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Abstract—TMR combined with configuration scrubbing is an
effective technique to mitigate against radiation-induced CRAM
upsets on SRAM-based FPGAs. However, its effectiveness is
limited by low-level common mode failures due to the physical
mapping of a design to the FPGA device. This paper describes
how common mode failures are introduced during the implemen-
tation process and introduces an approach for resolving them
through a custom incremental placement tool for Xilinx 7-Series
FPGAs. Multiple designs across multiple generations of devices
are shown to be sensitive to common mode failures. Applying
the incremental placement technique yields an improvement
of 10,721x over an unmitigated design through fault-injection
testing. Radiation testing is then performed to show that the
MTTF of this technique is 91,500 days in GEO orbit, a 367x
improvement over the unmitigated design and a 5x improvement
over baseline TMR.

Keywords-Field Programmable Gate Array (FPGA), Triple
Modular Redundancy (TMR), reliability, common mode failures,
Single Event Effect (SEE), Single Event Upset (SEU), fault-
injection, radiation testing

I. INTRODUCTION

SRAM Field Programmable Gate Arrays (FPGAs) are

increasingly used for high-reliable and safety-critical appli-

cations. SRAM FPGAs, however, are sensitive to ionizing

radiation and can experience single-event upsets (SEUs) within

the internal state of the FPGA, including the configuration

RAM (CRAM) [1]. FPGAs used in high radiation environ-

ments, such as space or high-energy physics environments,

must consider the effects of SEUs on the behavior of the

device. Further, safety critical and high-reliability terrestrial

applications must consider the effects of terrestrial neutrons

by anticipating, and possibly providing mitigation for SEUs

within the FPGA device.

In an FPGA, the CRAM bits control the functionality of

the device, such as the LUT contents or routing information.

An SEU in one of these bits could alter the behavior of the

device. For example, if an SEU occurred within the LUT

contents, it would change the logic function the LUT was

implementing. When the design next uses this bit, the wrong

value will be propagated out of the LUT and could cause an

incorrect computation or circuit failure.

A popular technique to mitigate against the effects of

ionizing radiation is triple modular redundancy (TMR), which

triplicates the circuit and places a majority voter on the

outputs. When implemented on an FPGA, the use of TMR

can successfully mask failures caused by radiation. TMR has

been shown to provide significant improvements in reliability

and SEU sensitivity through CRAM fault injection, radiation

testing, and even with FPGAs deployed in space. The effec-

tiveness of TMR is limited, however, due to the presence of

common mode failures (CMF) in the TMR implementation.

In spite of TMR, some single CRAM bits can overcome

the spatial redundancy of TMR by impacting more than one

TMR domain. The presence of CMFs significantly reduces the

effectiveness of TMR by placing an upper limit on the total

achievable reliability improvement.

This paper presents a technique for improving the effective-

ness of TMR implemented on an FPGA by identifying and

removing CMFs, using an incremental placement technique.

This new mitigation strategy was compared against a design

with no mitigation and baseline TMR to measure the increase

in the mean time to failure (MTTF). Testing through fault-

injection also shows a significant improvement of 10, 721×
over no mitigation. Through radiation testing this technique

increased the MTTF from 19, 000 days to 91, 500 days, an

improvement of almost 5× over TMR and 367× over no

mitigation.

The rest of this paper will continue as follows. A back-

ground section will provide a brief overview of TMR and

configuration scrubbing. A motivation section will state the

need for and importance of the proposed tool. Previous work

will then be mentioned. The theory behind CMF and how to

remove them will be proposed, followed by specific algorithms

to perform this task. Finally results from both fault injection

and radiation testing will be shown.

II. BACKGROUND

TMR is an SEU mitigation technique that uses three redun-

dant copies of a module to mask failures. When a module (i.e.,

the circuit to be protected by TMR) is triplicated, three sepa-

rate domains are created: TMR0, TMR1, and TMR2, as shown

in Figure 1. All three domains are driven by the same input

stimulus and under normal operating conditions should yield

identical outputs. If one of the domains becomes corrupted,

its outputs may not match those of the other two domains.

An erroneous output is masked by voting on the outputs from

each domain so that only the majority vote is propagated. For

example, if an SEU occurred within a LUT, the error would
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be propagated to the majority voter. The other two domains

would be unaffected, so the majority voter would propagate

the correct value, instead of the erroneous one produced by

the compromised LUT. Voters can be placed throughout a

module to synchronize internal signals between domains and

increase reliability (often referred to as partitioning). The

voting mechanism is often triplicated as well, which prevents

the introduction of single-point failures and allows a voter

to fail without compromising the integrity of TMR. TMR is

able to mask any error that is limited to a single domain

between voter insertion points. There are many variations of

implementing TMR [2], [3].

Fig. 1: Triple Modular Redundancy

Configuration memory repair is often coupled with TMR to

prevent the accumulation of errors that would break TMR and

is often implemented with configuration scrubbing on FPGAs.

Configuration scrubbing is usually performed by partially

reconfiguring the device with the original bitstream to “scrub”

incorrect values [4], [5], [6]. Repair is also needed for the

state of the circuit. If the design state becomes corrupted (e.g.,

counters, state machines, status registers), there needs to be a

method to clear the error. Some errors will naturally flush out

of the design (i.e., the state is not used in next state logic),

or can be manually flushed out of the design on reset. To

allow self synchronization, voters need to be placed along

feedback paths throughout the design [7]. Scrubbing can even

be implemented on BRAM by reading the ECC and correcting

any errors, if present [8].

Coupling TMR with repair mechanisms significantly im-

proves the MTTF of the design. TMR by itself improves the

reliability of a design early on in its operation, but over time,

as errors are allowed to accumulate in a TMR’d design, its

reliability can actually become worse than that of the design

with no TMR at all [9]. This is because TMR will increase

the circuit size, effectively creating a bigger target to be hit.

This leads to the TMR system having a lower MTTF than

the unmitigated design. Thus, it is essential to include a repair

mechanism with TMR if higher reliability is desired over long

operating times.

While there are many ways to apply TMR, applying it

manually through hardware description language is error prone

and synthesis tools are likely to remove redundancy through

optimizations, so automated approaches are preferred. The

approach used in this paper is to apply TMR to the netlist of

TABLE I: TMR Improvement

Design Sensitivity Sensitivity Impr. MTTF - GEO
(Bits) Reduction (days)

Unmitigated 258,440 N/A 1.0× 255
TMR only 63,813 194,627 4.0× 1,031
TMR/Scrubbing 5,038 58,775 51.3× 13,058

TMR/Scrubbing ∼ 500 4,538 517× 131,579
& CMF Removal

a design after logic synthesis (see Figure 2). Once the netlist

has been modified for TMR, the updated netlist is then used

in implementation. The tool used in this work is described

in [10].

Vivado
PAR

Vivado
Synthesis

TMR
Netlist TMR

EDIF EDIF
HDL

Fig. 2: Netlist-based TMR flow

III. MOTIVATION

Based on well established reliability models [9], the MTTF

of a TMR system with repair should be very high as the repair

rate approaches infinity (and is only limited by other events

such as functional interrupts). In other words, if a fault affects

only one TMR domain and it is repaired before a different do-

main fails, then there is no limit to the reliability improvement

provided by TMR, when considering only single bit upsets.

While infinite repair rate is impossible to achieve, high repair

to failure rates are possible. For an Artix-7 XC7A200T part

with a scrub rate of 2.5 seconds (conservative estimate), the

repair rate is 38, 422× faster than the CRAM upset rate in

GEO orbit [11].

In practice, implementing single-device TMR with repair

has not yielded near infinite improvement in reliability [12],

[13]. During fault-injection [14], the upset rate and repair

rates are carefully controlled by only allowing one fault to

exist in the design at a time. In one experiment [13], a 50x

improvement was demonstrated in reliability through fault

injection of a LEON3 processor with feedback TMR and

configuration scrubbing compared to the design without TMR.

Unlike the reliability model suggests, applying TMR with

repair still yielded failures, proving the existence of CMF bits.

Additional mitigation factors, on top of TMR with repair, are

needed to remove such bits from the design.

Previous studies have concluded that CMFs are caused by

the low-level implementation of the TMR circuit on the FPGA

and depend on subtle FPGA architecture-specific features of an

FPGA family [15]. Some individual CRAM cells may impact

the behavior of several logic resources and have an effect that

spans resources that may be in more than one TMR domain.

Removing CMF bits can yield significant reliability im-

provements. As shown in Table I, TMR can improve the MTTF

of a design by 4× (MTTF calculated for GEO orbit) [13],

removing many sensitive bits. Adding configuration scrubbing

to the technique improve the MTTF by almost 50× over the

unmitigated version. The final row of the table shows the

improvement we hope to achieve with this work. Even though
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this proposed technique will only protect a fraction of the

bits that TMR protects (a few thousand compared to a few

hundred thousand) this will provide a significant reliability

improvement, which we predict could be greater than 10×
better than TMR with scrubbing and 500× better than no

mitigation.

IV. PREVIOUS WORK

In [16], the authors performed an in depth study on do-

main crossing errors (DCE) on Virtex-II devices. DCEs are

considered to be multi-cell upset (MCU) events which trigger

multiple domain errors. The authors test a variety of circuits

and report on interesting characteristics of the events when the

circuits fail as well as the probability of errors. While related

to this work, and certainly complementary, it is fundamentally

different in that the authors are primarily concerned with

multiple upsets, rather than single bits which cause multiple

domain failures. This work showed that a majority of errors

occur within the configurable routing blocks (CLBs) routing

structure.

There have been a number of studies to address the prob-

lems of CMFs in TMR design. A reliability-oriented place

and route algorithm (RoRA) to address the bits that are not

covered through advanced partitioning is proposed in [17],

[18]. In this study, the authors identify CMF as routing faults

that can lead to three possibilities: a short between two nets, an

open (disconnect) of two nets and a short and an open on two

nets. Using this information, they propose the RoRA algorithm

as a separate design flow from the typical Xilinx PAR flow.

Their router will introduce “forbidden” vertices (wires in the

device) to prevent nets in other domains from using them.

Their algorithm produces a more reliable circuit, but takes

a performance hit and does not completely mitigate against

all failures. This method is similar to the technique we will

propose, in that we seek to make alterations to the low level

implementation.

It is worth mentioning that this problem can be solved in

other ways than addressing CMF directly. It is possible to

apply more advanced techniques, such as Quintuple Modular

Redundancy (QMR) to reduce the issue [19]. In QMR the

module is replicated 5 times (opposed to 3 in TMR), which

means 3 domains have to simultaneously fail for QMR to

fail, meaning that CMF will not occur if only 2 domains

fail. However, QMR is usually not preferred as there is a

high resource penalty, which may or may not be acceptable

depending on the particular mission.

Our work expands on previous work in a number of ways.

First our work identifies a new cause of CMF in TMR and we

present on the background for the root cause of routing CMF.

Second, our work shows a significant increase in reliability

(in terms of sensitive bits and percent sensitivity) while also

allowing fault-injection to target the entire design. We also

believe our technique to be less “invasive” than previous

techniques. It only requires a small change in the placement

and allows the tools to route the design (without allowing them

to introduce more CMF).

V. CMFS IN XILINX 7-SERIES FPGAS

Through fault-injection, we have found that the majority

of CMF bits affect the routing in a CLB switchbox (fault-

injection results can be found in Section VII). The standard

design tools (Vivado) enforce DRC checks which prevents any

shorts in the golden bitstream. However, an SEU can introduce

shorts by changing the logical value of a bit. To understand

how this is possible, it is helpful to understand the low-level

details of how a routing mux operates.

Routing is performed on an FPGA by setting a series of

programmable interconnect points (PIPs) from the source to

sink nodes. A PIP acts as a switch between a source and sink

wire on the device. When “on”, the source and sink wires are

connected and when “off”, the two wires are disconnected. A

collection of PIPs that drive a wire form a routing mux (also

referred to as a PIP junction in Vivado). A routing mux is

programmed by setting a row/column bit, as shown in a Xilinx

patent [20] (see Figure 3). For convenience, the routing mux

has been redrawn in a form showing the row/column structure

in Figure 4, which also shows how a sample configuration

would be programmed in the mux. When a PIP is turned

“on” by the configuration, it is programmed by setting the

corresponding row/column in the routing mux while the other

row/column bits are unset (not active). In a valid design, only

one PIP is turned “on” in the routing mux (otherwise shorts

would be present). While the other PIPs are turned “off”,

some of the source wires on those PIPs are driving other nets

in the design while other source wires are unused. Adjacent

to the logic tiles (CLBs, BRAMs, DSPs, etc.) are routing

switchboxes that contain many of these muxes that either route

to the adjacent logic tiles, or other switch boxes.

Fig. 3: Routing mux from Xilinx Patent

To understand the failure mechanism, it is necessary to

define certain short configurations. When two nets are shorted,

it is likely that only one of the nets is comprised, or in other

words, that one net drives the other net. In order to describe

these situations we use the following terminology for shorted

nets:

• win-win - both nets retain their correct value. This can

happen if both nets are driving the same value or if the

short is not strong enough for one net to drive the other.
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clk_TMR_0
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Site
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Fig. 4: Example configuration of a routing mux

• win-lose - the most likely scenario. This is the case where

one net wins over the other net and drives it (i.e. both

nets go to VDD or GND).

• lose-lose - both nets lose, i.e. they are both driven to the

incorrect value.

When a routing configuration bit is upset, two things can

happen: a PIP or multiple PIPs are turned “on” or a PIP is

turned “off”. If an upset occurs in a set column or row bit,

then a PIP is turned “off”, which will disconnect a net in the

design. Since only one net is affected, only one domain will

break and TMR will not fail. Thus, opens will not cause CMF.

When an upset occurs in an unset column or row bit, one

PIP or multiple PIPs will be turned “on”. When a second row

bit becomes set, it will turn “on” one PIP in the mux and

create a short with the row that was already set in the mux.

As an example of this case, consider the configuration shown

in Figure 4 where row 7 is the set bit. If row 5 is activated,

it would short the nets clk TMR 1 and data TMR 2 together

because column 0 is set. If a lose-lose scenario occurs, then

this could cause TMR to fail (if these nets drive cells that are

in the same partition). However, we have yet to observe such

a scenario through testing and we will instead assume that a

win-lose scenario is likely occurring. Note that in a win-lose

scenario, TMR would not fail since only one of the nets would

be compromised (and only one domain).

0 1 2              3              4

5

6

8

7

clk_TMR_0

clk_TMR_1

data_TMR_2

data_TMR_0

data_TMR_1

load_TMR_0

load_TMR_1

Configuration Upset

Short

Fig. 5: Example of multiple shorts in a routing mux

Now we will consider what happens when a second column

bit is set. In this scenario, multiple PIPs are turned “on” which

can lead to multiple shorts, as shown in Figure 5. When a

second column bit becomes set, it can create multiple shorts

between multiple nets. In Figure 5 column 0 is set. If the

column 1 bit experienced an SEU and became set, then this

would short the nets clk TMR 1 and data TMR 1 together,

but would also short the nets clk TMR 0 and data TMR 2

together. In a win-lose situation, two domains can be simulta-

neously affected and break TMR. This would happen if both

the clk TMR 1 and clk TMR 0 nets failed (assuming that

they drove cells belonging to the same partition downstream).

We have observed these situations to be the root cause of

routing CMF.

Furthermore, through fault injection, we have only observed

this CMF case to affect clock nets.1 Instead of considering all

nets, only routing muxes with clock nets need to be considered.

We have several hypotheses for why this occurs only on clock

nets (but we have yet to verify any of these possibilities). First,

clock nets have a higher fanout and when disrupted will affect

a higher number of cells. When multiple clocks short together

(or with other nets) there is a greater chance for CMF because

more cells can fail. Second, clock nets are more sensitive to

slight disruptions. If the short puts enough load on the net, it

can negatively affect the timing to that cell leading to failure.

Even if the clock still drives the correct value, the signal may

arrive later than is acceptable. Third, there is some unknown

1This might affect other nets, but is rare enough that we have not yet
observed it through our experimentation of 8,000,000 randomly injected bits
across multiple designs.
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Fig. 6: Design flow for removing CMF from a TMR design.
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Fig. 7: Local clock routing. Not all wires/muxes are shown.

architectural feature associated with clock specific wires that

makes them more susceptible to shorting.

Within the Xilinx 7-Series architecture, there are two rout-

ing muxes in every CLB switchbox where this routing CMF

can occur. The global clock tree is routed through these muxes

when driving a slice, as shown in Figure 7. Each CLB tile

contains two slices, each slice containing a handful of look-

up tables (LUTs) and flip-flops (FFs) (among other primitive

cells). The clock, reset/set and chip enable lines are shared for

each cell in a slice. Thus, at most, two unique clock nets can

be present in a switchbox in a CLB tile. The basic idea behind

our algorithm is to ensure one of several possibilities. First,

there is up to one clock in the CLB tile. Second, if there are

two clocks, they are from the same domain. Third, if there are

two clocks from multiple domains, their downstream cells are

not from the same partition. If one of these cases is true for

every CLB tile in the device, then this type of CMF will not

exist.

For our tool, after applying TMR to the netlist, we allow

Vivado to place the design. We then make our changes after

placement (but before routing). Our algorithm is to check

every tile for one of the three cases. If one of those cases

does not exist, then CMF is possible and one of the slices

in that CLB tile is swapped with a slice in a neighboring

CLB tile. Both tiles involved in the swap are checked to

make sure one of the three conditions exist before the swap

is finalized. All of this type of CMF will be removed after

performing swaps for each tile with CMF in the original

design. Once the incremental placement is completed, the

design implementation is completed by running route design in

Vivado followed by bitstream generation. The proposed flow

is shown in Figure 6.

While we only show the results and a detailed analysis for 7-

Series devices, other generations should have similar causes of

CMF and similar solutions. The routing mux we have shown is

from a Xilinx patent, and we assume that many generations of

devices use a similar structure. The Virtex-4,5,6 and UltraScale

families can all have multiple clocks in the same tile, which

leads us to believe that this particular CMF will be present

across all of these devices. Current efforts are underway to

port this technique to the UltraScale family.

VI. AUTOMATED CMF IDENTIFICATION & REMOVAL

A custom tool was created to automatically identify and

remove CMFs in a placed design. To aid this process, two re-

search CAD tools are used to manipulate the design outside of

the typical flow, Tincr [21] and RapidSmith2 [22], [23]. Tincr

is a library of TCL commands containing many functions,

including those to export and import designs into the Vivado

tool suite (these designs are known as Tincr Checkpoints).

These checkpoints store the netlist, constraints, placement and

routing information of a design. The exported design from

Tincr can be imported into the RapidSmith2 tool, an open-

source CAD tool for Xilinx FPGAs that allows low-level

manipulations of FPGA designs.

RapidSmtih2
Remove CMF (swap)

RapidSmith2
Build Voter Dependencies

RapidSmith2
Identify CMF tiles

Placed 
Design

From 
Vivado

To 
Vivado

Fig. 8: Designs steps for removing CMF in RapidSmith2
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TMR 2
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V
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TMR 1

TMR 2

V

V

V

TMR 0

TMR 1

TMR 2

V

V

V

Partition 1 Partition 2 Partition 3

Voting Group 1 Voting Group 2 Voting Group 3

Fig. 9: More frequent TMR voting example.

Figure 8 shows the steps that need to be taken in order

to remove CMF from a design. The first step is to identify

the voter dependencies which relates to feedback TMR. With

feedback TMR [7], groups of logical cells are divided into

partitions, as shown in Figure 9, with voters being placed on

feedback paths. We will refer to the triplicated voter as a voter

group. The figure shows clean partitions, i.e., the cells in each

partition only drive 1 voter group. In real designs, this does

not have to be the case. An easy example is a global clock

buffer (BUFG) cell, which will drive all the flip-flops of a

single domain, naturally driving many voter groups.
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Partitioning helps improve the effectiveness of TMR, as the

design can tolerate multiple failures in multiple domains, as

long as those failures occur in different partitions. In Figure 9,

the red cells could represent failures. Even though they occur

in multiple domains, they are protected by voting groups and

will not cause TMR failure. However, if multiple errors occur

in multiple domains of the same partition, then TMR can fail.

Understanding the partitioning of a design is important for

determining fail sets, i.e., sets of cells that can cause TMR

failure.

Through reverse traversal of the design graph, the voting

group each cell drives can be determined. This creates a

property for each cell, that we will call dependentV oters.

This will be a set containing the ID of each voter group the

cell drives, e.g. (1,3) or (2).

The next step of the flow, shown in Figure 8, is to identify

CMF tiles. To detect CMF in a CLB tile, all the cells with

clocks2 of each slice in a tile must be checked to determine

if they form a fail set or not. In TMR, a fail set is any set of

cells that will cause the design to fail if each of those cells

fails simultaneously. Using the voter dependencies of each cell,

built in the first step of the flow, it is possible to determine

fail sets, as demonstrated by Algorithm 1.

For this work we will take a conservative approach and as-

sume that any set which contains cells from multiple domains

which drive the same voter group will cause a failure. The

algorithm then performs the following steps: each cell from

the input group of cells is analyzed for its dependent voters

(voter groups) and domain, which is added to a map to record

the information. After each cell has been analyzed it can be

determined whether these cells form a fail set by looking at

the number of domains associated with each voterID. If there

are more than two domains, that signifies that there is a voter

group that would experience two or more domain failures if

every cell in cells were to fail. Thus the algorithm is to iterate

over voterID and check the size of the set of domains.

Algorithm 1 Identify Fail Set

procedure ISFAILSET(cells)
Initialize map<voterID, set<Domain>> possFailSets
Initialize collection<voterID> dependentV oters
for each cell in cells do
dependentV oters ← cell.getDependentVoters()
for each voter in dependentV oters do
possFailSets.add(voter, cell.domain)

end for
end for
for each voter in possFailSets.keys() do

if possFailSets.get(voter).size() ≥ 2 then
return True

end if
end for
return False

end procedure

Now that CMF has been identified, the next step is to

remove it, as shown in Algorithm 2. This will be done with

2Usually this will just be the flip-flops, but there are other cells that can
be driven by a clock, such as when a SLICEM LUT is configured in RAM
mode.

Slice X1Y0Slice X-2Y0 Slice X-1Y0 Slice X2Y0 Slice X3Y0

Slice X-2Y1 Slice X-1Y1 Slice X1Y1 Slice X2Y1 Slice X3Y1

Slice X-2Y-1 Slice X-1Y-1 Slice X0Y-1 Slice X1Y-1 Slice X2Y-1 Slice X3Y-1

Potential Swap
Slice X0Y1

Slice X0Y0

Tile with CMF

Tile X0Y-1

Tile X-1Y0

Tile X-1Y1 Tile X1Y1

Tile X1Y-1Tile X-1Y-1

Tile X1Y0

Tile X0Y-1

Tile X0Y0

Fig. 10: Swaps can be made with any site in a neighboring

tile. Note row/column references are relative.

Algorithm 2 CMF Removal

procedure ISFAILSET(slice1, slice2)
/* .clks means slice.getCellsWithClocks() */
return ISFAILSET(slice1.clks + slice2.clks)

end procedure

procedure REMOVECMF(design)
Initialize collection<Tile> tilesWithCMF
tilesWithCMF ← IDENTIFYCMF( )
for each curT ile in tilesWithCMF do

Initialize resolved ← False
Initialize collection<Tile> nearbyT iles ← curT ile.neighbors
Initialize curSlices ← curT ile.getUsedSlices()
while !resolved do

Initialize set<Tile> newTiles
for each tile in nearbyT iles do

if not ISFAILSET(curT ile.slice1, tile.slice1) and not
ISFAILSET(curT ile.slice2, tile.slice2) then

resolved ← True
swap(curT ile.slice2,tile.slice1)

else if not ISFAILSET(curT ile.slice1, tile.slice2) and not
ISFAILSET(curT ile.slice2, tile.slice1) then

resolved ← True
swap(curT ile.slice1,tile.slice1)

else
newTiles.addAll(tile.getNeighbors())

end if
end for
if !resolved then
nearbyT iles ← newTiles

end if
end while

end for
end procedure

a post-placement pass on the design. Recall that we have

proposed to swap all the cells in a site (i.e. a packed slice) with

another slice in nearby tile, as shown in Figure 10. To avoid

creating another tile with CMF, the potential new configuration

is checked for CMF before the swap is finalized. In the rare

case that no compatible sites are found, tiles that are further

away (instead of immediate neighbors) are checked. After

iterating over all the tiles with CMF in the original design,

the new design is imported back into Vivado, and the normal

flow is continued from the routing step.

VII. RESULTS

Several designs were analyzed and tested for CMF (but the

CMF removal technique was not applied). These include the
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TABLE II: Circuit Implementation Properties - b13

TMR Number of Number of Number of Number of
Type fmax Routing Nodes Cells Sites Tiles

Unmitigated 82.4 MHz 233, 780 25, 542 3, 688 2, 033

TMR 67.7 MHz 1, 373, 762 104, 066 19, 096 9, 803

PCMF 64 MHz 1, 434, 069 103, 297 19, 096 9, 806

Note: PCMF has less cells than TMR because all VCC and GND cells are compounded in to a single cell when importing into RapidSmith2

TABLE III: Fault Injection Results - b13

TMR Number of Number Percent Confidence Number of
Type Injections of Faults Sensitivity Intervals Sensitive Bits Improvement

Unmitigated 2, 193, 073 29, 436 1.342% 1.327 to 1.357% 784, 860 to 802, 876 1×
TMR 2, 351, 568 43 1.8× 10−3% 1.3 to 2.4× 10−3% 758 to 1, 405 734×

PCMF 2, 396, 265 3 1.3× 10−4% 0 to 2.7× 10−4% 0 to 158 10, 721×

TABLE IV: Radiation Test Results - b13

TMR Number of Cross Section 95% MTTF - GEO
Type Fluence Failures (n/cm2) Confidence (days) Improvement

Unmitigated 1.70× 1011 314 1.85× 10−9 2.06× 10−9 2.49× 102 1×
TMR 2.48× 1011 6 2.42× 10−11 4.39× 10−11 1.90× 104 76×

PCMF 3.98× 1011 2 5.03× 10−12 1.21× 10−11 9.15× 104 368×
Note: MTTF calculated for GEO orbit using the bit cross-section presented in [11] and likely over estimates the real MTTF.

TABLE V: Detected CMF In Circuits

Number of Number of Number of
Circuit CMF Tiles CLB Tiles CMF Bits

b13 2,471 9,728 43

md5 6,821 15,697 56

sha3 89 8,209 14

aes 99 13,814 2

leon3 205 3,068 not tested

b13 (UltraScale) 7,515 29,509 24

Note: Some designs were only analyzed for the CMF issue

b13, md5, sha3, aes128 and leon3 circuits. The number of

tiles with CMF as well as the number of used CLB tiles

are reported in Table V. The number of detected CMF bits

(from fault-injection) is also reported for some designs. A

majority of bits found through fault-injection correlate to the

routing CMF issue, with a small number (less than 10%) due to

the SLICEM issue (discussed later). Due to limited resources

for fault-injection and limited beam availability, only the b13

design was selected for a comprehensive study for how this

technique effects reliability.

The b13 design comes from the ITC’99 benchmark suite

and is a simple finite state machine that interfaces with a

weather station [24]. Test vectors used in the test to simulate

and compare the results are taken from an automatic test

pattern generation. It has been used by a mitigation working

group to test benefits of TMR [12]. The design was replicated

256 times in order to generate a circuit that utilized more of

the device’s resources. The circuit properties of the b13 are

reported in Table II for each TMR type: Unmitigated, Netlist-

TMR and this technique, dubbed PCMF for placement CMF.

There is a hefty price in applying TMR to a design that is

well known (trade-off with increased reliability). The PCMF

technique adds some overhead on top of TMR in terms of

routing cost. We believe that this overhead could be reduced

by considering swaps that would minimize the increase to the

half perimeter wirelength (HPWL) (or another metric) instead

selecting the first swap that meets that criteria, but leave this

as future work.

The design has been compared with other types of TMR

application for comparison in improvement using both fault-

injection and radiation testing, shown in Tables III and IV,

respectively. Confidence intervals are shown with 95% con-

fidence. Our tool took .9 seconds to analyze the design for

CMF and 180 seconds to remove CMF from the design.

Our fault-injection infrastructure consisted of a custom

setup using Nexys Video Artix-7 FPGA boards available from

Digilent. Each setup consists of 2 boards, one master and one

device under test (DUT), connected via the FMC card slot.

The master operates with a golden copy of the design (i.e.

no CRAM fault injections) in lockstep with the DUT running

the same design, but subject to CRAM upsets. After fault-

injection, the design was allowed to run for a period of time

to flush out any faults in the system, before being scrubbed

and repeating the process. After finding a fault the device was

reconfigured and the bit was injected again to verify the upset.

Fault-injection was preformed via JTAG.

The most important result from Table III is that our new

technique shows a 10, 721× improvement in design sensitiv-

ity over the unmitigated design and a 14.6× improvement

over netlist TMR. Three failures were observed during fault

injection. These errors are not related to routing CMF, but

is another, more rare, type of CMF. This CMF appears to

be related to SLICEM sites and future work will look into

resolving this type of CMF.

Radiation testing was performed using a neutron beam at

the Los Alamos Neutron Science Center (LANSCE) at Los
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Alamos National Laboratory (LANL) [25]. This testing shows

that our technique improves the MTTF over baseline TMR

from 19, 000 to 91, 500 days, an improvement of about 5x.

The failures observed were directly attributable to multi-cell

upsets (MCUs), i.e., the simultaneous changing of two or more

bits. No single bit upset failures were observed.

VIII. CONCLUSION AND FUTURE WORK

An automated tool was developed to identify CMFs which

limit the effectiveness of netlist-based TMR tools for SRAM

FPGAs. In addition, an incremental placement tool was de-

veloped in this work and was successfully able to remove

CMF by changing the placement of a few cells. Extensive fault

injection results demonstrate that this technique successfully

identified and removed most CMF. The estimated reliability

of a benchmark design was significantly improved by supple-

menting TMR with this technique.

Results from this initial experiment suggest that this tech-

nique is a promising approach for improving the effective-

ness of TMR in FPGA designs. Likewise, initial radiation

results also suggest this technique is promising. With a 5×
improvement in MTTF, the vast majority a failures are now

comprised of multiple upsets (instead of single upsets). Future

work will investigate the effectiveness of this technique on a

wide variety of designs as well as testing those designs in

other radiation sources (such as heavy ions). It will also be

interesting to investigate the if there is any correlation between

the MCUs observed and if there is any possible technique to

address them to further reduce the design’s sensitivity. While

currently only applicable to 7-Series devices, the UltraScale

family also contains a similar structure (2 clocks in the same

tile). Efforts are already underway to apply this technique to

the UltraScale devices.

As an additional technique for improving the reliability of

SRAM-based FPGAs in the presence of ionizing radiation, this

technique will allow SRAM-based FPGAs to be increasingly

considered for use in spacecraft and other environments with

high levels of radiation. Applying TMR to an FPGA design

and modifying the implementation of the design to remove

CMF are two complementary techniques that facilitate the

reliable use of FPGA designs in even the harshest radiation

environments. We anticipate that these techniques will be used

in future space missions employing SRAM-based FPGAs.
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