Nipah virus), to exemplify potential

difficulties in differentiating between appropriate models with small

exposure experiment datasets. We also discuss the data requirements

needed for robust selection between dose–response models. We then

suggest how these processes could be modelled to gain more realistic predic-

tions of zoonotic transmission outcomes and highlight the exciting

opportunities that could arise with increased collaboration between the

virology and epidemiology disciplines.

This article is part of the theme issue ‘Dynamic and integrative

approaches to understanding pathogen spillover’.
1. Introduction
As a key component of transmission, dose–response relationships are

expected to underlie the dynamic nature of infection and spread of disease,

and are therefore an important consideration in modelling and predicting

spillover risk. In the first instance, dose–response experiments characterize

the relationship between exposure to a certain dose of a pathogen and the

probability of developing an infection, where dose is the number of pathogen

particles entering the host through a given route [1]. The dose–response data

can then be interpreted through fitting mathematical models, which provide

a probabilistic link between the infectivity of a pathogen, the within-host pro-

cesses that determine the success of pathogen establishment into host cells,

and the shape of the observed dose–response curve (e.g. [2–4]). These exper-

iments are routinely used to derive a single value of the minimum infectious
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dose for an infectious agent [5], or the dose required to

infect 50% of individuals (ID50) which, together with

the dose–response curve, commonly form the basis of

microbial risk assessments (e.g. [6–8]) and experimental

inoculation studies that investigate the infectivity and

pathogenesis of diseases.

Despite these roots in experimental disease, there have

been fewer discussions of dose–response relationships in

epidemiological literature, or its influence in determining

disease spillover of novel pathogens. For example, the

relative contributions of frequent low-dose exposures

versus rare high-dose exposures towards successful zoono-

tic transmission are currently unclear. Distinguishing

between these two possibilities is important for managing

spillover—if rare, high-dose exposures drive spillover

dynamics, then identifying times, places or host character-

istics that lead to high-dose exposure may lead to the

development of targeted mitigation strategies. Alterna-

tively, if exposure of many individuals to low doses leads

to spillover, then mitigation must be delivered over the

entire population of potential spillover hosts. The answer

to this question will depend on the functional relationship

between dose and infection [9]. While considerable atten-

tion has been paid to dose–response relationships, and

several dose–response model structures have been pro-

posed in the literature (e.g. [2,6,10]), there remains a

paucity of studies that seek to differentiate between alterna-

tive model structures and elucidate this functional

relationship (although see [11–13]). Moreover, as spillover

is typically a rare event, in which only a small proportion

of exposed hosts will progress to develop an infection

[14], it is important to understand how low exposure

doses may lead to low probabilities of infection. Here, we

discuss the translation of these issues from the quantitative

microbial risk assessment literature into the zoonotic

spillover context. We consider the importance of the

dose–response relationship to epidemiological and

spillover modelling, and argue that due consideration of

the dose–response relationship within transmission

models will be important for the parametrization of

models that are more reflective of natural transmission

patterns. We then evaluate the results of existing dose–

response models and discuss what additional information

would be required to fully elucidate these relationships

and integrate dose into transmission models.
2. Dose– response models
The standard way to consider dose–response in experimental

settings is with a binary response variable, such as the occur-

rence of clinical infection, death, shedding or onward

transmission within a given time period after exposure (e.g.

[4,15]). Modelling the response of interest as a binary stochas-

tic variable, the probability of occurrence can be expressed as

a function of the exposure dose d: P(d ). This probability can

be estimated experimentally by measuring the proportion

of exposed animals with a successful infection, shedding or

mortality outcome for a given dose. Classically, the null

hypothesis is that of independent action: this assumes that

each particle in the inoculum has a low ‘single-hit’ probability

r of causing the desired response, which is the same for every

particle, and that they all act independently of each other
(reviewed in [16]). If r � 1, the number of successful particles

follows a Poisson distribution. If the response is observed

when at least one particle succeeds, it follows that the

probability of observing a response can be modelled as

P(d,r) ¼ 1� exp (�rd): ð2:1Þ

A common empirical test of the independent action

model is based on measuring the slope of the dose–

response curve at half-height, i.e. at the point where the

response occurs with a 50% chance, often referred to as

the ID50. On a log10-dose scale, using basic algebra, the

model predicts a slope of around 0.8 [1]. Deviations from

this value indicate that at least one assumption of the

model is violated: for example, particles may not cause

the response independently [17,18]. First, it may take at

least k successful particles to cause the response (a coopera-

tive action or threshold model), in which case the dose–

response can be modelled by summing the first k terms of

the Poisson distribution, leading to a slope at half height

steeper than 0.8 [1]. Biologically, this could be the result

of a nonlinear immune response [19,20]. Another variant

allows the single-hit rate to vary among particles or hosts,

following a given distribution f (r). In general, this leads

to a half-height slope of less than 0.8 [1]. A common

choice for f (r) is a beta distribution, leading to a hypergeo-

metric dose–response model. For any given host–virus

pair, these alternative models can be tested statistically

using experimental data (e.g. [6,12,13]). The appropriate-

ness of alternative models, and their underlying

assumptions on host–virus interactions, should be further

evaluated with robust model selection approaches,

sensitivity analyses and identifiability analyses (e.g. [9,12]).

Evaluating the fit of these models will be particularly

important in the context of spillover, and will underpin

the predicted likelihood of transmission following

exposure. By definition, the ID50 is the dose that has a

50% chance of infecting any one exposed individual.

Under the hypothesis of independent action, if that same

dose was spread across n hosts, each receiving exactly one

virion and where n ¼ ID50, then there would be a 50%

chance of at least one host getting infected. In general, the

probability of at least one infection occurring when a

given number of infective stages encounters many hosts,

will be independent of the distribution of those infective

stages among the hosts, provided the independent action

hypothesis holds [14]. On the other hand, if the probability

of infection increases more rapidly with dose than expected

under the independent action hypothesis, spillover will be

more likely to occur when the distribution of infective

stages among hosts is highly aggregated. In this situation,

spillover following infrequent but high-intensity exposures

may be much more likely than would be expected from a

frequent trickle of low-intensity exposures [14].

For zoonotic viruses important in spillover, the practical

considerations involved in holding large numbers of ani-

mals in high containment make it essentially impossible

to design an experiment capable of estimating the prob-

ability of any one individual being infected by a single

virion. Furthermore, unlike situations with bacteria and

other eukaryotic parasites, ensuring that a host has been

exposed to a single virion is not possible. However, if the

ID50 can be estimated with some precision and the



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20190016

3
independent action model can be verified, then it may be

reasonable to extrapolate the relationship to estimate the

probability of infection with a very low infective dose.

Later in this paper, we discuss how the independent

action model can be fitted to empirical data, but we note

previous work highlighting the uncertainty within dose–

response models at low doses [16,21]. Whether these

relationships should be extrapolated to extremely low infec-

tive doses, or even a single virion, is a question that should

be approached with due consideration of variability in the

dose–response relationship, however [9]. We would also

note that there are limitations of dose–response models

that should be considered when integrating within an epi-

demiological structure. For example, dose–response

model data are derived from laboratory experiments on

study populations that typically differ from study popu-

lations in an applied setting (e.g. laboratory bred animals

from a specific cohort versus wild animals), and which

are exposed to higher doses than might be expected in natu-

ral systems. Additional sources of variation (e.g. route of

inoculation) are also likely to influence the form of the

dose–response relationship in applied settings. Limitations

in dose–response experiments have been discussed

previously [9,16].
3. From dose–response to transmission
While the integration of dose–response relationships with epi-

demiological data has been previously achieved in a small

number of bacterial and parasite studies (e.g. [9,22–24],

dose–response relationships remain largely overlooked

within epidemiological literature, particularly in the context

of virus spillover. This is probably owing, in part, to a lack

of data relevant to epidemiological contexts, because it is

not possible to measure transmitted doses in natural studies

(although see [1]). Conversely, dose–response data are at

the heart of microbial risk assessment literature [16], and

modelling dose–response curves in this context has strong

parallels with inference of epidemiological dose–response

relationships. Approaches to dose–response investigation in

both research fields require a number of extrapolations and

assumptions, including those underlying the single hit and

the independent action theories described above [25]. More-

over, both systems are subject to sources of variation that

will influence dose–response relationships, for example,

specific characteristics of the pathogen or strain and hetero-

geneous susceptibility of exposed individuals [25]. Despite

these challenges, evaluation of risks associated with bacterial

foodborne disease, and more recently, water-borne parasites,

has progressed rapidly over the last decades from qualitative

descriptions of hazard, route and consequences of exposure,

to a quantitative risk assessment framework to support more

effective management and intervention strategies [26].

Currently, analogous complexities of within- and

between-host processes associated with infectious disease

transmission in the epidemiological context are usually com-

bined into a single parameter: the transmission coefficient (b)

[27]. Most ordinary differential equation epidemiological

models [28,29] represent transmission as bSI, which

implicitly assumes an independent action model. This can

be made clear by including the dynamics of the transmission

stages as a separate equation. Representing susceptible hosts
as S, infected hosts as I and infected stages as W, the follow-

ing equations, modified from [30], describe the transmission

process:

dS
dt

¼�fWS,

dI
dt

¼fWS� I(aþ bþ g)

and
dW
dt

¼ lI � (mþ nN)W :

9>>>>>>>=
>>>>>>>;

ð3:1Þ

Here, is the rate at which individual infective stages

infect susceptible hosts (which assumes an independent

action model), a is the disease-induced host death rate, g

is the recovery rate of infected hosts, l is the rate at which

infective stages are released from infected hosts, m is the

death rate of infectious stages in the environment, and n is

the rate at which infective stages are removed by encounter-

ing hosts, N. In many cases, it is reasonable to assume that

infective stages are short lived relative to the dynamics of

the rest of the system, in which case W will be at equilibrium

with the current numbers of infected and susceptible hosts,

yielding

W ¼ lI
mþ nN

, ð3:2Þ

and substituting into the first equation

dI
dt

¼ vlSI
(mþ nN)

� I(aþ bþ g): ð3:3Þ

It is usually reasonable to further assume that most infec-

tive stages die before they encounter a host, so that m � nN.

Thus,

b ¼ vl

m
: ð3:4Þ

The conventional bSI transmission rate therefore assumes

both independent action and that each infected individual

sheds at the same rate. Hence, heterogeneities either in shed-

ding rate or the dose–response relationship have the

potential to introduce nonlinearities [14,31]. More complete

consideration of dose–response relationships in models of

disease transmission could enable the parametrization of

models that are more reflective of transmission patterns in

populations, and allow for more accurate predictions of

pathogen invasion and spillover of infectious disease.

Thereby, understanding the dose–response relationship

could be a critical advancement for our understanding of

spillover of emerging diseases from wildlife.
4. Empirical relationships
Here, we analyse previously reported results of dose–

response experiments for two important zoonotic pathogens,

Nipah virus (NiV) and Middle East respiratory syndrome

coronavirus (MERS-CoV). Details of the experiments are

given in [32] for MERS-CoV and [15] for NiV. Note that

tissue culture infectious doses (TCID50) are reported.

Occurrence of shedding of MERS-CoV by inoculated mice

increased predictably with increasing levels of virus inocu-

lation and showed pronounced differences between low

and high doses of virus (figures 1 and 2). However, it is dif-

ficult to determine whether data of this type are consistent
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Figure 1. Prevalence of shedding or mortality in mice experimentally inoculated
with MERS-CoV. Groups of six mice were inoculated intranasally with doses of 101,
102, 103 104 or 105 TCID50 of MERS-CoV in a total volume of 50 ml. Data are avail-
able for only five of the mice infected at the highest dose. Viral shedding was
quantified by quantitative reverse transcription-polymerase chain reaction (qRT-
PCR) performed on oropharyncheal swabs. Points show prevalence of shedding
or mortality in each group, and error bars are exact binomial 95% confidence
intervals for the predicted probability of infection given the dose. The different
coloured lines are the independent action model, for different values of r, the
probability of infection from an individual virus particle. The maximum-likelihood
estimate of r is 0.00571, shown as a red line. The lower and upper 95% confidence
intervals based on profile likelihood for r are 0.002 and 0.0146. Dashed red lines
show the corresponding dose–response curves. (Online version in colour.)
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with the independent action model (equation (2.1)), and if so,

to estimate the value of r. As can be seen from figure 1, the

95% profile confidence interval for r is very broad, with

only one dose level, 10 TCID50. With six mice only per

dose, the confidence intervals for the true proportion shed-

ding are also wide. Unfortunately, therefore, these data

(with low sample sizes and few dose groups separated by

at least an order of magnitude), are not sufficient to deter-

mine whether the independent action model is valid, or to

estimate the value of the probability of infection from a

single virus particle with any precision. This experimental

set-up, and number of animals per dose is typical of such

dose–response experiments, and the collection of the

additional data required to perform discriminatory model

selection is relatively rare, but has been previously achieved

(e.g. [11–13,33]). Data requirements for successful model

selection are discussed further in the section below.

As previously presented in De Wit et al. [15], shedding of

NiV increased with inoculation dose, as would be expected

(figure 2). However, the data illustrate a further issue that

needs to be considered when estimating dose–response

relationships. Although high levels of shedding from all

routes were achieved at the highest dose of 107 TCID50,

lower doses lead to variability in the timing (figure 3) and

proportion (figure 2) of hamsters shedding from different

routes. At all doses, shedding was first detected in the

throat. At low doses (103 TCID50), this was followed by shed-

ding from rectal (2 dpi), then nasal and urogenital routes

(4 dpi) [15]. At this dosage, shedding was more frequently

observed in swabs of the throat and urogenital tract. At
higher doses (105 and 107 TCID50), shedding was detected

in the nasal route earlier, alongside shedding from the

throat and rectum (detection from all named routes starting

from 1 dpi) [15]. Prevalence was more consistent across shed-

ding routes: at 107 TCID50 all six hamsters had positive nasal,

oropharyngeal, urogenital and rectal swabs by the conclusion

of the experiment [15]. Moreover, shedding intensity

increased with dose for some routes, including through the

nasal passage and throat, but not others (i.e. rectal and uro-

genital routes) [15]. Heterogeneity between individuals also

varied with dose and sample type—timing of shedding

was more consistent among individuals via nasal and

throat routes than the other sampled routes, and timing

and intensity of shedding responses were more consistent

across individuals exposed to higher doses (figure 3). As

the precise route of infection is not known for many patho-

gens that spillover (for example, Hendra virus in Australian

Pteropodid bats [34]), this is an important issue requiring

further research, and demonstrates the need to consider shed-

ding patterns as a potential source of variation in per-contact

transmission risks, and upstream variation in pathogen

exposure and transmission.
5. Designing experiments to test the
independent action model

The empirical results described in the previous section show

how difficult it is to verify or test the independent action

model where experiments are undertaken using stepped

doses that increase by at least an order of magnitude. This

means that, in the independent action model, the response

will go from close to zero to close to one within one or two

dose steps, and as a result there is effectively very little infor-

mation available to test the fit to the independent action

model. In our previous experiment, for example, substantial

individual variation in response to exposure was only

observed for the 102 dose of MERS-CoV, which is close to

the ID50 (figure 1). So, although our datasets comprised mul-

tiple dose levels, the remaining higher and lower dose levels

provided almost no additional information to determine

whether the independent action model fitted the data, or to

estimate the probability of infection at low doses with any

precision.

To gain more information about the dose–response func-

tion, it would be necessary to undertake two-stage

experiments to (i) identify the order of magnitude of dose

at which infection occurs, and the variability of individual

responses at that dose and then (ii) use closer increments

around that dose to fit an appropriate dose–response

model. Non-trivial variation among individuals would also

require larger sample sizes to meaningfully discriminate

between alternative models—i.e. greater than six mice/ham-

sters per dose group, with exact numbers to be determined by

the variability observed in the first stage of experiments.

Inoculation of doses close to this critical level, with higher

levels of replication per dose, should provide the ability to

meaningfully distinguish between different model shapes

and, if the independent action model is appropriate, to esti-

mate r. Such pilot experiments have been applied

previously in many model systems.

Beyond testing the specific aims outlined above, routinely

quantifying shedding in these experiments would provide
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valuable data in the context of zoonotic transmission or for

evaluating the potential for onward transmission of patho-

gens. This would further facilitate the integration of dose

experiment information in transmission and spillover model-

ling. However, the decision to undertake such experiments

should depend on the relative costs and benefits associated

with additional data collection. For example, the proposed

experiments would require an additional number of samples

(and so an additional burden on animal subjects), and so

should be suitably justified. There may also be additional

practical restrictions to be considered, particularly for

zoonotic viruses important in spillover (e.g. biosafety

considerations). Regardless, prior discussion of specific

modelling and virologic goals in the design phase of dose–

response experiments could facilitate the design of more

comprehensive experiments, such as those suggested in this

manuscript, and generate data that is useful in broader dis-

ease contexts. Deepened cross-collaboration between

experimental virologists and disease ecologists investigating
spillover would provide an exciting opportunity to enable

researchers to use these types of experimental data to their

full potential.
6. Future models
Beyond the experiment described above, the dose-dependent

heterogeneity in shedding patterns shown in our datasets

illustrates an important source of variability that should be

considered when estimating dose–response relationships

and transmission. While models describing dose–response

curves can be extended to account for potential sources of

heterogeneities, they have two essential limitations: they are

static and they produce a binary response (‘success’ of the

virus, defined as a stochastic variable). To characterize the

nature of heterogeneities in these systems, and thereby

enable more realistic predictions of zoonotic transmission

outcomes, there is a need for novel approaches to calibrate
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dose–response relationships for different combinations of

pathogen, host and dead-end species and individual traits.

A compartmental model, where transmission is modelled

as a spatial process within and between hosts, could provide

a more flexible modelling framework for the integration of

such heterogeneities [35,36]. As a first approximation, hosts

could be modelled as a network of tissues (e.g. organs, cell

populations, bodily fluids) that lead to the external environ-

ment (and the next host) following invasion of successive

compartments. Each compartment could represent a succes-

sion of basic dose–response models, followed by expansion

of the successful particles in the birth–death process, as a sto-

chastic process that can lead to successful invasion (enabling

transfer to the next compartment), clearance (meaning the

end of infection) or possibly death of the host (which may pre-

vent further replication and transmission, depending on the

pathogen). It would then be possible to explore the emerging

patterns of transmission dose response, using a combination

of analytical calculations and numerical simulations.

To include alternative dose–response models into the

compartmental transmission model, we can rewrite equation

(3.1) in the case of a simple dose–response experiment. Start-

ing with a number S0 of susceptible individuals exposed to a

fixed doseW0 for a short period T, we can solve equation (3.1)

in the absence of transmission to obtain

S(t) ¼ S0e�fW0t: ð6:1Þ

Hence the probability of being infected at the end of the

exposure period T is equal to

1� S(T)
S0

¼ 1� e�fW0T , ð6:2Þ
which is indeed the same as equation (2.1) if we set the

‘single-hit’ probability r ¼ fT. We can then consider an

alternative dose–response model, for example:

P(d,r) ¼ 1� exp (�r dk), ð6:3Þ

where the new parameter k � 1 will produce a sigmoidal

response typical of a collective action model. This dose–

response function can then be plugged into the SIW trans-

mission model by equating:

S(t) ¼ S0 e�ftWk
0 : ð6:4Þ

From which we derive the corresponding transmission

term

dS
dt

¼ �fWk
0S: ð6:5Þ

The choice of assumptions and the range of models

worth exploring should be guided by empirical information

on diverse host–pathogen systems. For example, a com-

partmental model may be less relevant for respiratory

viruses that do not need to leave the respiratory tract to

cause onward transmission (i.e. only cells in the nasal

mucosa need be infected for effective transmission) [37],

but may be informative for pathogens that are shed through

alternative routes, such as the urinary tract [38]. Thereby,

these types of models could be particularly useful for

many emerging bat pathogens, where viral shedding

commonly occurs through the urinary tract (e.g. Henipa-

viruses in Pteropodid bats [34]). Indeed, similar

integrations of dose–response relationship and epidemiolo-

gical modelling have been successfully applied [11,12], but
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further application within the context of spillover would

be valuable. Furthermore, we give examples from two sim-

plistic scenarios only (k ¼ 1 and k . 1), though more

complicated model structures with dose-dependent antag-

onism or heterogeneity in host susceptibility are possible

(e.g. the parasite antagonism model or heterogeneous

host model described in [12]). The complexity of these

models should be driven by a parsimonious attempt to

reproduce empirical patterns, not by a desire to capture

every single mechanism at play in a real living system. Fur-

thermore, the nature of these kinds of heterogeneities will

vary with different combinations of pathogen, host species

and individual traits [14], making this a challenging but

important consideration in modelling.
il.Trans.R.Soc.B
374:20190016
7. Conclusion
Experimental dose–response data are highly valuable for epi-

demiological modelling, but here we show how the

integration of dose–response relationships can be hindered

by a lack of suitable data derived from dose experiments.

We demonstrate how changes in the design and accessibility

of dose–response experiments would facilitate integration

into epidemiological modelling, and enable more realistic

predictions of zoonotic transmission outcomes. We also pro-

pose alternative transmission model structures to facilitate

this integration of dose–response relationships into epide-

miological models. Considered integration of dose in this

context will be important in predicting the likelihood of

pathogen spillover. Thus, information gained by active

collaboration between virologists, modellers and disease ecol-

ogists will be an important step in moving this field forward,
and promoting realistic predictions of zoonotic transmission

and spillover risk.
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