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Dose is the nexus between exposure and all upstream processes that deter-
mine pathogen pressure, and is thereby an important element underlying
disease dynamics. Understanding the relationship between dose and disease
is particularly important in the context of spillover, where nonlinearities in
the dose-response could determine the likelihood of transmission. There
is a need to explore dose-response models for directly transmitted and
zoonotic pathogens, and how these interactions integrate within-host factors
to consider, for example, heterogeneity in host susceptibility and dose-
dependent antagonism. Here, we review the dose—response literature and
discuss the unique role dose-response models have to play in understand-
ing and predicting spillover events. We present a re-analysis of dose—
response experiments for two important zoonotic pathogens (Middle East
respiratory syndrome coronavirus and Nipah virus), to exemplify potential
difficulties in differentiating between appropriate models with small
exposure experiment datasets. We also discuss the data requirements
needed for robust selection between dose—response models. We then
suggest how these processes could be modelled to gain more realistic predic-
tions of zoonotic transmission outcomes and highlight the exciting
opportunities that could arise with increased collaboration between the
virology and epidemiology disciplines.

This article is part of the theme issue ‘Dynamic and integrative
approaches to understanding pathogen spillover’.

1. Introduction

As a key component of transmission, dose-response relationships are
expected to underlie the dynamic nature of infection and spread of disease,
and are therefore an important consideration in modelling and predicting
spillover risk. In the first instance, dose—response experiments characterize
the relationship between exposure to a certain dose of a pathogen and the
probability of developing an infection, where dose is the number of pathogen
particles entering the host through a given route [1]. The dose—response data
can then be interpreted through fitting mathematical models, which provide
a probabilistic link between the infectivity of a pathogen, the within-host pro-
cesses that determine the success of pathogen establishment into host cells,
and the shape of the observed dose—response curve (e.g. [2—4]). These exper-
iments are routinely used to derive a single value of the minimum infectious
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dose for an infectious agent [5], or the dose required to
infect 50% of individuals (IDsp) which, together with
the dose-response curve, commonly form the basis of
microbial risk assessments (e.g. [6—8]) and experimental
inoculation studies that investigate the infectivity and
pathogenesis of diseases.

Despite these roots in experimental disease, there have
been fewer discussions of dose—response relationships in
epidemiological literature, or its influence in determining
disease spillover of novel pathogens. For example, the
relative contributions of frequent low-dose exposures
versus rare high-dose exposures towards successful zoono-
tic transmission are currently unclear. Distinguishing
between these two possibilities is important for managing
spillover—if rare, high-dose exposures drive spillover
dynamics, then identifying times, places or host character-
istics that lead to high-dose exposure may lead to the
development of targeted mitigation strategies. Alterna-
tively, if exposure of many individuals to low doses leads
to spillover, then mitigation must be delivered over the
entire population of potential spillover hosts. The answer
to this question will depend on the functional relationship
between dose and infection [9]. While considerable atten-
tion has been paid to dose-response relationships, and
several dose—response model structures have been pro-
posed in the literature (e.g. [2,6,10]), there remains a
paucity of studies that seek to differentiate between alterna-
functional
relationship (although see [11-13]). Moreover, as spillover

tive model structures and elucidate this
is typically a rare event, in which only a small proportion
of exposed hosts will progress to develop an infection
[14], it is important to understand how low exposure
doses may lead to low probabilities of infection. Here, we
discuss the translation of these issues from the quantitative
microbial risk assessment literature into the zoonotic
spillover context. We consider the importance of the
dose—response relationship to epidemiological and
spillover modelling, and argue that due consideration of
the dose-response relationship within transmission
models will be important for the parametrization of
models that are more reflective of natural transmission
patterns. We then evaluate the results of existing dose—
response models and discuss what additional information
would be required to fully elucidate these relationships

and integrate dose into transmission models.

2. Dose—response models

The standard way to consider dose—response in experimental
settings is with a binary response variable, such as the occur-
rence of clinical infection, death, shedding or onward
transmission within a given time period after exposure (e.g.
[4,15]). Modelling the response of interest as a binary stochas-
tic variable, the probability of occurrence can be expressed as
a function of the exposure dose d: P(d). This probability can
be estimated experimentally by measuring the proportion
of exposed animals with a successful infection, shedding or
mortality outcome for a given dose. Classically, the null
hypothesis is that of independent action: this assumes that
each particle in the inoculum has a low ‘single-hit” probability
r of causing the desired response, which is the same for every
particle, and that they all act independently of each other

(reviewed in [16]). If r < 1, the number of successful particles
follows a Poisson distribution. If the response is observed
when at least one particle succeeds, it follows that the
probability of observing a response can be modelled as

P(d,;r) =1 —exp(—rd). (2.1)

A common empirical test of the independent action
model is based on measuring the slope of the dose-
response curve at half-height, i.e. at the point where the
response occurs with a 50% chance, often referred to as
the IDs5p. On a log;o-dose scale, using basic algebra, the
model predicts a slope of around 0.8 [1]. Deviations from
this value indicate that at least one assumption of the
model is violated: for example, particles may not cause
the response independently [17,18]. First, it may take at
least k successful particles to cause the response (a coopera-
tive action or threshold model), in which case the dose—
response can be modelled by summing the first k terms of
the Poisson distribution, leading to a slope at half height
steeper than 0.8 [1]. Biologically, this could be the result
of a nonlinear immune response [19,20]. Another variant
allows the single-hit rate to vary among particles or hosts,
following a given distribution f(r). In general, this leads
to a half-height slope of less than 0.8 [1]. A common
choice for f(r) is a beta distribution, leading to a hypergeo-
metric dose-response model. For any given host-virus
pair, these alternative models can be tested statistically
using experimental data (e.g. [6,12,13]). The appropriate-
their
assumptions on host—virus interactions, should be further

ness of alternative models, and underlying

evaluated with robust model selection approaches,
sensitivity analyses and identifiability analyses (e.g. [9,12]).

Evaluating the fit of these models will be particularly
important in the context of spillover, and will underpin
the predicted likelihood of
exposure. By definition, the IDsq is the dose that has a
50% chance of infecting any one exposed individual.
Under the hypothesis of independent action, if that same
dose was spread across n hosts, each receiving exactly one
virion and where n =IDs5y, then there would be a 50%
chance of at least one host getting infected. In general, the
probability of at least one infection occurring when a
given number of infective stages encounters many hosts,
will be independent of the distribution of those infective
stages among the hosts, provided the independent action
hypothesis holds [14]. On the other hand, if the probability
of infection increases more rapidly with dose than expected
under the independent action hypothesis, spillover will be
more likely to occur when the distribution of infective
stages among hosts is highly aggregated. In this situation,
spillover following infrequent but high-intensity exposures
may be much more likely than would be expected from a
frequent trickle of low-intensity exposures [14].

For zoonotic viruses important in spillover, the practical
considerations involved in holding large numbers of ani-

transmission following

mals in high containment make it essentially impossible
to design an experiment capable of estimating the prob-
ability of any one individual being infected by a single
virion. Furthermore, unlike situations with bacteria and
other eukaryotic parasites, ensuring that a host has been
exposed to a single virion is not possible. However, if the
IDsy can be estimated with some precision and the

91006107 :PLE § 05 'y Uil iy qsy/[euinol/bobuiysiigndfanosiefos H



independent action model can be verified, then it may be
reasonable to extrapolate the relationship to estimate the
probability of infection with a very low infective dose.
Later in this paper, we discuss how the independent
action model can be fitted to empirical data, but we note
previous work highlighting the uncertainty within dose—
response models at low doses [16,21]. Whether these
relationships should be extrapolated to extremely low infec-
tive doses, or even a single virion, is a question that should
be approached with due consideration of variability in the
dose—response relationship, however [9]. We would also
note that there are limitations of dose-response models
that should be considered when integrating within an epi-
demiological structure. For example, dose-response
model data are derived from laboratory experiments on
study populations that typically differ from study popu-
lations in an applied setting (e.g. laboratory bred animals
from a specific cohort versus wild animals), and which
are exposed to higher doses than might be expected in natu-
ral systems. Additional sources of variation (e.g. route of
inoculation) are also likely to influence the form of the
dose—response relationship in applied settings. Limitations
in dose—response experiments have been discussed
previously [9,16].

3. From dose—response to transmission

While the integration of dose—response relationships with epi-
demiological data has been previously achieved in a small
number of bacterial and parasite studies (e.g. [9,22-24],
dose—response relationships remain largely overlooked
within epidemiological literature, particularly in the context
of virus spillover. This is probably owing, in part, to a lack
of data relevant to epidemiological contexts, because it is
not possible to measure transmitted doses in natural studies
(although see [1]). Conversely, dose—response data are at
the heart of microbial risk assessment literature [16], and
modelling dose—response curves in this context has strong
parallels with inference of epidemiological dose—response
relationships. Approaches to dose—response investigation in
both research fields require a number of extrapolations and
assumptions, including those underlying the single hit and
the independent action theories described above [25]. More-
over, both systems are subject to sources of variation that
will influence dose-response relationships, for example,
specific characteristics of the pathogen or strain and hetero-
geneous susceptibility of exposed individuals [25]. Despite
these challenges, evaluation of risks associated with bacterial
foodborne disease, and more recently, water-borne parasites,
has progressed rapidly over the last decades from qualitative
descriptions of hazard, route and consequences of exposure,
to a quantitative risk assessment framework to support more
effective management and intervention strategies [26].

of within- and
between-host processes associated with infectious disease
transmission in the epidemiological context are usually com-
bined into a single parameter: the transmission coefficient ()
[27]. Most ordinary differential equation epidemiological
models [28,29] represent transmission as [SI, which
implicitly assumes an independent action model. This can
be made clear by including the dynamics of the transmission
stages as a separate equation. Representing susceptible hosts

Currently, analogous complexities

as S, infected hosts as I and infected stages as W, the follow-
ing equations, modified from [30], describe the transmission
process:

ds

T —pWS,
dI
WS —Ia+b+) @3.1)

and Cti—tv =A — (u+vN)W.

Here, ¢ is the rate at which individual infective stages
infect susceptible hosts (which assumes an independent
action model), a is the disease-induced host death rate, y
is the recovery rate of infected hosts, A is the rate at which
infective stages are released from infected hosts, w is the
death rate of infectious stages in the environment, and v is
the rate at which infective stages are removed by encounter-
ing hosts, N. In many cases, it is reasonable to assume that
infective stages are short lived relative to the dynamics of
the rest of the system, in which case W will be at equilibrium
with the current numbers of infected and susceptible hosts,
yielding

A

W= (32)
and substituting into the first equation
dI dASI

It is usually reasonable to further assume that most infec-
tive stages die before they encounter a host, so that u > vN.
Thus,

B= 2. (34)

The conventional BSI transmission rate therefore assumes
both independent action and that each infected individual
sheds at the same rate. Hence, heterogeneities either in shed-
ding rate or the dose-response relationship have the
potential to introduce nonlinearities [14,31]. More complete
consideration of dose—response relationships in models of
disease transmission could enable the parametrization of
models that are more reflective of transmission patterns in
populations, and allow for more accurate predictions of
pathogen invasion and spillover of infectious disease.
Thereby, understanding the dose-response relationship
could be a critical advancement for our understanding of
spillover of emerging diseases from wildlife.

4. Empirical relationships

Here, we analyse previously reported results of dose—
response experiments for two important zoonotic pathogens,
Nipah virus (NiV) and Middle East respiratory syndrome
coronavirus (MERS-CoV). Details of the experiments are
given in [32] for MERS-CoV and [15] for NiV. Note that
tissue culture infectious doses (TCIDsy) are reported.
Occurrence of shedding of MERS-CoV by inoculated mice
increased predictably with increasing levels of virus inocu-
lation and showed pronounced differences between low
and high doses of virus (figures 1 and 2). However, it is dif-
ficult to determine whether data of this type are consistent
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Figure 1. Prevalence of shedding or mortality in mice experimentally inoculated
with MERS-CoV. Groups of six mice were inoculated intranasally with doses of 10",
102 10° 10* or 10° TCIDs, of MERS-CoV in a total volume of 50 .. Data are avail-
able for only five of the mice infected at the highest dose. Viral shedding was
quantified by quantitative reverse transcription-polymerase chain reaction (qRT-
PCR) performed on oropharyncheal swabs. Points show prevalence of shedding
or mortality in each group, and error bars are exact binomial 95% confidence
intervals for the predicted probability of infection given the dose. The different
coloured lines are the independent action model, for different values of r, the
probability of infection from an individual virus particle. The maximum-likelihood
estimate of r is 0.00571, shown as a red line. The lower and upper 95% confidence
intervals based on profile likelihood for r are 0.002 and 0.0146. Dashed red lines
show the corresponding dose—response curves. (Online version in colour.)

with the independent action model (equation (2.1)), and if so,
to estimate the value of r. As can be seen from figure 1, the
95% profile confidence interval for r is very broad, with
only one dose level, 10 TCIDs,. With six mice only per
dose, the confidence intervals for the true proportion shed-
ding are also wide. Unfortunately, therefore, these data
(with low sample sizes and few dose groups separated by
at least an order of magnitude), are not sufficient to deter-
mine whether the independent action model is valid, or to
estimate the value of the probability of infection from a
single virus particle with any precision. This experimental
set-up, and number of animals per dose is typical of such
dose—response experiments, and the collection of the
additional data required to perform discriminatory model
selection is relatively rare, but has been previously achieved
(e.g. [11-13,33]). Data requirements for successful model
selection are discussed further in the section below.

As previously presented in De Wit et al. [15], shedding of
NiV increased with inoculation dose, as would be expected
(figure 2). However, the data illustrate a further issue that
needs to be considered when estimating dose—response
relationships. Although high levels of shedding from all
routes were achieved at the highest dose of 10”7 TCIDs,
lower doses lead to variability in the timing (figure 3) and
proportion (figure 2) of hamsters shedding from different
routes. At all doses, shedding was first detected in the
throat. At low doses (10% TCIDsy), this was followed by shed-
ding from rectal (2 dpi), then nasal and urogenital routes
(4 dpi) [15]. At this dosage, shedding was more frequently
observed in swabs of the throat and urogenital tract. At

higher doses (10° and 10”7 TCIDsp), shedding was detected n

in the nasal route earlier, alongside shedding from the
throat and rectum (detection from all named routes starting
from 1 dpi) [15]. Prevalence was more consistent across shed-
ding routes: at 10” TCIDsj all six hamsters had positive nasal,
oropharyngeal, urogenital and rectal swabs by the conclusion
of the experiment [15]. Moreover, shedding intensity
increased with dose for some routes, including through the
nasal passage and throat, but not others (i.e. rectal and uro-
genital routes) [15]. Heterogeneity between individuals also
varied with dose and sample type—timing of shedding
was more consistent among individuals via nasal and
throat routes than the other sampled routes, and timing
and intensity of shedding responses were more consistent
across individuals exposed to higher doses (figure 3). As
the precise route of infection is not known for many patho-
gens that spillover (for example, Hendra virus in Australian
Pteropodid bats [34]), this is an important issue requiring
further research, and demonstrates the need to consider shed-
ding patterns as a potential source of variation in per-contact
transmission risks, and upstream variation in pathogen
exposure and transmission.

5. Designing experiments to test the
independent action model

The empirical results described in the previous section show
how difficult it is to verify or test the independent action
model where experiments are undertaken using stepped
doses that increase by at least an order of magnitude. This
means that, in the independent action model, the response
will go from close to zero to close to one within one or two
dose steps, and as a result there is effectively very little infor-
mation available to test the fit to the independent action
model. In our previous experiment, for example, substantial
individual variation in response to exposure was only
observed for the 10> dose of MERS-CoV, which is close to
the IDs (figure 1). So, although our datasets comprised mul-
tiple dose levels, the remaining higher and lower dose levels
provided almost no additional information to determine
whether the independent action model fitted the data, or to
estimate the probability of infection at low doses with any
Pprecision.

To gain more information about the dose-response func-
tion, it would be necessary to undertake two-stage
experiments to (i) identify the order of magnitude of dose
at which infection occurs, and the variability of individual
responses at that dose and then (ii) use closer increments
around that dose to fit an appropriate dose-response
model. Non-trivial variation among individuals would also
require larger sample sizes to meaningfully discriminate
between alternative models—i.e. greater than six mice/ham-
sters per dose group, with exact numbers to be determined by
the variability observed in the first stage of experiments.
Inoculation of doses close to this critical level, with higher
levels of replication per dose, should provide the ability to
meaningfully distinguish between different model shapes
and, if the independent action model is appropriate, to esti-
mate 7. Such pilot experiments have been applied
previously in many model systems.

Beyond testing the specific aims outlined above, routinely
quantifying shedding in these experiments would provide
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Figure 2. Prevalence of (a) NiV and (b) MERS-CoV shedding or mortality in experimentally inoculated hamsters and mice, respectively. Groups represent intranasal
inoculations with doses of 10°,10° or 107 TCIDs, of NiV in a total volume of 100 wl, and 10", 10 10%, 10* or 10° TCIDs, of MERS-CoV in a total volume of 50 .
Shedding was quantified by qRT-PCR performed on nasal, rectal, throat or urogenital (NiV) and oropharyncheal (MERS-CoV) swabs. Estimates of shedding prevalence
and corresponding 95% confidence intervals were calculated using maximum-likelihood estimation, following a binomial distribution for each combination of dose

and shedding route.

valuable data in the context of zoonotic transmission or for
evaluating the potential for onward transmission of patho-
gens. This would further facilitate the integration of dose
experiment information in transmission and spillover model-
ling. However, the decision to undertake such experiments
should depend on the relative costs and benefits associated
with additional data collection. For example, the proposed
experiments would require an additional number of samples
(and so an additional burden on animal subjects), and so
should be suitably justified. There may also be additional
practical restrictions to be considered, particularly for
zoonotic viruses important in spillover (e.g. biosafety
considerations). Regardless, prior discussion of specific
modelling and virologic goals in the design phase of dose—
response experiments could facilitate the design of more
comprehensive experiments, such as those suggested in this
manuscript, and generate data that is useful in broader dis-
ease contexts. Deepened cross-collaboration between
experimental virologists and disease ecologists investigating

spillover would provide an exciting opportunity to enable
researchers to use these types of experimental data to their
full potential.

6. Future models

Beyond the experiment described above, the dose-dependent
heterogeneity in shedding patterns shown in our datasets
illustrates an important source of variability that should be
considered when estimating dose—response relationships
and transmission. While models describing dose-response
curves can be extended to account for potential sources of
heterogeneities, they have two essential limitations: they are
static and they produce a binary response (‘success’ of the
virus, defined as a stochastic variable). To characterize the
nature of heterogeneities in these systems, and thereby
enable more realistic predictions of zoonotic transmission
outcomes, there is a need for novel approaches to calibrate
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Figure 3. Intensity (shedding in TCIDs, equivalents ml~") and timing (days post infection) of NiV shedding across inoculated hamsters (individuals shown by
colour), separated by exposure dose and shedding route. Dose groups represent intranasal inoculations with doses of 10%, 10° or 107 TCIDs, of NiV in a total
volume of 100 wl. Viral shedding titre was quantified by qRT-PCR performed on nasal, rectal, throat or urogenital swabs, evaluated daily for 14 days post inocu-

lation. (Online version in colour.)

dose—response relationships for different combinations of
pathogen, host and dead-end species and individual traits.

A compartmental model, where transmission is modelled
as a spatial process within and between hosts, could provide
a more flexible modelling framework for the integration of
such heterogeneities [35,36]. As a first approximation, hosts
could be modelled as a network of tissues (e.g. organs, cell
populations, bodily fluids) that lead to the external environ-
ment (and the next host) following invasion of successive
compartments. Each compartment could represent a succes-
sion of basic dose—response models, followed by expansion
of the successful particles in the birth—death process, as a sto-
chastic process that can lead to successful invasion (enabling
transfer to the next compartment), clearance (meaning the
end of infection) or possibly death of the host (which may pre-
vent further replication and transmission, depending on the
pathogen). It would then be possible to explore the emerging
patterns of transmission dose response, using a combination
of analytical calculations and numerical simulations.

To include alternative dose-response models into the
compartmental transmission model, we can rewrite equation
(3.1) in the case of a simple dose—response experiment. Start-
ing with a number S, of susceptible individuals exposed to a
fixed dose W) for a short period T, we can solve equation (3.1)
in the absence of transmission to obtain

S(t) = Soe~ ™", (6.1)
Hence the probability of being infected at the end of the
exposure period T is equal to

150 g gomr, (6.2)
So

which is indeed the same as equation (2.1) if we set the
‘single-hit” probability r = ¢T. We can then consider an
alternative dose—response model, for example:

Pd,r) =1 —exp(—rd"), (6.3)

where the new parameter k > 1 will produce a sigmoidal
response typical of a collective action model. This dose—
response function can then be plugged into the SIW trans-
mission model by equating;:

S(t) = Sy e~ 4. (6.4)

From which we derive the corresponding transmission
term

% = —pWS. (6.5)
The choice of assumptions and the range of models
worth exploring should be guided by empirical information
on diverse host—pathogen systems. For example, a com-
partmental model may be less relevant for respiratory
viruses that do not need to leave the respiratory tract to
cause onward transmission (i.e. only cells in the nasal
mucosa need be infected for effective transmission) [37],
but may be informative for pathogens that are shed through
alternative routes, such as the urinary tract [38]. Thereby,
these types of models could be particularly useful for
many emerging bat pathogens, where viral shedding
commonly occurs through the urinary tract (e.g. Henipa-
viruses in Pteropodid bats [34]). Indeed, similar
integrations of dose—response relationship and epidemiolo-
gical modelling have been successfully applied [11,12], but
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further application within the context of spillover would
be valuable. Furthermore, we give examples from two sim-
plistic scenarios only (k=1 and k>1), though more
complicated model structures with dose-dependent antag-
onism or heterogeneity in host susceptibility are possible
(e.g. the parasite antagonism model or heterogeneous
host model described in [12]). The complexity of these
models should be driven by a parsimonious attempt to
reproduce empirical patterns, not by a desire to capture
every single mechanism at play in a real living system. Fur-
thermore, the nature of these kinds of heterogeneities will
vary with different combinations of pathogen, host species
and individual traits [14], making this a challenging but
important consideration in modelling.

7. Conclusion

Experimental dose—response data are highly valuable for epi-
demiological modelling, but here we show how the
integration of dose—response relationships can be hindered
by a lack of suitable data derived from dose experiments.
We demonstrate how changes in the design and accessibility
of dose-response experiments would facilitate integration
into epidemiological modelling, and enable more realistic
predictions of zoonotic transmission outcomes. We also pro-
pose alternative transmission model structures to facilitate
this integration of dose—response relationships into epide-
miological models. Considered integration of dose in this
context will be important in predicting the likelihood of
pathogen spillover. Thus, information gained by active
collaboration between virologists, modellers and disease ecol-
ogists will be an important step in moving this field forward,
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