

1 First odyssey beneath the sea ice of juvenile emperor penguins in East Antarctica

2

3 Sara Labrousse^{*1, 2}, Florian Orgeret², Andrew R. Solow¹, Christophe Barbraud²,
4 Charles A. Bost², Jean-Baptiste Sallée³, Henri Weimerskirch², Stéphanie
5 Jenouvrier^{1,2}.

6

7 (1) *Biology Department MS-34, Woods Hole Oceanographic Institution, Woods Hole, MA, USA*

8 (2) *Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 Université de la Rochelle-CNRS, 79360,
9 Villiers en Bois, France.*

10 (3) *Sorbonne Universités, UPMC Univ., Paris 06, UMR 7159 CNRS-IRD-MNHN, LOCEAN-IPSL,
11 75005, Paris, France*

13 *Corresponding author: sara.labrousse@gmail.com

14

15 **Abstract**

16 Adult emperor penguins breed on fast ice and forage within sea ice in winter.
17 However, it remains unknown whether juveniles exhibit similar foraging behavior
18 during their early life at-sea movements, and how it links with the oceanographic
19 conditions. We investigated the first at-sea odyssey of 15 juvenile emperor penguins
20 from Terre Adélie in 2013-2014. The average tracking duration was 167 ± 110 days
21 (from 86 to 344 days). After departing the colony in December/January, the juveniles
22 travelled north up to 53.76°S before heading south in April/May to forage within the
23 sea ice. The juveniles spent 49 ± 14 % of their total recorded trip (n=12) in the sea
24 ice, over both the continental slope and deep ocean regions. The penguins dived
25 primarily during daylight. Within sea ice the juveniles performed both shallow and
26 deep dives, with the proportion of each varying seasonally. The switch to primarily
27 deep dives in the autumn and winter within sea ice may be a consequence of (i) a
28 seasonal change in the krill distribution from surface to deep waters, and/or (ii) the
29 presence of macrozooplankton at depth due to a reduced/absent nyctemeral migration.
30 Furthermore, we showed for the first time that the diving behaviour of juveniles was
31 associated with the mixed layer depth. We suggest they feed on mesopelagic prey
32 aggregating near the thermocline. This study provides insight into an important, but
33 poorly understood, part of the emperor penguin life cycle, essential to predict their
34 response to future climate change.

35

36 **Introduction**

37 The behavior and annual life cycle of many juvenile marine predators remains
38 a mystery because it is a challenge to monitor them at-sea as they migrate over long
39 distance for several years (Hazen et al. 2012). Oceanographic conditions may affect
40 juveniles in different ways compared to adults because they are less experienced and
41 they migrate over a wider range of different habitats (e.g. turtles: Musick and Limpus,
42 Weddell seals *Leptonychotes weddellii*: Hastings et al., 1999; king penguins
43 *Aptenodytes patagonicus*: Orgeret et al., 2016; wandering albatross *Diomedea*
44 *exulans*: De Grissac et al., 2017; emperor penguins *Aptenodytes forsteri*: Kooyman et
45 al. 1996, Kooyman & Ponganis 2007; Wienecke et al., 2010; Thiebot et al., 2013).

46 In Antarctica, the life cycles of many predators are closely associated with sea
47 ice (e.g. crabeater seals *Lobodon carcinophaga*, leopard seals *Hydrurga leptonyx*,
48 Weddell seals, Ross seals *Ommatophoca rossii*, emperor penguins, Adélie penguins
49 *Pygoscelis adeliae* and, snow petrels *Pagodroma nivea*; Tynan et al., 2010). Indeed,
50 increased secondary production within the sea ice zone may be exploited by upper
51 trophic levels (Eicken, 1992; Van Franeker et al., 1997; Reid and Croxall, 2001;
52 Brierley and Thomas, 2002; Tynan et al., 2010; Fraser and Hofmann, 2003). The
53 under ice habitat provides sheltered structures for zooplankton such as juvenile krill.
54 These areas also accumulate organic material released from the ice during winter
55 when productivity is low in the water column due to reduced light (Marschall, 1988;
56 Flores et al., 2011; Flores et al., 2012b; David et al., 2016; Meyer et al., 2017).
57 Finally, Antarctic coastal polynyas, areas of open water within the sea ice zone, are
58 also thought to be key bio-physical features of the Antarctic ecosystem. They offer a
59 recurrent and persistent open water access and often harbor high biological
60 productivity in spring/late summer that may support productive ecosystems
61 throughout the autumn and winter seasons (Arrigo and van Dijken, 2003; Labrousse
62 et al., 2018).

63 Antarctic sea ice also plays a major role on the oceanographic conditions of
64 the underlying water column. By forming a high albedo on the ocean surface, sea ice
65 seasonally modifies and affects exchanges between the ocean and the atmosphere, and
66 the properties of the ocean surface (Massom and Stammerjohn, 2010). Salt rejection
67 and freshwater input from seasonal sea ice formation and melt are important

68 determinants of the upper ocean stratification (Martinson, 1990) and dense water
69 formation, driving the global thermohaline ocean circulation (Orsi et al., 1999,
70 Marshall and Speer, 2012).

71 At different spatial and temporal scales, oceanographic features and processes
72 such as thermal layers, eddies and upwelling zones, currents, frontal systems,
73 seamounts, and the edge of the continental shelf are known to affect the distribution
74 of marine predators. By physically aggregating resources, these processes create areas
75 where prey are abundant and foraging efficiency is increased (Chapman et al., 2004,
76 Bost et al., 2009, Raymond et al., 2015). Many studies have linked the oceanographic
77 conditions to marine mammal (e.g. fur seals, Lea et al., 2003; Weddell seals, Heerah
78 et al., 2013; minke whales *Balaenoptera bonaerensis*, Friedlaender et al., 2006;
79 southern elephant seals *Mirounga leonina*, Labrousse et al., 2018) and seabird life
80 cycles (reviewed by Weimerskirch, 2007). Yet, the use of oceanographic conditions
81 associated with sea ice remains poorly known during the juvenile cycle of marine
82 mammals and seabirds (Hazen et al., 2012). The thermocline (or mixed layer depth)
83 represents a key variable to investigate these questions; using animal-borne
84 temperature sensors, the mixed layer depth can be tracked within the sea ice zone
85 where eddies and upwelling are difficult to detect (Pelichero et al., 2017).

86 The emperor penguin is the only species to breed during the harsh Antarctic
87 winter, during which they perform deep foraging dives under the sea ice (Kirkwood &
88 Robertson 1997b). They are dependent upon sea ice as a platform for reproduction
89 and laying eggs in late autumn and winter. They dive under winter sea ice at two key
90 periods: after egg-laying, i.e. between autumn and mid-winter when females are
91 rebuilding their body reserves (while the males incubate eggs); and during the chick
92 provisioning period, i.e. from mid-winter to December when both males and females
93 alternate periods of foraging (Kirkwood & Robertson 1997a). From autumn to spring,
94 breeding adult emperor penguins forage either in polynyas or open water areas over
95 the continental slope (the slope polynyas), or in pack-ice regions further off-shore
96 (Kirkwood and Robertson, 1997a, Kirkwood and Robertson, 1997b). The slope
97 polynyas are thought to be prime foraging habitat because they provide the closest
98 access to open water to the colonies and have high abundance of Antarctic krill
99 *Euphausia superba*, Antarctic silverfish *Pleuragramma antarctica* and glacial squid
100 *Psychroteuthis glacialis* in the vicinity of the slope (dominating the penguin's diet).

101 Whether and how sea ice affects foraging and diving behavior during early life
102 stages and how that compares with the adult behavior, remain open questions. The at-
103 sea distribution of the juveniles outside sea ice has been relatively well described
104 (Kooyman and Ponganis, 2007; Wienecke et al., 2010; Thiebot et al., 2013); in
105 December, juvenile emperor penguins leave the colony and travel very far north (e.g.
106 up to 57 °S; Kooyman and Ponganis, 2007), mostly in ice free waters. In early March
107 the travelling north ends and the birds start to travel to, or remain near, the northern
108 ice edge. Some studies suggested that juveniles probably avoid the sea ice habitat
109 during winter (Zimmer et al., 2008; Wienecke et al., 2010). Juveniles may have lower
110 foraging efficiency than adults due to lack of experience and physiological limitations
111 (Riotte-Lambert & Weimerskirch 2013; Burns et al., 1999; Orgeret et al., 2016); and
112 sea ice may represent a constraint to breathe and feed in a patchy resource-distributed
113 environment. Juveniles are thus expected to increase their diving and foraging effort
114 in order to compensate their lower foraging efficiency (Burns, 1999; Daunt et al.,
115 2007). Individuals that do not manage to compensate or increase their foraging effort
116 above their physiological limits may perish at-sea (Daunt et al., 2007; Orgeret et al.,
117 2016). Thus, a mechanistic understanding of the diving behavior during the first year
118 at-sea and within sea ice is crucial to comprehend the effects of climate variability on
119 juvenile vital rates (Abadi et al., 2017) and the persistence of emperor penguins under
120 future climate change (Barbraud & Weimerskirch 2001; Jenouvrier et al., 2012, 2014,
121 2017; Barbraud et al. 2011).

122 Our aim was to fill this gap by investigating the foraging behavior of juvenile
123 emperor penguins in relation to sea ice and oceanographic characteristics. We studied
124 the foraging behavior of juvenile emperor penguins from the Pointe Géologie colony
125 in 2013-2014. Our main objectives were to 1) identify the horizontal movements of
126 juveniles within the sea ice zones / habitats (i.e. defined by sea ice zones, coverage
127 and persistence); 2) investigate the influence of the distance from the sea ice edge,
128 light, and seasons on the diving depth; and 3) assess if and how oceanographic
129 conditions such as the mixed layer depth influence penguins' diving behavior within
130 sea ice and consequently prey acquisition. Based on a single juvenile tracked within
131 the sea ice zone during the autumn and winter seasons in Thiebot et al. (2013), our
132 first hypothesis (H1) is that juveniles use regions with sea ice more than previously
133 reported (Kooyman and Ponganis, 2007; Wienecke et al., 2010). Furthermore, we

134 posit (H2) that distance from the sea ice edge (from the inside or outside sea ice),
135 season and time of day will impact diving behavior. Finally, we expect (H3) that
136 juvenile emperor penguins may target prey associated with temperature or density
137 gradients within the water column, similar to king penguins within sub-Antarctic
138 areas (Bost et al., 2009), and forage extensively over the continental slope where the
139 slope current and upwelling of nutrient rich waters may control the distributions of
140 resources (Jacobs, 1991).

141

142 **Methods**

143 *Animal handling, deployment, data collected*

144 Fifteen juvenile emperor penguins were equipped with SPLASH tags
145 (Wildlife Computers, Redmond WA, USA) in December 2013 just before their first
146 departure to sea. Tags were attached to the middle-lower back to reduce drag
147 (Bannasch et al. 1994), and fixed to the feathers using cyanoacrylate glue (Loctite
148 401) and cable ties. The tags had a cross-sectional area of 3.2 cm² (< 1% of a bird's
149 cross-sectional area) and weighed 62 g in air and 25.2 g in seawater (0.34–0.44% of a
150 juvenile body mass; Thiebot et al., 2013). The smooth and flexible antenna was 8 cm
151 long, 1.6 mm thick and inclined 45° backwards. Deployments were conducted at the
152 Pointe Géologie colony (Dumont d'Urville station, -66.665°N, 140.0302°E) in Terre
153 Adélie, Antarctica. General information such as bird weight and biometrics before
154 departure, trip duration and dive start and end date are reported in the Supplement,
155 Table S1. SPLASH tags are data-archiving tags that transmit to the Argos system.
156 These tags record both horizontal and vertical movements (i.e. diving data). They
157 were programmed to record and transmit diving summary and locations data on a 24
158 hours on/ 48 hours off cycle. Among the 15 individuals, an average of 18 ± 7
159 locations were transmitted per day of transmission. Three types of data were
160 collected: (i) tracking data via the Argos position; (ii) diving behavior including a)
161 dive profiles (maximum depth, dive duration and surface duration for all dives) and b)
162 4 hours dive duration, maximum depth and time-at-depth summary histograms (14
163 bins); (iii) temperature profiles including a) 4 hours time-at-temperature summary
164 histograms (14 bins), and b) profiles of depth and temperature (i.e. PDT, including
165 two profiles, one for the minimum and one for the maximum temperature encountered
166 by the penguins) observed at 8 depths chosen to include the minimum and maximum

167 depths detected and 6 other depths arranged equally between them. For this study, the
168 Argos locations, the dive profiles and the 4 hours summary of time-at-depth
169 histograms and temperature profiles (PDT) were used to study penguins' habitat use
170 relative to sea ice and oceanographic conditions. Erroneous locations were filtered out
171 using a speed filter from the R package *argosfilter* (Freitas et al., 2008). The
172 maximum travel speed was fixed to 14 km.h⁻¹ following Wienecke et al. (2010).

173

174 ***Sea ice data***

175 Daily estimates of sea ice concentration were derived from satellite Advanced
176 Microwave Scanning Radiometer (AMSR-2) data at 6.25 km resolution (University of
177 Bremen, <http://www.iup.physik.uni-bremen.de:8084/amsr/amsre.html>; see Labrousse
178 et al. (2017) for more details). The distance of penguins from the sea ice edge was
179 calculated as the minimum distance between penguin positions and the sea ice edge
180 contour, as defined by the 15% sea ice concentration isocline (following Stammerjohn
181 and Smith, 1997). Contours corresponding to outlying floes or polynyas were
182 removed to prevent bias in our sea ice edge distance computation. Three variables
183 representing the sea ice concentration and its spatio-temporal variability were
184 investigated at and around the bird's position (Labrousse et al., 2017), assuming that
185 sea ice may become a constraint when the concentration is high and precludes birds
186 from diving. These are: (i) the sea ice concentration at the penguin location; (ii) the
187 area covered by sea ice with a concentration of >90% within a 10 km and 25 km
188 radius around the penguin location ($A_{90\%}$; as a measure of the spatial variability of
189 concentrated sea ice patches); and (iii) the number of days with a sea ice
190 concentration of >90% at a given location within a 30 day window ($T_{90\%}$; as a
191 measure of the time variability of concentrated sea ice patches, Fig. S1).

192 The different sea ice zones may have various important consequences for
193 seabirds (Stroeve et al. 2016). Three zones with distinct characteristics were used to
194 define the sea ice cover in East Antarctica (Massom and Stammerjohn, 2010). These
195 are (from north to south): (i) the highly-dynamic “marginal ice zone” (MIZ),
196 extending 100 km or so south from the ice edge, and is composed of small floes and
197 diffuse ice conditions (depending on wind direction); (ii) the “inner pack ice” zone
198 (PIZ) comprising larger floes separated by leads; and (iii) a coastal zone comprising
199 the band of compact “landfast (fast) ice” (FIZ) and persistent and recurrent areas of

200 open water within sea ice in the form of polynyas and flaw leads.

201

202 **Statistical analysis**

203 We investigated the effect of sea ice on penguin diving behavior by modelling
204 the relationship between dive depth and distance from the sea ice edge. We restricted
205 the analysis to dives within 500 km of the sea ice edge as the influence of the
206 marginal ice zone extends only a few hundred kilometres from the sea ice edge
207 (Massom and Stammerjohn 2010). To account for diel differences in diving behavior,
208 we analyzed daylight (D) and twilight (T) dives separately. Night dives were excluded
209 from the analysis as they represented only 5% of the total number of dives and did not
210 include feeding dives (Kirkwood & Robertson 1997). To account for seasonal
211 differences, we modelled 3 seasons separately: (1) January-March (12 individuals),
212 (2) April-June (11 individuals), and (3) July-September (6 individuals). The period
213 October-December was excluded as it included observations for only 3 individuals.
214 We also excluded 3 individuals with trip durations < 30 d (see the Supplement, Table
215 S1).

216 For each combination of season and time-of-day, the distribution of dive depth
217 was bimodal, with a shallow component and a deep component (see results). To
218 account for this bimodal distribution, we analyzed the relationship between dive depth
219 and distance from the sea ice edge using a 2-component Gaussian mixture regression
220 model using the R package *flexmix* (Leisch 2004; Grün and Leisch 2007, 2008). This
221 model assumes that the distribution of the log of dive depth follows a 2-component
222 Gaussian mixture with mean depending on distance from the sea ice edge. For each
223 component, the general model is:

$$224 Y_{ij} = \beta_{0j} + \beta_{1j} x_{ij} + \beta_{2j} x_{ij}^2 + \varepsilon_{ij} \quad i = 1, 2, \dots, I_j; j = 1, 2, \dots, J$$

225 where Y_{ij} is the log of dive depth i for individual j , x_{ij} is the distance from the sea ice
226 edge for this dive, β_{0j} , β_{1j} , β_{2j} are unknown regression parameters for individual j
227 and ε_{ij} is a normal error with mean 0 and unknown variance σ^2 . The quadratic
228 term x_{ij}^2 is included in the model to allow for a nonlinear relationship between log
229 dive depth and distance from the sea ice edge. Although our chief interest is in the
230 existence of a consistent pattern across individuals in the relationship between dive
231 depth and distance from the sea ice edge, we also tested for differences between the

12 individuals in both components of this relationship. To begin with, we tested the null hypothesis $H_0: \beta_{oj} = B_o, j = 1, 1, \dots, J$, of a common intercept against the alternative hypothesis $H_1: \beta_{oj} \neq \beta_{ok}$ for at least one pair of individuals j and k . We then tested the null hypothesis $H_0: \beta_{1j}, \beta_{2j} = \beta_1, \beta_2, j = 1, 2, \dots, J$, of a common effect of distance from the sea ice edge on log dive depth (i.e. the slope of the regression) against the alternative hypothesis $H_1: \beta_{1j}, \beta_{2j} \neq \beta_{1k}, \beta_{2k}$ for at least one pair of individuals. In both cases, we compared these models using a likelihood ratio test (Azzalini, 1996). Briefly, this involved computing twice the difference in the log likelihood maximized under the alternative and null hypotheses, respectively, and comparing this quantity to the quantiles of a chi squared distribution with the appropriate degrees of freedom.

243

244 ***Oceanographic conditions***

245 To investigate the linkages between penguin diving behavior and oceanographic conditions, we used the minimum temperature and depth profiles (PDT) recorded by the penguins following the method of de Boyer Montégut et al. 246 (2004) to calculate the mixed layer depth for each profile. Each temperature profile 247 was interpolated every 5 m from their original data points spaced in average of $17 \pm$ 248 10 m (based on 15 juveniles and a total of 3538 profiles). The criterion selected to 249 define the mixed layer depth is a difference of temperature of 0.2°C from a near- 250 surface value at 10 m depth. As the tags were programmed to record negative PDT 251 temperature as zero, we validated our approach using oceanographic data on mixed 252 layer depth recorded by southern elephant seals over 10 years (see the Supplement 253 and Fig. S2 for more information).

254 We then investigated the linkages between the mixed layer depth and bird's 255 time at-depth. We used the time-spent by the juvenile in each depth bin, versus the 256 distance of the depth bin from the mixed-layer. We then quantified the seasonal 257 variability of where the penguins spent most of their time relative to the mixed layer 258 depth, by averaging over time (using a moving window of 30 days) the vertical depth 259 distance between the juvenile diving depth and the mixed layer depth, weighted by 260 the time spent at-depth.

263

264 ***Ocean floor topography***

265 To define the shelf area and the continental slope, we used the same criteria as
266 in Labrousse et al. (2015). The inflection point in meridional bathymetric contours,
267 which represents the shelf break, was identified for each half degree of longitude from
268 0 to 150°E. The boundary between the continental slope and the deep ocean was
269 defined as the region where the influence of the Antarctic slope front stops. We used
270 pressure gradient on an isopycnal computed from historical Argo floats and ship
271 observations of the region to dynamically define the influence of the slope front and
272 associated it with, roughly, the 3500 m isobaths for our region. Each penguin dive
273 position was attributed either to the shelf, slope or the deep ocean area.

274

275 **Results**

276 ***General diving behavior patterns and sea ice habitat***

277 Data were obtained for 62,453 dives from the 15 juvenile penguins between
278 December 2013 and December 2014. The penguins left the colony and started to dive
279 between December 19th 2013 and January 12th 2014 (see the Supplement, Table S1).
280 For two individuals, tags stopped recording dives after less than one day; and one
281 individual's tag stopped after 31 days. For the remaining 12 individuals, tags recorded
282 trips from 86 to 344 days and tags stopped between March 26th and December 22nd
283 2014. The maximum distance that a penguin traveled was 7794 km and the furthest
284 distance from the colony was 3503 km.

285 All juveniles first travelled North reaching a maximum at 53.76 °S (Fig. 1a, c,
286 see the Supplement, Fig. S3). In March/April the penguins turned south, entering the
287 sea ice in April/May. They remained in the sea ice, within 100-200 km of the ice
288 edge, typically within the MIZ and the PIZ, until the tags stopped transmitting (Fig.
289 1a, c, see the Supplement, Fig. S3). Penguins spent on average $49 \pm 14\%$ (\pm Standard
290 Error of Mean; SEM) of their time inside sea ice ($n = 12$; up to 73 % for one
291 individual, see the Supplement, Table S1). Within sea ice, they were surrounded by
292 highly covered concentrated sea ice areas (more than 75% of the area around them
293 was covered by sea ice concentration above 90%, both in a 10 and 25 km radius; cf.
294 A_{90%}, see the Supplement, Fig. S4). Similarly, sea ice concentration at their position
295 was above 90% and persisted above 90% for at least 20 days within a month; cf. T_{90%},
296 see the Supplement, Fig. S4). The penguins' horizontal speed tended to be lower

297 inside sea ice, i.e. 0.56 ± 0.12 km/h (\pm SEM, n = 12), compared to outside sea ice, i.e.
298 1.1 ± 0.98 km/h (n = 14; see the Supplement, Table S2).

299 Penguins only spent 2 ± 3 % (\pm SEM) of their time on the Antarctic shelf, 25
300 ± 12 % on the Antarctic slope and 72 ± 12 % of their trip in the deep ocean (with or
301 without sea ice; Fig. 1b, see the Supplement, Table S1). They only visited one small
302 polynya near the colony. They tended to spend more time at the lower boundary of
303 the slope area (Fig. 1b). Their diving depth increased from the shelf to the deep ocean,
304 with average diving depths (\pm SEM) of 35 ± 19 m (n = 11, maximum = 180 m) on the
305 shelf, 44 ± 13 m (n = 12, maximum = 232 m) on the continental slope and 64 ± 11 m
306 (n = 12, maximum = 264 m) in the deep ocean. Similarly, the average dive duration
307 across individuals ranged from 2.4 ± 0.5 min (n = 11, maximum = 7 min) over the
308 shelf, 3.3 ± 0.5 min (n = 12, maximum = 32 min) over the continental slope and $3.6 \pm$
309 0.5 min (n = 12, maximum = 32 min) in the deep ocean. For all juvenile emperor
310 penguins, approximately 0.07 % of the dives exceeded the previous duration record
311 for adult emperor penguins of 32.2 min (Goetz et al., 2018). Errors in the dive
312 duration computation are likely due to non-detection of the surface at the end of dives.
313 These dives were not included in the dive statistics (see the Supplement, Table S2).

314 Penguins primarily dived when light, with 63 ± 11 % (\pm SEM) of their time
315 diving during the day and 32 ± 10 % during twilight (Fig. 2a, see the Supplement,
316 Table S1). Only 5 ± 3 % of dives were at night. Dives were deepest during the day
317 and shallowest at night (Fig. 2a). Deep and shallow dives were observed both within
318 and outside of the sea ice (Fig. 2b). Diving depths were very shallow at the sea ice
319 edge (Fig. 2b).

320

321 ***Change in the diving behavior within sea ice across seasons***

322 We investigated the influence of sea ice on juvenile diving behavior by
323 studying the relationship between the penguin diving depths and the distance from the
324 sea ice edge using 2-components mixture models for summer, autumn and winter
325 seasons for daytime dives (models 1-3) and for twilight dives (models 4-6). Here we
326 refer to shallow dive for component 1 and deep dive for component 2. Negative
327 distances from the sea ice edge are inside sea ice while positive distances are outside
328 sea ice. Details about the distribution of the diving depths for each season and
329 day/twilight times per zone, i.e. continental slope and shelf and deep ocean, is

330 presented in figure S5. Summary of the relations for the model suite *a*, *b* & *c* and the
331 likelihood ratio tests to assess individual variability are presented in Table S3.

332 *Summer season.* Most dives were outside of the sea ice. Dives were
333 significantly deeper (for both shallow and deep dive components) as they moved
334 further away from the sea ice edge in open water during daytime (model 1*a*; Fig. 3a,
335 red arrow; Table S3). Shallow dives were dominant in the distance bin [-101, 3 km)
336 inside the sea ice (Fig. 3a). When penguins travelled further away from the sea ice
337 edge, we observed an increase in the number of deep dives and a decrease in the
338 shallow dives (Fig. 3a). Twilight dives during summer were almost exclusively
339 shallow dives; the two components of the model were superimposed, as there were no
340 deep dives (Fig. 3b), indicating that the diving depths were mostly constant across the
341 different distances from the sea ice edge.

342 *Autumn season.* During the daytime, penguins dived both to shallow (~20 m)
343 and deep (~ 80-100 m) depths when they were inside sea ice far away from the edge
344 (i.e. [-244, -135 km) and [-135, -92 km), Fig. 3c, red arrows 1 and 2). The distribution
345 of each dive components (i.e. shallow and deep) were mainly constant across the
346 different bin of distances but penguins dived to slightly deeper/shallower depths in the
347 last bin respectively (i.e. [269, 496 km], model 2*a*, Fig. 3c, Table S3). These slight
348 changes in the diving depths were statistically significant (Table S3). The density
349 function highlights the presence of deeper dives (below ~150 m) at the sea ice edge
350 (bin [-29, 43 km); Fig. 3c, red arrows 3). At twilight, penguins performed both
351 shallow and deep dives within the sea ice (Fig. 3d, red arrows 4 and 5); however,
352 compared to day dives, shallow dives were dominant outside of the sea ice (Fig. 3d).
353 There was no relationship between distance from the sea ice edge and the depth of
354 shallow dives. In contrast, the deep dives got significantly shallower as distance from
355 the sea ice edge increased from inside to outside sea ice (Fig. 3d, red arrow 6, model
356 5*a*; Table S3).

357 *Winter season.* For daytime dives, both components remained almost constant
358 across the different distances from the sea ice edge; only a slight significant decrease
359 (i.e. shallower depths) in both components was observed (model 3*a*; Fig. 3e; Table
360 S3). Interestingly, the deep dive component was dominant across the different
361 distances from the sea ice edge (Fig. 3e). Penguins also performed deep dives at
362 twilight except at the sea ice edge where shallow dives were dominant (Fig. 3f, red

363 arrow). Both shallow and deep dive components remained mostly constant across the
364 different distance from the sea ice edge (model 6a; Fig. 3f; Table S3).

365 *Summary.* In the summer when chicks departed the colony, they started diving
366 near the sea ice and then travelled north into open water. During daylight a transition
367 from shallow to deep dives was recorded with increasing distance from the sea ice
368 edge. However, twilight dives were exclusively shallow and mainly outside sea ice. In
369 autumn during daylight, when juveniles came back to the sea ice zone after their
370 northern trip, there was a dominance of shallow dives on the slope region
371 (Supplement, Fig. S5). The presence of deep dives during daylight outside the slope
372 and shelf regions far inside sea ice (i.e. ~ -244 to -92 km), indicates a switch in
373 penguin diving behavior through the autumn towards the winter. In autumn during
374 twilight, deep dives only occurred inside sea ice. In winter, deep dives (~120 m) were
375 dominant, and change in diving depths was only observed in the slope region. No
376 clear effect of the distance from the sea ice edge was observed for the winter season
377 during daylight and twilight. However, we observed an effect of the distance from the
378 sea ice edge during the autumn season, principally for twilight dives. Finally,
379 although there were differences between individuals in the details of these
380 relationships, the overall pattern was consistent among individuals (see Supplement
381 with Table S3, Fig. S6).

382

383 ***Change in the diving behavior relative to oceanographic conditions***

384 From January to March (summer), all the penguins travelled north,
385 encountering water masses with relatively warm temperatures sometimes above 3 °C.
386 In April the penguins returned to the sea ice zone. In the sea ice zone during the
387 autumn and winter, the water column started to be homogeneous from the surface to
388 the mixed layer depth at ~ 100 m, with temperatures lower than 0.5 °C, suggesting the
389 penguins were foraging in Antarctic Surface Water (AASW) or Winter Water (WW;
390 Fig. 4a). When penguins dived below the mixed layer depth, temperatures
391 encountered were above 0.5°C likely representing the relatively warm modified
392 Circumpolar Deep Water (mCDW; Fig. 4a; see Labrousse et al., 2018). When birds
393 returned within the sea ice region, they mainly dived closer to the beginning of the
394 shelf break (i.e. upper part of the slope region) in April/May, while from June through

395 October they dived closer to the limit between the continental slope and the abyssal
396 plain (i.e. lower part of the slope region) (Fig. 4).

397 The mixed layer depth profile was shallow from January to March (summer),
398 starting to deepen at the end of March/beginning of April during the autumn season
399 and remained quasi-constant in winter from May to November (Fig. 4a). The time
400 spent at-depth reported on each PDT profile was qualitatively and quantitatively
401 longer around the mixed layer depth, especially during the autumn and winter seasons
402 (Fig. 4b and 5).

403

404 **Discussion**

405 There were two distinct phases during the first year at-sea for juvenile
406 emperor penguins, as reported in previous studies (Wienecke et al., 2010; Thiebot et
407 al., 2013). Juveniles first dispersed northward over large distances outside the sea ice
408 ecosystem before turning back to the sea ice in April/May, where they remained
409 through the winter. Our study demonstrates the close association of the juveniles with
410 sea ice during the second part of their first trip at-sea. Contrary to our expectation,
411 juvenile emperor penguins did not exploit any coastal polynya; they remained in high
412 sea ice covered areas in space and time within 100 - 200 km from the sea ice edge.
413 We found that within sea ice, juvenile emperors dived both at shallow and deep
414 depths during daylight, with changes in depth across seasons. Such a seasonal switch
415 from shallow to deep dive dominance towards the winter has been poorly documented
416 for adults and juveniles. In addition, we show for the first time that juveniles dived to
417 the limit of the mixed layer depth, i.e. right to the thermocline, especially in winter.
418 To our knowledge, the use of the thermocline below the mixed layer by adults is still
419 an open question. To cope with the patchiness and heterogeneity of marine resources,
420 juveniles presumably learn along their trip to rely on specific environmental features
421 in which prey availability might be predictable (Weimerskirch, 2007). The strong
422 association between the thermocline and emperor penguin juvenile foraging behavior
423 emphasizes the role of this critical temperature gradient for aggregating prey during
424 the autumn and winter seasons (see Charrassin & Bost, 2001). Finally, these results
425 raise questions about the ontogeny of the juvenile foraging behavior. Different
426 habitats were used by the juveniles (open ocean versus sea ice) and these habitats
427 were associated with different diving behaviours. However, it is still unclear if and

428 how these changes were related to: (i) intrinsic factors such as the maturation of the
429 juveniles' physiology (Ponganis et al., 1999), experience and foraging skills (Orgeret
430 et al., 2016; Grecian et al., 2018); and to (ii) extrinsic factors such as changes in prey
431 distribution (associated with the seasonality and/or habitat differences; Charrassin et
432 al., 2001) and diet switch (Kirkwood & Robertson, 1997a), intra- and inter-specific
433 competition (Burns and Kooyman, 2001) and predation (reviewed by Ainley &
434 Ballard, 2012). Disentangling these factors is complex and would require further
435 studies with time series of physiological measurements (such as body temperature,
436 Enstipp et al. 2017), better proxies of foraging events (such as satellite relayed
437 accelerometry data, Cox et al., 2017), and information about prey distribution and
438 availability (prey field modelling; Courbin et al., 2018).

439

440 ***Travelling, diving and foraging beneath the sea ice***

441 Our study contrasts with previous studies that hypothesised that the sea ice
442 habitat is probably avoided by penguins during winter due to complete ice cover and
443 limited daylight at that time, hence restricting the foraging ability (Zimmer et al.,
444 2008; Wienecke et al., 2010). Juvenile emperor penguins spent $49 \pm 14\%$ of their
445 total recorded trip time inside sea ice and dived in high sea ice concentration areas,
446 despite being unexperienced in these environments. Thus, they are able to feed and
447 survive in heterogeneous habitats ranging from lower latitudes (i.e., when they
448 initially dispersed northward) to high latitudes with high sea ice concentration areas.
449 This flexibility in foraging habitat use and diving behavior may be important for the
450 species' persistence over the long term when facing variable and changing sea ice
451 conditions.

452 *Summer and early autumn shallow dives.* In summer and early autumn
453 juvenile emperor penguins were within the sea ice edge when they dispersed
454 northward from the colony to open water or when they came back to the sea ice
455 respectively (Fig. 3). In these seasons, most shallow dives are observed within sea ice
456 during daylight and twilight. The ice supports abundant (under-ice) food resources
457 because it provides both a substrate for the growth of ice algae and a refuge for
458 herbivorous zooplankton such as juvenile krill and other crustaceans (Marschall,
459 1988; Flores et al., 2011, 2012; David et al., 2016). In summer, krill postlarvae are
460 associated with the melting sea ice while in autumn they are more abundant outside

461 sea ice than inside. In winter they are found at depth during the day and beneath sea
462 ice at night (Flores et al., 2012). The dominance of shallow dives observed during
463 summer and early autumn seasons may be associated with a diet based on Antarctic
464 krill during daylight or on mesopelagic Antarctic lanternfish *Electrona antarctica*
465 from their vertical migration at twilight. This diet was also reported for adults during
466 their pre-moult trips for the colonies of Pointe Géologie, Taylor and Auster, and the
467 Ross Sea (Kooijman et al., 2004; Wienecke et al., 2004, Zimmer et al., 2007). These
468 shallow dives were numerous within the marginal ice zone. The marginal ice zone is
469 characterized by melting sea ice and breakdown releasing a high quantity of food
470 resources (i.e. ice algae) under a strong influence of wind action and ocean wave-ice
471 interaction processes (reviewed by Massom and Stammerjohn, 2010). Thus, juvenile
472 emperor penguins may feed within the marginal ice zone, benefiting from this
473 enhanced biological activity with concentration of krill and fishes throughout the year
474 (Lancraft et al., 1991; Bost et al., 2004).

475 *The autumn-winter transition, deep dives beneath sea ice.* A switch towards
476 dominant deep dives was observed during both daylight and twilight times in the
477 winter. In autumn at twilight, sea ice had a strong effect on the diving depths;
478 juveniles dived to deep depths far inside sea ice and then switched to shallow depths
479 outside sea ice. Hence, we hypothesize that the switch to primarily deep dives in the
480 autumn and winter within sea ice occurred because of (i) a seasonal change in the krill
481 distribution from surface to deep waters during daylight; and/or (ii) the presence of
482 macrozooplankton at depth during twilight due to a reduced/absent nycthemeral
483 migration in limited light. Wienecke and Robertson (1997) and Zimmer et al. (2008)
484 found similar diving behavior in adult emperor penguins during winter. For example,
485 deep diving in winter was correlated with higher prey densities likely being
486 predominantly Antarctic krill, distributed at-depth in winter during daylight. Thiebot
487 et al. (2013) also reported this behavior for juveniles spending much more time
488 deeper than 50 m, especially at depths greater than 100 m, with dives reaching 200–
489 250 m during winter. Goetz et al. (2018) also suggested that a change in diving depths
490 for adult non-breeders might be associated with a change in diet from krill at shallow
491 depths to squid and fish at deeper depths. Broadly, a seasonal shift with deeper dives
492 in winter was also observed in other predator species, such as such as basking
493 *Cetorhinus maximus* and porbeagle *Lamna nasus* sharks (Francis et al., 2015; Braun

494 et al., 2018) or king penguins (Charrassin et al., 2002), likely as a consequence of
495 shifts in prey distribution.

496

497 ***The mixed layer depth: a cue to prey distribution for juveniles?***

498 Interestingly, juvenile emperor penguins' time spent at-depth was strongly
499 associated with the mixed layer depth in autumn and winter. In this study, the mixed
500 layer base likely coincides with the boundary between cold surface waters (likely
501 AASW or WW) and warmer waters (likely CDW-mCDW; i.e. Fig. 4a). Mesopelagic
502 fauna such as zooplankton, finfish and squid may aggregate near the thermocline
503 (Van de Putte et al., 2010; Pelletier et al., 2012; Moteki et al., 2017) due to increased
504 nutrients from the nutrient-rich CDW (Nicol et al., 2005) concentrating at the
505 boundary layer between the two water masses. Moreover, the thermocline may act as
506 a physical barrier, preventing prey from dispersing, or slowing down the escape speed
507 of the ectothermic prey by the sudden change in temperature (Franck et al., 1992;
508 Russell et al., 1999), making them easier to catch by penguins (Charrassin & Bost
509 2001,). A similar association with thermoclines was previously reported for king
510 penguins in sub-Antarctic regions (Bost et al., 2009).

511 We therefore posit that the association between the juvenile emperor penguins
512 and the mixed layer base in winter may be linked with the distribution of their prey.
513 The myctophid fish, *E. antarctica* is likely the dominant prey available to penguins in
514 the upper 200 m of the water column (Lancraft et al. 1991) along with squids in the
515 autumn and winter (Ainley et al. 1991). Indeed, in high latitude Antarctic pelagic
516 waters, about 24–70% of the biomass of the myctophid *E. antarctica* from 0–1000 m
517 depth, was found to occur in the upper 200 m at night (Lancraft et al., 1989; Donnelly
518 et al., 2006). Hunt et al. (2011) indicated a seasonal migration and/or increased
519 residence time in the epipelagic during the winter months of large macrozooplankton
520 such as *E. antarctica*.

521 The boundary of the winter mixed layer constitutes predictable and reliable
522 foraging areas in time and space. In terms of thermoregulation, it may confer an
523 advantage to spend time foraging in winter at the interface of warm, mesopelagic
524 waters. Thus the combination of favorable energetics associated with warmer
525 overwintering habitat and food availability (Braun et al., 2018) likely explains the
526 amount of time juveniles spent near the mixed layer depth.

527

528 ***The ecological relevance of the Antarctic slope region***

529 Shallow dives were mainly on the slope region in autumn, and in winter,
530 changes in diving depths (through the season) were only occurring within the slope
531 region. The continental slope region and the Antarctic slope current form a cold,
532 dynamic and topographically constrained structure, which constitutes a deep ocean
533 source region for nutrients (Jacobs, 1991). This may result in higher productivity and
534 enhanced and concentrated resources with a role in the distribution of sea ice,
535 chlorophyll, krill and juvenile emperor penguins (Nicol et al., 2000a, 2000b).
536 Wienecke et al. (2010) found similar results with juvenile emperor penguins from the
537 Auster and Tayler glacier drifting passively with the westward pack ice motion within
538 the Antarctic slope current. Adult emperor penguins were also found foraging over
539 the continental slope in winter and spring (Kirkwood & Robertson, 1997a, b). The
540 Antarctic slope front also separates the oceanic mesopelagic fish communities from
541 the neritic notothenioid communities (Moteki et al., 2011). Hence, mesopelagic prey
542 may be one of the dominant prey of juveniles while the notothenioid Antarctic
543 silverfish is the major prey item of the adults during winter (e.g. Wienecke &
544 Robertson 1997).

545

546 ***Future directions***

547 The importance of the oceanographic features during the first trip at-sea of
548 different bird and marine mammal species is still poorly documented (reviewed by
549 Hazen et al., 2012; e.g. Thiebot et al., 2013; Tosh et al., 2015; Grecian et al., 2018).
550 We still lack a full understanding of the role of learning and sensory capacities
551 involved to use environmental cues such as temperature gradients to find food (Hays
552 2016). Foraging strategies are likely learned during individual exploratory behavior in
553 early life (Grecian et al., 2018; Votier et al., 2017). This exploratory behaviour could
554 also be under genetic control; juveniles often follow a directive dispersion just after
555 their departure from the colony, despite their complete lack of knowledge of their new
556 environment (i.e. our study; Kooyman et al., 1996; Wienecke et al., 2010; Thiebot et
557 al., 2013; de Grissac et al., 2016). Another possible explanation of such dispersive
558 behavior is that juveniles avoid intra-specific competition and are relayed in other
559 habitats because of their lower foraging efficiency compared to the adults (Thiebot et

560 al., 2013).

561 We found that juveniles were able to perform deep dives within a few weeks
562 of fledging (see also Thiebot et al., 2013). This rapid initial improvement in dive
563 capacity suggests that the subtle changes in diving behavior in autumn and winter
564 reflect changes in prey availability and distribution. A recent study on juvenile king
565 penguins also showed this rapid change in the diving behaviour after fledging
566 (Enstipp et al., 2017). The authors concluded that juvenile king penguins should be
567 more constrained by their insulation performances (their fat deposit at the periphery
568 layer) and thus by their ability to successfully forage enough, rather than by the
569 maturation process of their diving physiology (Enstipp et al., 2017).

570 The juvenile period of the life cycle can represent an important demographic
571 pathway by which climate variability can impact population dynamics, particularly
572 because juveniles are often more sensitive to environmental factors than adults
573 (Jenouvrier et al., 2018). Nevertheless, this critical life cycle transition remains poorly
574 understood for many seabird species. An improved understanding of the factors that
575 influence juvenile emperor penguin survival is therefore a research priority (Hazen et
576 al., 2012, Abadi et al., 2017). In our study, 9 tags stopped before the expected tag's
577 battery life, due to either early juvenile mortality or tag failure (Kooiman et al.,
578 2015). Further studies are needed to better understand and describe the changes in
579 behaviour just before the tags stop, potentially leading to deeper insights into the
580 causes of these mortality events (Orgeret et al., 2016). The use of transmitters that
581 provide data on time and location of death (Horning and Mellish, 2009) will make it
582 possible to link precise oceanographic and behavioral parameters to juvenile survival.
583 It would then be possible to separate death by starvation (Daunt et al., 2007) from
584 predation (Ainley & Ballard, 2012), and to quantify their relative importance.

585 Comparing the foraging behaviors of emperor penguins during their first year
586 at-sea across several years and several sites (e.g. Ross Sea, Weddell Sea) would be
587 necessary to draw general conclusions on the effects of sea ice and oceanographic
588 conditions on early life foraging behaviours and survival, hence their impact on
589 population dynamics. We believe that our study revealed some robust conclusions as
590 the seasonal shift in diving depths within sea ice was consistent among individuals.
591 While we have accounted for individual variation in the relationship between dive
592 depth and distance from the sea ice edge through fixed individual effects, an approach

593 based on random effects is also possible. Such an approach would need to account for
594 non-normality in the random effects and, in our judgment, the additional
595 model complexity is not justified by a gain in biological understanding.

596

597 **Conclusion**

598 The first trip at-sea is critical for penguins since food has to be acquired at a
599 high rate to ensure that body condition and insulation is good enough to allow
600 survival and increased diving capabilities (Orgeret et al., 2016). Here we found that
601 juvenile emperor penguins spent a significant amount of time foraging within sea ice
602 and exhibit seasonal differences in diving behavior, likely in response to changes in
603 prey distribution. For the first time for this species, we reveal that juvenile diving
604 activity was strongly associated with the thermocline, likely indicating a reliable
605 signal of resource availability at this depth. To better understand and predict emperor
606 penguin population changes, many questions remains to be answered. For example,
607 how different foraging tactics (i.e. the different habitats exploited and the change in
608 the diving behavior associated with) or how the physiology maturation
609 (thermoregulation; Enstipp et al., 2017) may impact marine predator juvenile survival
610 early in life.

611

612 **Acknowledgements**

613 This study was supported financially and logistically by the French Polar Institute
614 (Institut Paul Emile Victor, IPEV) research project IPEV #394 (PI C.A. Bost) and
615 #109 (PI H. Weimerskirch), the Program EARLYLIFE funded by a European
616 Research Council Advanced Grant under the European Community's Seven
617 Framework (grant agreement FP7/2007–2013/ERC-2012-ADG_20120314 to H.W.),
618 and the postdoctoral scholar award from Woods Hole Oceanographic Institution. SJ
619 acknowledge support from NSF award number #1643901 for the PICA project.
620 Special thanks go to M. Sumner for the R functions and packages developed and used
621 in this study, to J. -B. Thiebot for his previous work on juveniles, to C. Sauser, P.
622 Blévin and D. Filippi for help in the deployment of SPLASH tags, to D. Iles for the
623 proofreading and all colleagues and volunteers involved in the research on emperor
624 penguins in Terre Adélie. All animals in this study were treated in accordance with
625 the IPEV ethical and Polar Environment Committees guidelines.

626 **References**

627 Abadi F, Barbraud C, Gimenez O (2017) Integrated population modeling reveals the impact of climate
628 on the survival of juvenile emperor penguins. *Global Change Biology* 23:1353–1359

629 Ainley DG, Ballard G (2012) Non-consumptive factors affecting foraging patterns in Antarctic
630 penguins: a review and synthesis. *Polar Biology* 35:1–13

631 Ainley DG, Fraser WR, Smith WO, Hopkins TL, Torres JJ (1991) The structure of upper level pelagic
632 food webs in the Antarctic: effect of phytoplankton distribution. *Journal of Marine Systems*
633 2:111–122

634 Ardyna M, Claustre H, Sallée J-B, D’Ovidio F, Gentili B, Dijken G van, D’Ortenzio F, Arrigo KR
635 (2017) Delineating environmental control of phytoplankton biomass and phenology in the
636 Southern Ocean: Phytoplankton Dynamics in the SO. *Geophysical Research Letters* 44:5016–
637 5024

638 Arrigo KR, Dijken GL van (2003) Phytoplankton dynamics within 37 Antarctic coastal polynya
639 systems. *Journal of Geophysical Research* 108

640 Azzalini A (1996) *Statistical Inference: Based on the likelihood*, Chapman & Hall. London

641 Bannasch, R., Wilson, R.P., Culik, B., n.d. Hydrodynamic aspects of design and attachment of a back-
642 mounted device in penguins 15.

643 Barbraud C, Gavrilo M, Mizin Y, Weimerskirch H (2011) Comparison of emperor penguin declines
644 between Pointe Géologie and Haswell Island over the past 50 years. *Antarctic Science*
645 23:461–468

646 Barbraud C, Weimerskirch H (2001) Emperor penguins and climate change. *Nature* 411:183–186

647 Bost C-A, Charrassin J-B, Clerquin Y, Ropert-Coudert Y, Le Maho Y, others (2004) Exploitation of
648 distant marginal ice zones by king penguins during winter. *Marine Ecology Progress Series*
649 283:293–297

650 Bost CA, Cotté C, Bailleul F, Cherel Y, Charrassin JB, Guinet C, Ainley DG, Weimerskirch H (2009)
651 The importance of oceanographic fronts to marine birds and mammals of the southern oceans.
652 *Journal of Marine Systems* 78:363–376

653 Boyer Montégut C de (2004) Mixed layer depth over the global ocean: An examination of profile data
654 and a profile-based climatology. *Journal of Geophysical Research* 109

655 Bracegirdle TJ, Connolley WM, Turner J (2008) Antarctic climate change over the twenty first
656 century. *Journal of Geophysical Research* 113

657 Braun CD, Skomal GB, Thorrold SR (2018) Integrating Archival Tag Data and a High-Resolution
658 Oceanographic Model to Estimate Basking Shark (*Cetorhinus maximus*) Movements in the
659 Western Atlantic. *Frontiers in Marine Science* 5

660 Brierley AN, Thomas DN (2002) Ecology of Southern Ocean pack ice. *Advances in Marine Biology*
661 43:171–276

662 Burns JM (1999) The development of diving behavior in juvenile Weddell seals: pushing physiological
663 limits in order to survive. 77:11

664 Burns JM, Kooyman GL (2001) Habitat use by Weddell seals and emperor penguins foraging in the

665 Ross Sea, Antarctica. *American Zoologist* 41:90–98

666 Chapman EW, Ribic CA, Fraser WR (2004) The distribution of seabirds and pinnipeds in Marguerite
667 Bay and their relationship to physical features during austral winter 2001. *Deep Sea Research*
668 Part II: Topical Studies in Oceanography 51:2261–2278

669 Charrassin J-B, Bost C-A (2001) Utilisation of the oceanic habitat by king penguins over the annual
670 cycle. *Marine Ecology Progress Series* 221:285–298

671 Charrassin J-B, Maho YL, Bost C-A (2002) Seasonal changes in the diving parameters of king
672 penguins (*Aptenodytes patagonicus*). *Marine Biology* 141:581–589

673 Courbin N, Besnard A, Péron C, Sariaux C, Fort J, Perret S, Tornos J, Grémillet D (2018) Short-term
674 prey field lability constrains individual specialisation in resource selection and foraging site
675 fidelity in a marine predator. *Ecology Letters* 21:1043–1054

676 Cox SL, Orgeret F, Gesta M, Rodde C, Heizer I, Weimerskirch H, Guinet C (2018) Processing of
677 acceleration and dive data on-board satellite relay tags to investigate diving and foraging
678 behaviour in free-ranging marine predators (RB O’Hara, Ed.). *Methods in Ecology and*
679 *Evolution* 9:64–77

680 Daunt F, Afanasyev V, Adam A, Croxall JP, Wanless S (2007) From cradle to early grave: juvenile
681 mortality in European shags *Phalacrocorax aristotelis* results from inadequate development of
682 foraging proficiency. *Biology Letters* 3:371–374

683 David C, Schaafsma FL, Franeker JA van, Lange B, Brandt A, Flores H (2016) Community structure
684 of under-ice fauna in relation to winter sea-ice habitat properties from the Weddell Sea. *Polar*
685 *Biology*

686 Donnelly J, Sutton TT, Torres JJ (2006) Distribution and abundance of micronekton and
687 macrozooplankton in the NW Weddell Sea: relation to a spring ice-edge bloom. *Polar Biology*
688 29:280–293

689 Eicken H (1992) The role of sea ice in structuring Antarctic ecosystems. *Polar Biology* 12:3–13

690 Enstipp MR, Bost C-A, Le Bohec C, Bost C, Le Maho Y, Weimerskirch H, Handrich Y (2017)
691 Apparent changes in body insulation of juvenile king penguins suggest an energetic challenge
692 during their early life at sea. *The Journal of Experimental Biology* 220:2666–2678

693 Flores H, Franeker JA van, Cisewski B, Leach H, Van de Putte AP, Meesters E (H. WG., Bathmann
694 U, Wolff WJ (2011) Macrofauna under sea ice and in the open surface layer of the Lazarev
695 Sea, Southern Ocean. *Deep Sea Research Part II: Topical Studies in Oceanography* 58:1948–
696 1961

697 Flores H, Franeker JA van, Siegel V, Haraldsson M, Strass V, Meesters EH, Bathmann U, Wolff WJ
698 (2012) The association of Antarctic krill *Euphausia superba* with the under-ice habitat (S
699 Thrush, Ed.). *PLoS ONE* 7:e31775

700 Francis MP, Holdsworth JC, Block BA (2015) Life in the open ocean: seasonal migration and diel
701 diving behaviour of Southern Hemisphere porbeagle sharks (*Lamna nasus*). *Marine Biology*
702 162:2305–2323

703 Franks P (1992) Sink or swim, accumulation of biomass at fronts. *Marine Ecology Progress Series*
704 82:1–12

705 Freitas C, Lydersen C, Fedak MA, Kovacs KM (2008) A simple new algorithm to filter marine
706 mammal Argos locations. *Marine Mammal Science* 24:315–325

707 Friedlaender AS, Halpin PN, Qian SS, Lawson GL, Wiebe PH, Thiele D, Read AJ (2006) Whale
708 distribution in relation to prey abundance and oceanographic processes in shelf waters of the
709 Western Antarctic Peninsula.

710 Goetz K, McDonald B, Kooyman G (2018) Habitat preference and dive behavior of non-breeding
711 emperor penguins in the eastern Ross Sea, Antarctica. *Marine Ecology Progress Series*
712 593:155–171

713 Grecian WJ, Lane JV, Michelot T, Wade HM, Hamer KC (2018) Understanding the ontogeny of
714 foraging behaviour: insights from combining marine predator bio-logging with satellite-
715 derived oceanography in hidden Markov models. *Journal of The Royal Society Interface*
716 15:20180084

717 Grissac S de, Bartumeus F, Cox SL, Weimerskirch H (2017) Early-life foraging: Behavioral responses
718 of newly fledged albatrosses to environmental conditions. *Ecology and Evolution* 7:6766–
719 6778

720 Grissac S de, Börger L, Guitteaud A, Weimerskirch H (2016) Contrasting movement strategies among
721 juvenile albatrosses and petrels. *Scientific Reports* 6

722 Grün B, Leisch F (2007) Fitting finite mixtures of generalized linear regressions in R. *Computational
723 Statistics & Data Analysis* 51:5247–5252

724 Grün B, Leisch F (2008) FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying
725 and Constant Parameters. *Journal of Statistical Software*; Vol 1, Issue 4 (2008)

726 Hays GC, Ferreira LC, Sequeira AMM, Meekan MG, Duarte CM, Bailey H, Bailleul F, Bowen WD,
727 Caley MJ, Costa DP, Eguíluz VM, Fossette S, Friedlaender AS, Gales N, Gleiss AC, Gunn J,
728 Harcourt R, Hazen EL, Heithaus MR, Heupel M, Holland K, Horning M, Jonsen I, Kooyman
729 GL, Lowe CG, Madsen PT, Marsh H, Phillips RA, Righton D, Ropert-Coudert Y, Sato K,
730 Shaffer SA, Simpfendorfer CA, Sims DW, Skomal G, Takahashi A, Trathan PN, Wikelski M,
731 Womble JN, Thums M (2016) Key Questions in Marine Megafauna Movement Ecology.
732 *Trends in Ecology & Evolution* 31:463–475

733 Hastings KK, Testa JW, Rexstad EA (1999) Interannual variation in survival of juvenile Weddell seals
734 (*Leptonychotes weddellii*) from McMurdo Sound, Antarctica: effects of cohort, sex and age.
735 *Journal of Zoology* 248:307–323

736 Hazen E, Maxwell S, Bailey H, Bograd S, Hamann M, Gaspar P, Godley B, Shillinger G (2012)
737 Ontogeny in marine tagging and tracking science: technologies and data gaps. *Marine
738 Ecology Progress Series* 457:221–240

739 Heerah K, Andrews-Goff V, Williams G, Sultan E, Hindell M, Patterson T, Charrassin J-B (2013)
740 Ecology of Weddell seals during winter: Influence of environmental parameters on their
741 foraging behaviour. *Deep Sea Research Part II: Topical Studies in Oceanography* 88–89:23–
742 33

743 Hobbs WR, Massom R, Stammerjohn S, Reid P, Williams G, Meier W (2016) A review of recent

744 changes in Southern Ocean sea ice, their drivers and forcings. *Global and Planetary Change*
745 143:228–250

746 Horning M, Mellish J (2009) Spatially explicit detection of predation on individual pinnipeds from
747 implanted post-mortem satellite data transmitters. *Endangered Species Research* 10:135–143

748 Hunt BPV, Pakhomov EA, Siegel V, Strass V, Cisewski B, Bathmann U (2011) The seasonal cycle of
749 the Lazarev Sea macrozooplankton community and a potential shift to top-down trophic
750 control in winter. *Deep Sea Research Part II: Topical Studies in Oceanography* 58:1662–1676

751 Jacobs SS (1991) On the nature and significance of the Antarctic Slope Front. *Marine Chemistry* 35:9–
752 24

753 Jenouvrier S, Holland M, Stroeve J, Barbraud C, Weimerskirch H, Serreze M, Caswell H (2012)
754 Effects of climate change on an emperor penguin population: analysis of coupled
755 demographic and climate models. *Global Change Biology* 18:2756–2770

756 Jenouvrier S, Garnier J, Patout F, Desvillettes L (2017) Influence of dispersal processes on the global
757 dynamics of Emperor penguin, a species threatened by climate change. *Biological
758 Conservation* 212:63–73

759 Jenouvrier S, Holland M, Stroeve J, Serreze M, Barbraud C, Weimerskirch H, Caswell H (2014)
760 Projected continent-wide declines of the emperor penguin under climate change. *Nature
761 Climate Change* 4:715–718

762 Jenouvrier S, Desprez M, Fay R, Barbraud C, Delord K, Weimerskirch H, Caswell H (2018) Climate
763 change and functional traits impact population dynamics of a long-lived seabird. *Journal of
764 Animal Ecology*. in press

765 Kaufmann RS, Smith Jr KL, Baldwin RJ, Glatts RC, Robison BH, Reisenbichler KR (1995) Effects of
766 seasonal pack ice on the distribution of macrozooplankton and microneuston in the
767 northwestern Weddell Sea. *Marine Biology* 124:387–397

768 Kirkwood R, Robertson G (1997a) Seasonal change in the foraging ecology of emperor penguins on
769 the Mawson Coast, Antarctica. *Marine Ecology Progress Series* 156:205–223

770 Kirkwood R, Robertson G (1997b) The foraging ecology of female emperor penguins in winter.
771 *Ecological Monographs* 67:155–176

772 Kooyman GL, Kooyman TG, Horning M, Kooyman CA (1996) Penguin dispersal after fledging.
773 *Nature* 383:397

774 Kooyman GL, Ponganis PJ (2007) The initial journey of juvenile emperor penguins. *Aquatic
775 Conservation: Marine and Freshwater Ecosystems* 17:S37–S43

776 Kooyman GL, McDonald BI, Goetz KT (2015) Why do satellite transmitters on emperor penguins stop
777 transmitting? *Animal Biotelemetry* 3

778 Kooyman G, Simiff D, Stirling I, Bengtson J (2004) Moult habitat, pre- and post-moult diet and post-
779 moult travel of Ross Sea emperor penguins. *Marine Ecology Progress Series* 267:281–290

780 Labrousse S, Sallée J-B, Fraser AD, Massom RA, Reid P, Sumner M, Guinet C, Harcourt R, McMahon
781 C, Bailleul F, Hindell MA, Charrassin J-B (2017) Under the sea ice: Exploring the
782 relationship between sea ice and the foraging behaviour of southern elephant seals in East
783 Antarctica. *Progress in Oceanography* 156:17–40

784 Labrousse S, Vacquié-Garcia J, Heerah K, Guinet C, Sallée J-B, Authier M, Picard B, Roquet F,
785 Bailleul F, Hindell M, Charrassin J-B (2015) Winter use of sea ice and ocean water mass
786 habitat by southern elephant seals: The length and breadth of the mystery. *Progress in*
787 *Oceanography* 137:52–68

788 Labrousse S, Williams G, Tamura T, Bestley S, Sallée J-B, Fraser AD, Sumner M, Roquet F, Heerah
789 K, Picard B, Guinet C, Harcourt R, McMahon C, Hindell MA, Charrassin J-B (2018) Coastal
790 polynyas: Winter oases for subadult southern elephant seals in East Antarctica. *Scientific*
791 *Reports* 8

792 Lancraft TM, Hopkins TL, Torres JJ, Donnelly J (1991) Oceanic micronektonic/macrozooplanktonic
793 community structure and feeding in ice covered Antarctic waters during the winter
794 (AMERIEZ 1988). *Polar Biology* 11:157–167

795 Lancraft TM, Torres JJ, Hopkins TL (1989) Micronekton and macrozooplankton in the open waters
796 near Antarctic ice edge zones (AMERIEZ 1983 and 1986). *Polar Biology* 9:225–233

797 Lea M (2003) Fine-scale linkages between the diving behaviour of Antarctic fur seals and
798 oceanographic features in the southern Indian Ocean. *ICES Journal of Marine Science*
799 60:990–1002

800 Leisch F (2004) FlexMix: A General Framework for Finite Mixture Models and Latent Class
801 Regression in R. *Journal of Statistical Software*; Vol 1, Issue 8 (2004)

802 Marschall H-P (1988) The overwintering strategy of Antarctic krill under the pack-ice of the Weddell
803 Sea. *Polar Biology* 9:129–135

804 Marshall J, Speer K (2012) Closure of the meridional overturning circulation through Southern Ocean
805 upwelling. *Nature Geoscience* 5:171–180

806 Martinson DG (1990) Evolution of the Southern Ocean winter mixed layer and sea ice: Open ocean
807 deepwater formation and ventilation. *Journal of Geophysical Research: Oceans* 95:11641–
808 11654

809 Massom RA, Stammerjohn SE (2010) Antarctic sea ice change and variability – Physical and
810 ecological implications. *Polar Science* 4:149–186

811 Meyer B, Freier U, Grimm V, Groeneveld J, Hunt BPV, Kerwath S, King R, Klaas C, Pakhomov E,
812 Meiners KM, Melbourne-Thomas J, Murphy EJ, Thorpe SE, Stammerjohn S, Wolf-Gladrow
813 D, Auerswald L, Götz A, Halbach L, Jarman S, Kawaguchi S, Krumpen T, Nehrke G, Ricker
814 R, Sumner M, Teschke M, Trebilco R, Yilmaz NI (2017) The winter pack-ice zone provides a
815 sheltered but food-poor habitat for larval Antarctic krill. *Nature Ecology & Evolution* 1:1853–
816 1861

817 Moteki M, Fujii K, Amakasu K, Shimada K, Tanimura A, Odate T (2017) Distributions of larval and
818 juvenile/adult stages of the Antarctic myctophid fish, *Electrona antarctica*, off Wilkes Land in
819 East Antarctica. *Polar Science* 12:99–108

820 Moteki M, Koubbi P, Pruvost P, Tavernier E, Hulley P-A (2011) Spatial distribution of pelagic fish off
821 Adélie and George V Land, East Antarctica in the austral summer 2008. *Polar Science* 5:211–
822 224

823 Musick JA, Limpus CJ (1997) Habitat utilization and migration in juvenile sea turtles. In: Lutz P,

824 Musick JA (eds) *Biology of sea turtles*. CRC Press, Boca Raton, FL, p137–163.

825 Nicol S, Pauly T, Bindoff N., Strutton P. (2000) “BROKE” a biological/oceanographic survey off the
826 coast of East Antarctica (80–150°E) carried out in January–March 1996. *Deep Sea Research*
827 Part II: Topical Studies in Oceanography 47:2281–2297

828 Nicol S, Pauly T, Bindoff NL, Wright S (2000) Ocean circulation off east Antarctica affects ecosystem
829 structure and sea-ice extent. *Science* 260:1617–1623

830 Nicol S, Worby AP, Strutton PG, Trull TW (2005) Oceanographic influences on Antarctic ecosystems :
831 Observations and insights from East Antarctica (0° to 150°E). In: Robinson AR, Brink KH
832 (eds) *The Sea ; Ideas and Observations on Progress in the Study of the Seas*. Harvard
833 University Press, Cambridge

834 Orgeret F, Weimerskirch H, Bost C-A (2016) Early diving behaviour in juvenile penguins:
835 improvement or selection processes. *Biology Letters* 12:20160490

836 Orsi AH, Johnson GC, Bullister JL (1999) Circulation, mixing, and production of Antarctic Bottom
837 Water. *Progress in Oceanography* 43:55–109

838 Pelletier L, Kato A, Chiaradia A, Ropert-Coudert Y (2012) Can Thermoclines Be a Cue to Prey
839 Distribution for Marine Top Predators? A Case Study with Little Penguins (H Brownman, Ed.).
840 PLoS ONE 7:e31768

841 Pelichero V, Sallée J-B, Schmidtko S, Roquet F, Charrassin J-B (2017) The ocean mixed layer under
842 Southern Ocean sea-ice: Seasonal cycle and forcing. *Journal of Geophysical Research: Oceans*
843 122:1608–1633

844 Ponganis PJ (1999) Development of diving in emperor penguins. :6

845 Raymond B, Lea M-A, Patterson T, Andrews-Goff V, Sharples R, Charrassin J-B, Cottin M,
846 Emmerson L, Gales N, Gales R, Goldsworthy SD, Harcourt R, Kato A, Kirkwood R, Lawton
847 K, Ropert-Coudert Y, Southwell C, Hoff J van den, Wienecke B, Woehler EJ, Wotherspoon
848 S, Hindell MA (2015) Important marine habitat off east Antarctica revealed by two decades of
849 multi-species predator tracking. *Ecography* 38:121–129

850 Reid K, Croxall JP (2001) Environmental response of upper trophic-level predators reveals a system
851 change in an Antarctic marine ecosystem. *Proceedings of the Royal Society B: Biological*
852 *Sciences* 268:377–384

853 Riotté-Lambert L, Weimerskirch H (2013) Do naive juvenile seabirds forage differently from adults?
854 *Proceedings of the Royal Society B: Biological Sciences* 280:20131434–20131434

855 Russell R, Harrison N, Hunt G (1999) Foraging at a front:hydrography, zooplankton, and avian
856 planktivory in the northern Bering Sea. *Marine Ecology Progress Series* 182:77–93

857 Stammerjohn SE, Smith RC (1997) Opposing Southern Ocean climate patterns as revealed by trends in
858 regional sea ice coverage. *Climatic Change* 37:617–639

859 Stroeve JC, Jenouvrier S, Campbell GG, Barbraud C, Delord K (2016) Mapping and assessing
860 variability in the Antarctic marginal ice zone, pack ice and coastal polynyas in two sea ice
861 algorithms with implications on breeding success of snow petrels. *The Cryosphere* 10:1823–
862 1843

863 Thiebot J-B, Lescroël A, Barbraud C, Bost C-A (2013) Three-dimensional use of marine habitats by

864 juvenile emperor penguins *Aptenodytes forsteri* during post-natal dispersal. *Antarctic Science*
865 25:536–544

866 Tosh CA, Bruyn PJN de, Steyn J, Bornemann H, Hoff J van den, Stewart BS, Plötz J, Bester MN
867 (2015) The importance of seasonal sea surface height anomalies for foraging juvenile southern
868 elephant seals. *Marine Biology* 162:2131–2140

869 Tynan, C., Ainley, D., and Stirling, I. (2010). *Sea ice: a critical habitat for polar marine mammals and*
870 *birds.*

871 Van de Putte AP, Jackson GD, Pakhomov E, Flores H, Volckaert FAM (2010) Distribution of squid
872 and fish in the pelagic zone of the Cosmonaut Sea and Prydz Bay region during the BROKE-
873 West campaign. *Deep Sea Research Part II: Topical Studies in Oceanography* 57:956–967

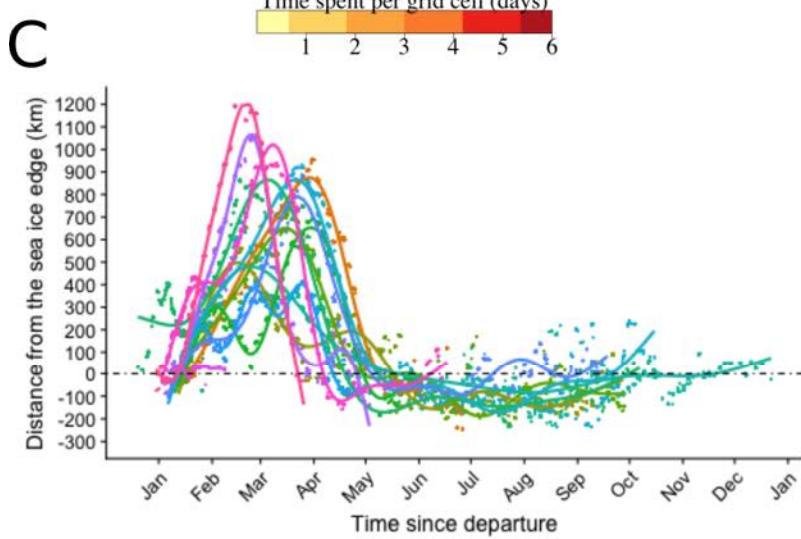
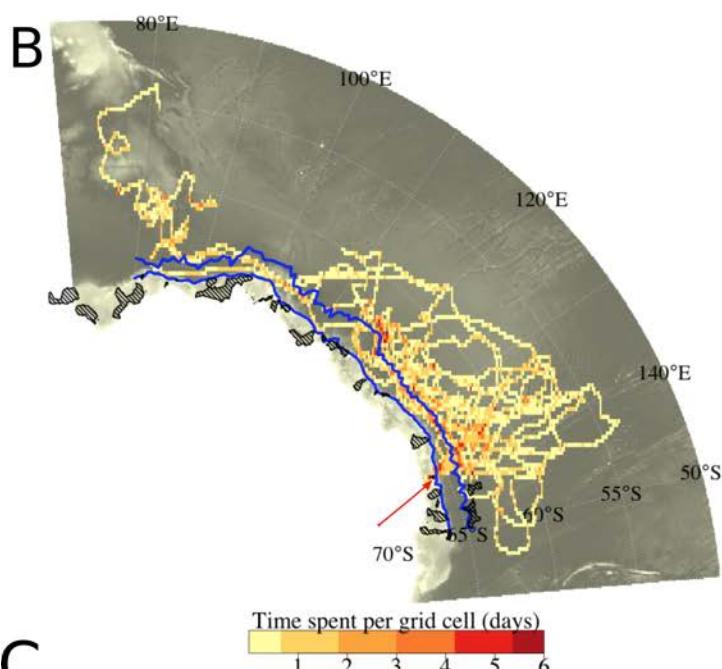
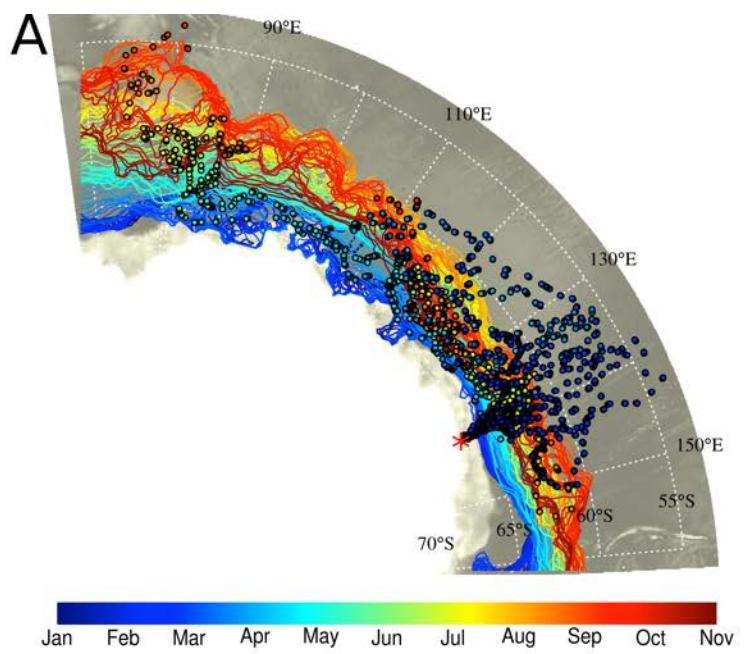
874 Van Franeker JA, Bathmann UV, Mathot S (1997) Carbon fluxes to antarctic top predators. *Deep Sea*
875 *Research Part II: Topical Studies in Oceanography* 44:435–455

876 Votier SC, Fayet AL, Bearhop S, Bodey TW, Clark BL, Grecian J, Guilford T, Hamer KC, Jeglinski
877 JWE, Morgan G, Wakefield E, Patrick SC (2017) Effects of age and reproductive status on
878 individual foraging site fidelity in a long-lived marine predator. *Proceedings of the Royal*
879 *Society B: Biological Sciences* 284:20171068

880 Weimerskirch H (2007) Are seabirds foraging for unpredictable resources? *Deep Sea Research Part II:*
881 *Topical Studies in Oceanography* 54:211–223

882 Wienecke B, Kirkwood R, Robertson G (2004) Pre-moult foraging trips and moult locations of
883 Emperor penguins at the Mawson Coast. *Polar Biology* 27:83–91

884 Wienecke B, Raymond B, Robertson G (2010) Maiden journey of fledgling emperor penguins from the
885 Mawson Coast, East Antarctica. *Marine Ecology Progress Series* 410:269–282

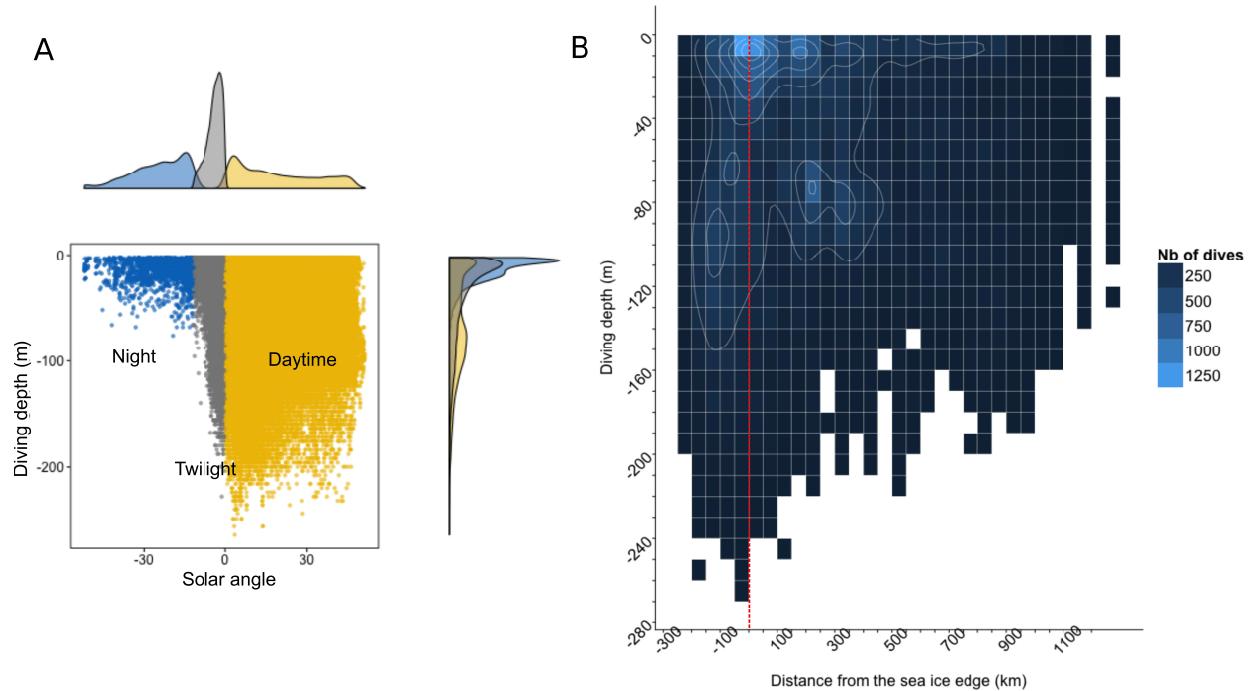



886 Wienecke B, Robertson G (1997) Foraging space of emperor penguins *Aptenodytes forsteri* in
887 Antarctic shelf waters in winter. *Marine Ecology Progress Series* 159:249–263

888 Zimmer I, Wilson R, Beaulieu M, Ancel A, Plötz J (2008) Seeing the light: depth and time restrictions
889 in the foraging capacity of emperor penguins at Pointe Géologie, Antarctica. *Aquatic Biology*
890 3:217–226

891 Zimmer I, Wilson RP, Gilbert C, Beaulieu M, Ancel A, Plötz J (2007) Foraging movements of emperor
892 penguins at Pointe Géologie, Antarctica. *Polar Biology* 31:229–243

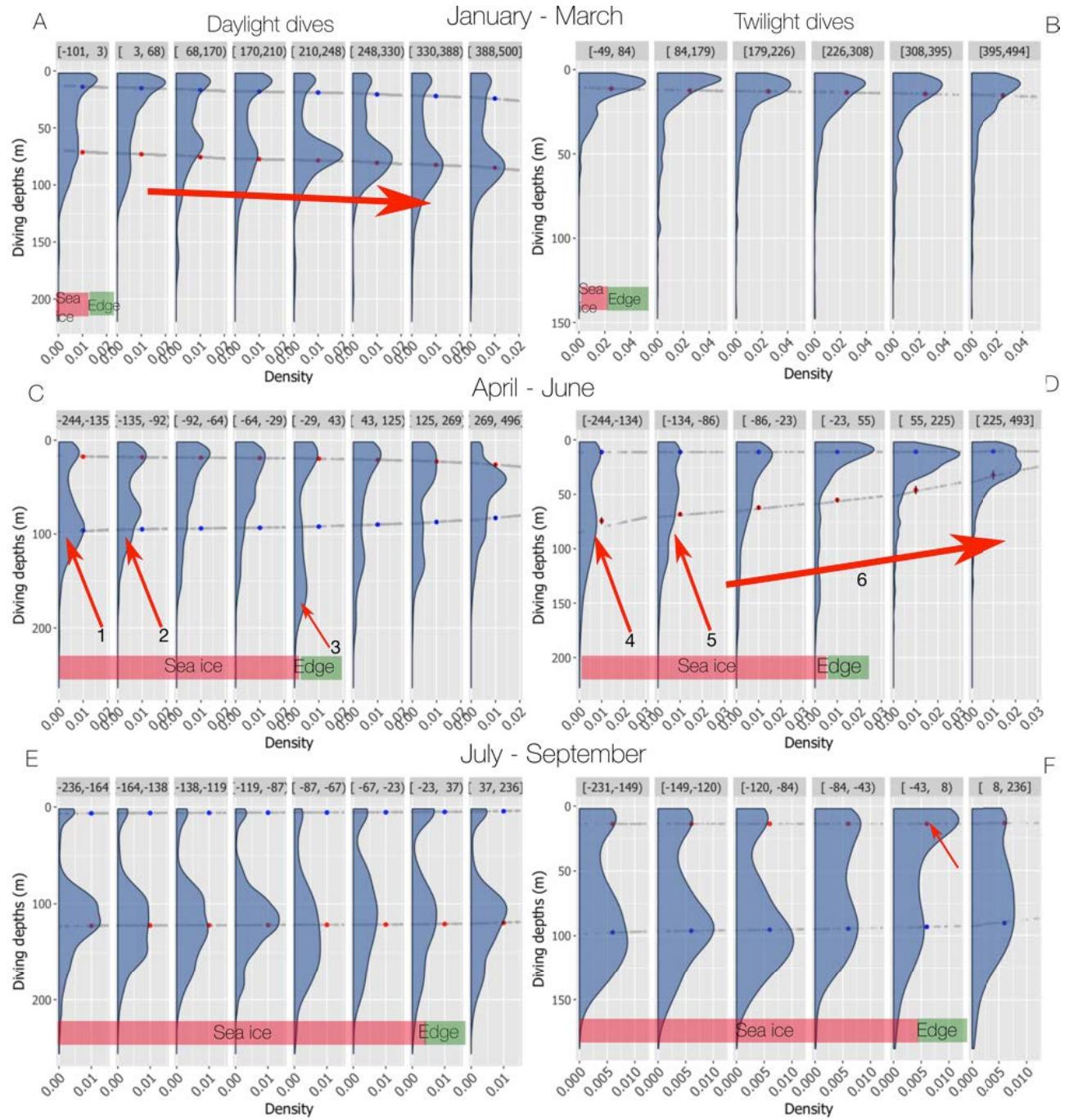
893

894 **Figures**



896 Figure 1. At-sea distribution of the 15 juvenile emperor penguins equipped with
897 SPLASH tags in 2013-2014. Panel **(a)** represents the tracks of the 15 juvenile
898 emperor penguins linked with the seasonality of the sea ice in the East Antarctic
899 region. The colour scale represents the time; the sea ice extent of a given day and
900 associated penguin positions are colored in the same way. To simplify the figure, sea
901 ice extent is only shown for every third day. Sea ice extent was obtained from SSM/IS
902 daily sea ice concentration (resolution 25 km). The bathymetry contours represented
903 are from ETOPO1, a 1 arc-minute global relief model of Earth's surface that
904 integrates land topography and ocean bathymetry;
905 <http://www.ngdc.noaa.gov/mgg/global/global.html>. The red star indicates the colony.
906 Panel **(b)** represents a map of the sum of the time spent (days) across all individual
907 penguins per grid cell (148.2 km × 296 km). The two blue lines delineate the
908 continental slope area. The black-hatched polygons represent the polynya areas
909 computed using annual sea ice production from March to October 2014 as developed
910 in Labrousse et al. (2018). The red arrow shows the small polynya close to the colony
911 used by the penguins. Panel **(c)** represents a time-series of the distance from the sea
912 ice edge for each of the 15 individuals. Color scale corresponds to each individual.
913 Smoothing lines were fitted for each individual observation.

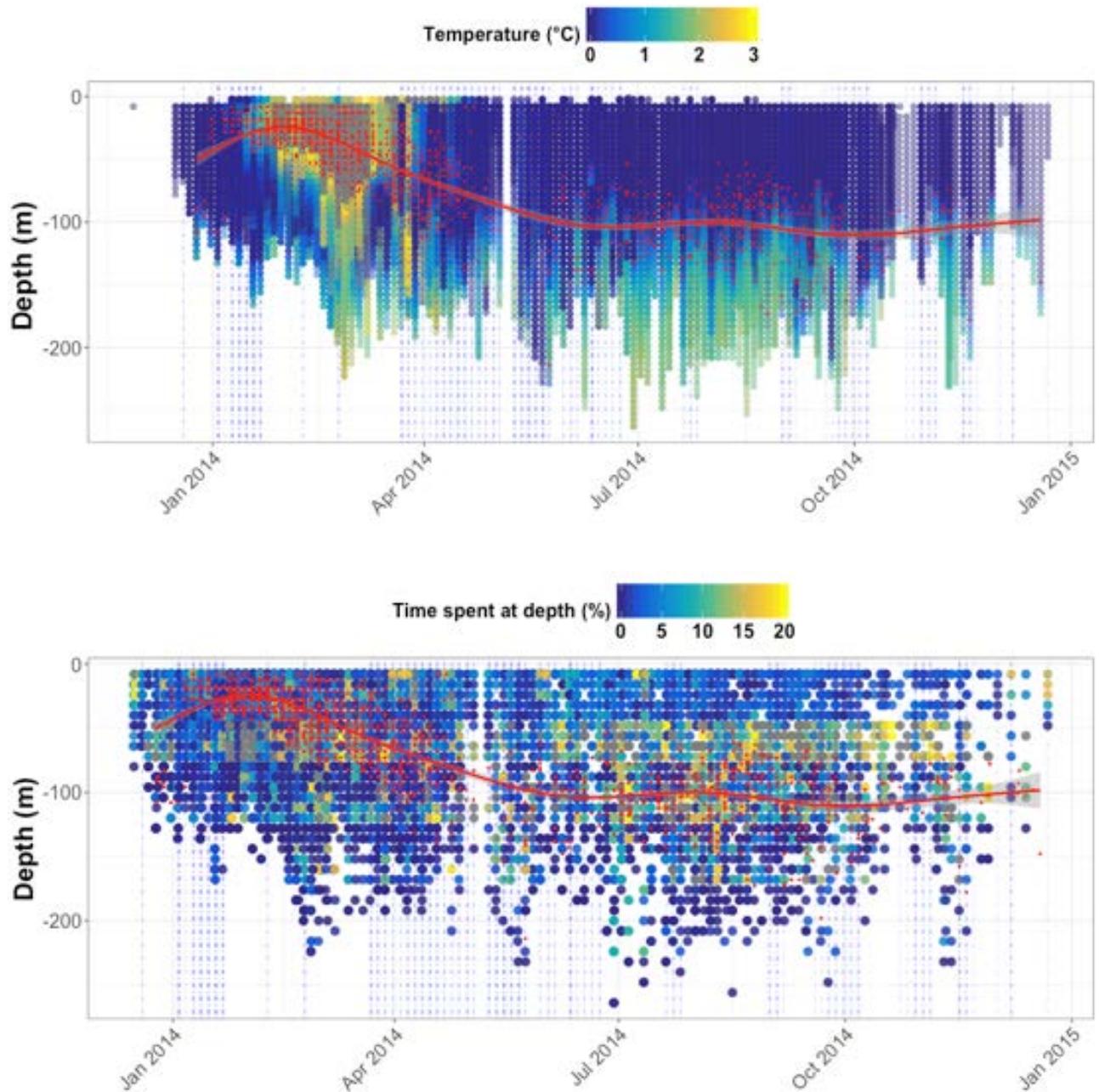
914


915

916

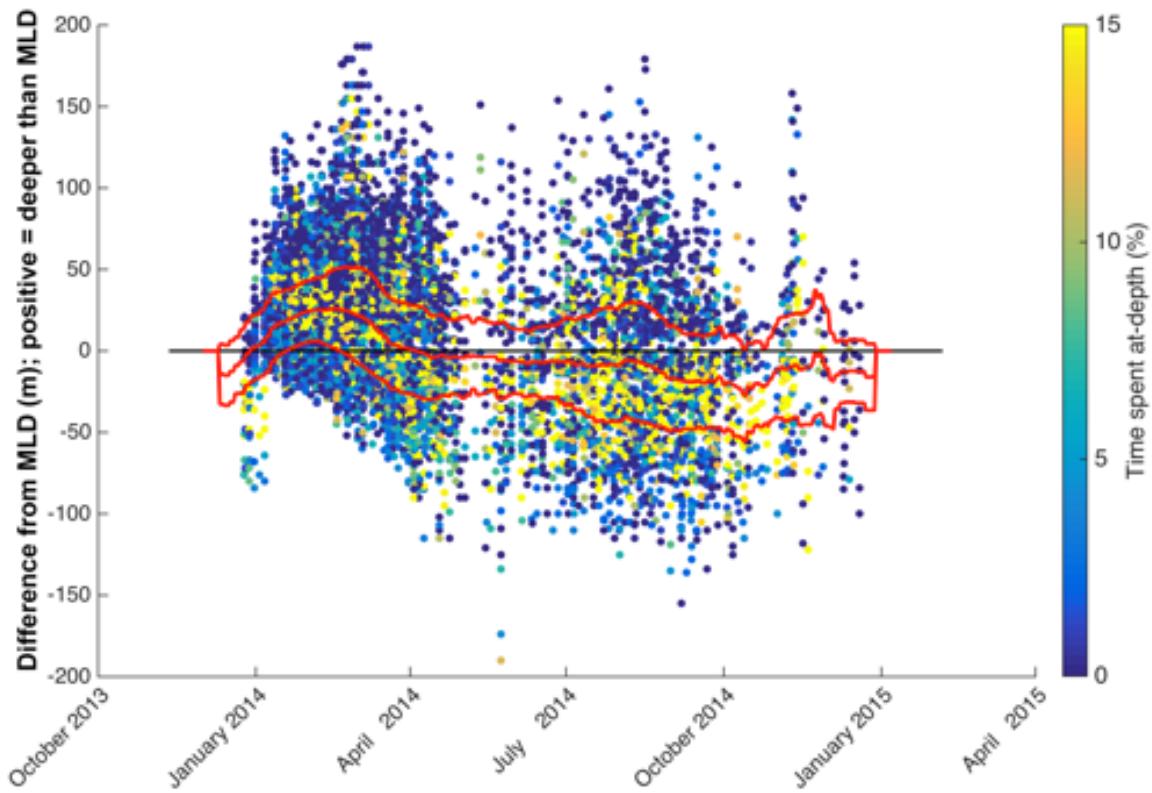
917
918

919 Figure 2. Diving depth distribution across time of the day and distance from the sea
920 ice edge for the 15 juvenile emperor penguins. Panel (a) represents the diving depth
921 (m) versus the solar angle (°). Day dives are coloured in yellow, twilight dives in
922 grey, and night dives in blue. The density distribution of the solar angle and the diving
923 depths for each group is represented on the top and right corner of the panel (a)
924 respectively. Panel (b) represents diving depth (m) relative to the bird's distance from
925 the sea ice edge (km) using a 2D kernel density estimation with a bandwidth of 50 m
926 for the diving depth and 10 km for the distance from the sea ice edge (kde2D function
927 from package MASS, from R Development Core Team). One contour is drawn every
928 250 dives. The red line represents the sea ice edge.



929

930


931 Figure 3. Density plots of the diving depth of juvenile emperor penguins relative to
 932 their distance from the sea ice edge for daytime and twilight respectively across
 933 summer (a, b), autumn (c, d) and winter (e, f). For illustration purposes, the distance
 934 from the sea ice edge was binned in 8 classes for daylight and 6 classes for twilight of
 935 equal number of observation. Fitted values from the mixture model *a* are represented
 936 by grey dots and the mean fitted value per bin of distance from the sea ice edge is
 937 represented in red or blue for each component. Red arrows correspond to comments

938 in the main text of the Results section.
939

940
941 Figure 4. Times series of depth-temperature profiles and depth-time indexes for the 15
942 juvenile emperor penguins. Panel (a) represents the minimum temperature profiles
943 ($n=3538$) collected by the birds along their trip at-sea and recorded as PDT. Panel (b)
944 represents the time-spent at-depth along each PDT profile. For illustration purposes
945 only, we linked the 4 hour-summary PDT profiles with the 4 hour-summary time-at-
946 depth histograms. For each PDT profile, we looked at the corresponding time-at-depth

947 histogram based on the date time and depth; we then attributed the time-spent at-depth
948 to each depth of the PDT profile. Red dots represent the mixed layer depth for each
949 profile. The red curve corresponds to a smooth fitted line of the mixed layer depths
950 (method generalised additive model). The dashed vertical red and blue lines
951 correspond of profiles located on the upper and lower slope region respectively.
952

953
954 Figure 5. Times series of depth-difference between the 15 juvenile emperor penguin's
955 depth and the mixed layer depth. The color scale represents the time spent at-depth.
956 The middle red line corresponds to the average distance from the mixed layer depth
957 (using a moving window of 30 days) weighted by the time spent at-depth (i.e. where
958 the penguins spent most of their time relative to the mixed layer depth). The bottom
959 and top red lines correspond to the standard deviation of this moving weighted
960 average.
961
962