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Abstract—TMR combined with configuration scrubbing is an
effective technique to mitigate against radiation-induced CRAM
upsets on SRAM-based FPGAs. However, its effectiveness is
limited by low-level common mode failures due to the physical
mapping of a design to the FPGA device. This paper describes
how common mode failures are introduced during the implemen-
tation process and introduces an approach for resolving them
through a custom incremental placement tool for Xilinx 7-Series
FPGAs. Multiple designs across multiple generations of devices
are shown to be sensitive to common mode failures. Applying
the incremental placement technique yields an improvement
of 10,721x over an unmitigated design through fault-injection
testing. Radiation testing is then performed to show that the
MTTF of this technique is 91,500 days in GEO orbit, a 367x
improvement over the unmitigated design and a 5x improvement
over baseline TMR.

Keywords-Field Programmable Gate Array (FPGA), Triple
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I. INTRODUCTION

SRAM Field Programmable Gate Arrays (FPGAs) are
increasingly used for high-reliable and safety-critical appli-
cations. SRAM FPGAs, however, are sensitive to ionizing
radiation and can experience single-event upsets (SEUs) within
the internal state of the FPGA, including the configuration
RAM (CRAM) [1]. FPGAs used in high radiation environ-
ments, such as space or high-energy physics environments,
must consider the effects of SEUs on the behavior of the
device. Further, safety critical and high-reliability terrestrial
applications must consider the effects of terrestrial neutrons
by anticipating, and possibly providing mitigation for SEUs
within the FPGA device.

In an FPGA, the CRAM bits control the functionality of
the device, such as the LUT contents or routing information.
An SEU in one of these bits could alter the behavior of the
device. For example, if an SEU occurred within the LUT
contents, it would change the logic function the LUT was
implementing. When the design next uses this bit, the wrong
value will be propagated out of the LUT and could cause an
incorrect computation or circuit failure.

A popular technique to mitigate against the effects of
ionizing radiation is triple modular redundancy (TMR), which
triplicates the circuit and places a majority voter on the
outputs. When implemented on an FPGA, the use of TMR
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can successfully mask failures caused by radiation. TMR has
been shown to provide significant improvements in reliability
and SEU sensitivity through CRAM fault injection, radiation
testing, and even with FPGAs deployed in space. The effec-
tiveness of TMR is limited, however, due to the presence of
common mode failures (CMF) in the TMR implementation.
In spite of TMR, some single CRAM bits can overcome
the spatial redundancy of TMR by impacting more than one
TMR domain. The presence of CMFs significantly reduces the
effectiveness of TMR by placing an upper limit on the total
achievable reliability improvement.

This paper presents a technique for improving the effective-
ness of TMR implemented on an FPGA by identifying and
removing CMFs, using an incremental placement technique.
This new mitigation strategy was compared against a design
with no mitigation and baseline TMR to measure the increase
in the mean time to failure (MTTF). Testing through fault-
injection also shows a significant improvement of 10,721 x
over no mitigation. Through radiation testing this technique
increased the MTTF from 19,000 days to 91,500 days, an
improvement of almost 5x over TMR and 367x over no
mitigation.

The rest of this paper will continue as follows. A back-
ground section will provide a brief overview of TMR and
configuration scrubbing. A motivation section will state the
need for and importance of the proposed tool. Previous work
will then be mentioned. The theory behind CMF and how to
remove them will be proposed, followed by specific algorithms
to perform this task. Finally results from both fault injection
and radiation testing will be shown.

II. BACKGROUND

TMR is an SEU mitigation technique that uses three redun-
dant copies of a module to mask failures. When a module (i.e.,
the circuit to be protected by TMR) is triplicated, three sepa-
rate domains are created: TMRy, TMR, and TMR,, as shown
in Figure 1. All three domains are driven by the same input
stimulus and under normal operating conditions should yield
identical outputs. If one of the domains becomes corrupted,
its outputs may not match those of the other two domains.
An erroneous output is masked by voting on the outputs from
each domain so that only the majority vote is propagated. For
example, if an SEU occurred within a LUT, the error would
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be propagated to the majority voter. The other two domains
would be unaffected, so the majority voter would propagate
the correct value, instead of the erroneous one produced by
the compromised LUT. Voters can be placed throughout a
module to synchronize internal signals between domains and
increase reliability (often referred to as partitioning). The
voting mechanism is often triplicated as well, which prevents
the introduction of single-point failures and allows a voter
to fail without compromising the integrity of TMR. TMR is
able to mask any error that is limited to a single domain
between voter insertion points. There are many variations of
implementing TMR [2], [3].

Triplication and
Voter Insertion

Fig. 1: Triple Modular Redundancy

Configuration memory repair is often coupled with TMR to
prevent the accumulation of errors that would break TMR and
is often implemented with configuration scrubbing on FPGAs.
Configuration scrubbing is usually performed by partially
reconfiguring the device with the original bitstream to “scrub”
incorrect values [4], [5], [6]. Repair is also needed for the
state of the circuit. If the design state becomes corrupted (e.g.,
counters, state machines, status registers), there needs to be a
method to clear the error. Some errors will naturally flush out
of the design (i.e., the state is not used in next state logic),
or can be manually flushed out of the design on reset. To
allow self synchronization, voters need to be placed along
feedback paths throughout the design [7]. Scrubbing can even
be implemented on BRAM by reading the ECC and correcting
any errors, if present [8].

Coupling TMR with repair mechanisms significantly im-
proves the MTTF of the design. TMR by itself improves the
reliability of a design early on in its operation, but over time,
as errors are allowed to accumulate in a TMR’d design, its
reliability can actually become worse than that of the design
with no TMR at all [9]. This is because TMR will increase
the circuit size, effectively creating a bigger target to be hit.
This leads to the TMR system having a lower MTTF than
the unmitigated design. Thus, it is essential to include a repair
mechanism with TMR if higher reliability is desired over long
operating times.

While there are many ways to apply TMR, applying it
manually through hardware description language is error prone
and synthesis tools are likely to remove redundancy through
optimizations, so automated approaches are preferred. The
approach used in this paper is to apply TMR to the netlist of
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TABLE I: TMR Improvement

Design Sensitivity | Sensitivity Impr. MTTF - GEO

(Bits) Reduction (days)
Unmitigated 258,440 N/A 1.0x 255
TMR only 63,813 194,627 4.0% 1,031
TMR/Scrubbing 5,038 58,775 51.3% 13,058
TMR/Scrubbing

~ 500 ‘ 4,538 ‘ 517x ‘ 131,579

& CMF Removal

a design after logic synthesis (see Figure 2). Once the netlist
has been modified for TMR, the updated netlist is then used
in implementation. The tool used in this work is described
in [10].

Vivado EDIF TMR EDIF

Netlist TMR

Vivado

Synthesis

Fig. 2: Netlist-based TMR flow

III. MOTIVATION

Based on well established reliability models [9], the MTTF
of a TMR system with repair should be very high as the repair
rate approaches infinity (and is only limited by other events
such as functional interrupts). In other words, if a fault affects
only one TMR domain and it is repaired before a different do-
main fails, then there is no limit to the reliability improvement
provided by TMR, when considering only single bit upsets.
While infinite repair rate is impossible to achieve, high repair
to failure rates are possible. For an Artix-7 XC7A200T part
with a scrub rate of 2.5 seconds (conservative estimate), the
repair rate is 38,422x faster than the CRAM upset rate in
GEO orbit [11].

In practice, implementing single-device TMR with repair
has not yielded near infinite improvement in reliability [12],
[13]. During fault-injection [14], the upset rate and repair
rates are carefully controlled by only allowing one fault to
exist in the design at a time. In one experiment [13], a 50x
improvement was demonstrated in reliability through fault
injection of a LEON3 processor with feedback TMR and
configuration scrubbing compared to the design without TMR.
Unlike the reliability model suggests, applying TMR with
repair still yielded failures, proving the existence of CMF bits.
Additional mitigation factors, on top of TMR with repair, are
needed to remove such bits from the design.

Previous studies have concluded that CMFs are caused by
the low-level implementation of the TMR circuit on the FPGA
and depend on subtle FPGA architecture-specific features of an
FPGA family [15]. Some individual CRAM cells may impact
the behavior of several logic resources and have an effect that
spans resources that may be in more than one TMR domain.

Removing CMF bits can yield significant reliability im-
provements. As shown in Table I, TMR can improve the MTTF
of a design by 4x (MTTF calculated for GEO orbit) [13],
removing many sensitive bits. Adding configuration scrubbing
to the technique improve the MTTF by almost 50x over the
unmitigated version. The final row of the table shows the
improvement we hope to achieve with this work. Even though



this proposed technique will only protect a fraction of the
bits that TMR protects (a few thousand compared to a few
hundred thousand) this will provide a significant reliability
improvement, which we predict could be greater than 10x
better than TMR with scrubbing and 500x better than no
mitigation.

IV. PREVIOUS WORK

In [16], the authors performed an in depth study on do-
main crossing errors (DCE) on Virtex-II devices. DCEs are
considered to be multi-cell upset (MCU) events which trigger
multiple domain errors. The authors test a variety of circuits
and report on interesting characteristics of the events when the
circuits fail as well as the probability of errors. While related
to this work, and certainly complementary, it is fundamentally
different in that the authors are primarily concerned with
multiple upsets, rather than single bits which cause multiple
domain failures. This work showed that a majority of errors
occur within the configurable routing blocks (CLBs) routing
structure.

There have been a number of studies to address the prob-
lems of CMFs in TMR design. A reliability-oriented place
and route algorithm (RoRA) to address the bits that are not
covered through advanced partitioning is proposed in [17],
[18]. In this study, the authors identify CMF as routing faults
that can lead to three possibilities: a short between two nets, an
open (disconnect) of two nets and a short and an open on two
nets. Using this information, they propose the RoRA algorithm
as a separate design flow from the typical Xilinx PAR flow.
Their router will introduce “forbidden” vertices (wires in the
device) to prevent nets in other domains from using them.
Their algorithm produces a more reliable circuit, but takes
a performance hit and does not completely mitigate against
all failures. This method is similar to the technique we will
propose, in that we seek to make alterations to the low level
implementation.

It is worth mentioning that this problem can be solved in
other ways than addressing CMF directly. It is possible to
apply more advanced techniques, such as Quintuple Modular
Redundancy (QMR) to reduce the issue [19]. In QMR the
module is replicated 5 times (opposed to 3 in TMR), which
means 3 domains have to simultaneously fail for QMR to
fail, meaning that CMF will not occur if only 2 domains
fail. However, QMR is usually not preferred as there is a
high resource penalty, which may or may not be acceptable
depending on the particular mission.

Our work expands on previous work in a number of ways.
First our work identifies a new cause of CMF in TMR and we
present on the background for the root cause of routing CMF.
Second, our work shows a significant increase in reliability
(in terms of sensitive bits and percent sensitivity) while also
allowing fault-injection to target the entire design. We also
believe our technique to be less “invasive” than previous
techniques. It only requires a small change in the placement
and allows the tools to route the design (without allowing them
to introduce more CMF).
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V. CMFs IN XILINX 7-SERIES FPGAS

Through fault-injection, we have found that the majority
of CMF bits affect the routing in a CLB switchbox (fault-
injection results can be found in Section VII). The standard
design tools (Vivado) enforce DRC checks which prevents any
shorts in the golden bitstream. However, an SEU can introduce
shorts by changing the logical value of a bit. To understand
how this is possible, it is helpful to understand the low-level
details of how a routing mux operates.

Routing is performed on an FPGA by setting a series of
programmable interconnect points (PIPs) from the source to
sink nodes. A PIP acts as a switch between a source and sink
wire on the device. When “on”, the source and sink wires are
connected and when “off”, the two wires are disconnected. A
collection of PIPs that drive a wire form a routing mux (also
referred to as a PIP junction in Vivado). A routing mux is
programmed by setting a row/column bit, as shown in a Xilinx
patent [20] (see Figure 3). For convenience, the routing mux
has been redrawn in a form showing the row/column structure
in Figure 4, which also shows how a sample configuration
would be programmed in the mux. When a PIP is turned
“on” by the configuration, it is programmed by setting the
corresponding row/column in the routing mux while the other
row/column bits are unset (not active). In a valid design, only
one PIP is turned “on” in the routing mux (otherwise shorts
would be present). While the other PIPs are turned “off”,
some of the source wires on those PIPs are driving other nets
in the design while other source wires are unused. Adjacent
to the logic tiles (CLBs, BRAMs, DSPs, etc.) are routing
switchboxes that contain many of these muxes that either route
to the adjacent logic tiles, or other switch boxes.
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Fig. 3: Routing mux from Xilinx Patent

To understand the failure mechanism, it is necessary to
define certain short configurations. When two nets are shorted,
it is likely that only one of the nets is comprised, or in other
words, that one net drives the other net. In order to describe
these situations we use the following terminology for shorted
nets:

« win-win - both nets retain their correct value. This can
happen if both nets are driving the same value or if the
short is not strong enough for one net to drive the other.
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Fig. 4: Example configuration of a routing mux

« win-lose - the most likely scenario. This is the case where
one net wins over the other net and drives it (i.e. both
nets go to VDD or GND).

o lose-lose - both nets lose, i.e. they are both driven to the
incorrect value.

When a routing configuration bit is upset, two things can
happen: a PIP or multiple PIPs are turned “on” or a PIP is
turned “off”. If an upset occurs in a set column or row bit,
then a PIP is turned “off”, which will disconnect a net in the
design. Since only one net is affected, only one domain will
break and TMR will not fail. Thus, opens will not cause CMF.

When an upset occurs in an unset column or row bit, one
PIP or multiple PIPs will be turned “on”. When a second row
bit becomes set, it will turn “on” one PIP in the mux and
create a short with the row that was already set in the mux.
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As an example of this case, consider the configuration shown
in Figure 4 where row 7 is the set bit. If row 5 is activated,
it would short the nets clk_TMR_1 and data_TMR_2 together
because column O is set. If a lose-lose scenario occurs, then
this could cause TMR to fail (if these nets drive cells that are
in the same partition). However, we have yet to observe such
a scenario through testing and we will instead assume that a
win-lose scenario is likely occurring. Note that in a win-lose
scenario, TMR would not fail since only one of the nets would
be compromised (and only one domain).

Configuration Upset

o

data_TMR_2| clk_TMR_0

0%
£
N

A\

Fig. 5: Example of multiple shorts in a routing mux
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Now we will consider what happens when a second column
bit is set. In this scenario, multiple PIPs are turned “on” which
can lead to multiple shorts, as shown in Figure 5. When a
second column bit becomes set, it can create multiple shorts
between multiple nets. In Figure 5 column O is set. If the
column 1 bit experienced an SEU and became set, then this
would short the nets clk_TMR_1 and data_TMR_1 together,
but would also short the nets clk. TMR_0O and data_ TMR_2
together. In a win-lose situation, two domains can be simulta-
neously affected and break TMR. This would happen if both
the clk_TMR_1 and clk_TMR_O nets failed (assuming that
they drove cells belonging to the same partition downstream).
We have observed these situations to be the root cause of
routing CMF.

Furthermore, through fault injection, we have only observed
this CMF case to affect clock nets.! Instead of considering all
nets, only routing muxes with clock nets need to be considered.
We have several hypotheses for why this occurs only on clock
nets (but we have yet to verify any of these possibilities). First,
clock nets have a higher fanout and when disrupted will affect
a higher number of cells. When multiple clocks short together
(or with other nets) there is a greater chance for CMF because
more cells can fail. Second, clock nets are more sensitive to
slight disruptions. If the short puts enough load on the net, it
can negatively affect the timing to that cell leading to failure.
Even if the clock still drives the correct value, the signal may
arrive later than is acceptable. Third, there is some unknown

'This might affect other nets, but is rare enough that we have not yet
observed it through our experimentation of 8,000,000 randomly injected bits
across multiple designs.
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architectural feature associated with clock specific wires that
makes them more susceptible to shorting.

Within the Xilinx 7-Series architecture, there are two rout-
ing muxes in every CLB switchbox where this routing CMF
can occur. The global clock tree is routed through these muxes
when driving a slice, as shown in Figure 7. Each CLB tile
contains two slices, each slice containing a handful of look-
up tables (LUTs) and flip-flops (FFs) (among other primitive
cells). The clock, reset/set and chip enable lines are shared for
each cell in a slice. Thus, at most, two unique clock nets can
be present in a switchbox in a CLB tile. The basic idea behind
our algorithm is to ensure one of several possibilities. First,
there is up to one clock in the CLB tile. Second, if there are
two clocks, they are from the same domain. Third, if there are
two clocks from multiple domains, their downstream cells are
not from the same partition. If one of these cases is true for
every CLB tile in the device, then this type of CMF will not
exist.

For our tool, after applying TMR to the netlist, we allow
Vivado to place the design. We then make our changes after
placement (but before routing). Our algorithm is to check
every tile for one of the three cases. If one of those cases
does not exist, then CMF is possible and one of the slices
in that CLB tile is swapped with a slice in a neighboring
CLB tile. Both tiles involved in the swap are checked to
make sure one of the three conditions exist before the swap
is finalized. All of this type of CMF will be removed after
performing swaps for each tile with CMF in the original
design. Once the incremental placement is completed, the
design implementation is completed by running route design in
Vivado followed by bitstream generation. The proposed flow
is shown in Figure 6.

While we only show the results and a detailed analysis for 7-
Series devices, other generations should have similar causes of
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CMF and similar solutions. The routing mux we have shown is
from a Xilinx patent, and we assume that many generations of
devices use a similar structure. The Virtex-4,5,6 and UltraScale
families can all have multiple clocks in the same tile, which
leads us to believe that this particular CMF will be present
across all of these devices. Current efforts are underway to
port this technique to the UltraScale family.

VI. AUTOMATED CMF IDENTIFICATION & REMOVAL

A custom tool was created to automatically identify and
remove CMFs in a placed design. To aid this process, two re-
search CAD tools are used to manipulate the design outside of
the typical flow, Tincr [21] and RapidSmith2 [22], [23]. Tincr
is a library of TCL commands containing many functions,
including those to export and import designs into the Vivado
tool suite (these designs are known as Tincr Checkpoints).
These checkpoints store the netlist, constraints, placement and
routing information of a design. The exported design from
Tincr can be imported into the RapidSmith2 tool, an open-
source CAD tool for Xilinx FPGAs that allows low-level
manipulations of FPGA designs.

From
Placed | Vivado
Design

Fig. 8: Designs steps for removing CMF in RapidSmith2

To
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Voting Group 3

Voting Group 1
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Fig. 9: More frequent TMR voting example.

Figure 8 shows the steps that need to be taken in order
to remove CMF from a design. The first step is to identify
the voter dependencies which relates to feedback TMR. With
feedback TMR [7], groups of logical cells are divided into
partitions, as shown in Figure 9, with voters being placed on
feedback paths. We will refer to the triplicated voter as a voter
group. The figure shows clean partitions, i.e., the cells in each
partition only drive 1 voter group. In real designs, this does
not have to be the case. An easy example is a global clock
buffer (BUFG) cell, which will drive all the flip-flops of a
single domain, naturally driving many voter groups.



Partitioning helps improve the effectiveness of TMR, as the
design can tolerate multiple failures in multiple domains, as
long as those failures occur in different partitions. In Figure 9,
the red cells could represent failures. Even though they occur
in multiple domains, they are protected by voting groups and
will not cause TMR failure. However, if multiple errors occur
in multiple domains of the same partition, then TMR can fail.
Understanding the partitioning of a design is important for
determining fail sets, i.e., sets of cells that can cause TMR
failure.

Through reverse traversal of the design graph, the voting
group each cell drives can be determined. This creates a
property for each cell, that we will call dependentV oters.
This will be a set containing the ID of each voter group the
cell drives, e.g. (1,3) or (2).

The next step of the flow, shown in Figure 8, is to identify
CMF tiles. To detect CMF in a CLB tile, all the cells with
clocks? of each slice in a tile must be checked to determine
if they form a fail set or not. In TMR, a fail set is any set of
cells that will cause the design to fail if each of those cells
fails simultaneously. Using the voter dependencies of each cell,
built in the first step of the flow, it is possible to determine
fail sets, as demonstrated by Algorithm 1.

For this work we will take a conservative approach and as-
sume that any set which contains cells from multiple domains
which drive the same voter group will cause a failure. The
algorithm then performs the following steps: each cell from
the input group of cells is analyzed for its dependent voters
(voter groups) and domain, which is added to a map to record
the information. After each cell has been analyzed it can be
determined whether these cells form a fail set by looking at
the number of domains associated with each voterID. If there
are more than two domains, that signifies that there is a voter
group that would experience two or more domain failures if
every cell in cells were to fail. Thus the algorithm is to iterate
over voterID and check the size of the set of domains.

Algorithm 1 Identify Fail Set

procedure 1SFAILSET(cells)
Initialize map<voterID, set<Domain>> possFailSets
Initialize collection<voterID> dependentV oters
for each cell in cells do
dependentV oters < cell.getDependentVoters()
for each voter in dependentV oters do
possFailSets.add(voter, cell.domain)
end for
end for
for each voter in possFailSets.keys() do
if possFailSets.get(voter).size() > 2 then
return 7T'rue
end if
end for
return False
end procedure

Now that CMF has been identified, the next step is to
remove it, as shown in Algorithm 2. This will be done with

2Usually this will just be the flip-flops, but there are other cells that can
be driven by a clock, such as when a SLICEM LUT is configured in RAM
mode.
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Fig. 10: Swaps can be made with any site in a neighboring
tile. Note row/column references are relative.

Algorithm 2 CMF Removal

procedure 1SFAILSET(slicel, slice2)
/* .clks means slice.getCellsWithClocks() */
return ISFAILSET(slicel.clks + slice2.clks)
end procedure

procedure REMOVECMF(design)
Initialize collection<Tile> tilesWithC M F
tilesWithCMF < IDENTIFYCME( )
for each curTile in tilesWithCMF do
Initialize resolved < False
Initialize collection<Tile> nearbyT'iles <— curT'ile.neighbors
Initialize curSlices < curTile.getUsedSlices()
while !resolved do
Initialize set<Tile> newT'iles
for each tile in nearbyT'iles do
if not ISFAILSET(curTile.slicel, tile.slicel) and not
ISFAILSET(curT'ile.slice2, tile.slice2) then
resolved < True
swap(curTile.slice2,tile.slicel)
else if not ISFAILSET(curT'ile.slicel, tile.slice2) and not
ISFAILSET(curT'ile.slice2, tile.slicel) then
resolved < True
swap(curTile.slicel,tile.slicel)
else
newT'iles.addAll(tile.getNeighbors())
end if
end for
if !resolved then
nearbyTiles < newT'iles
end if
end while
end for
end procedure

a post-placement pass on the design. Recall that we have
proposed to swap all the cells in a site (i.e. a packed slice) with
another slice in nearby tile, as shown in Figure 10. To avoid
creating another tile with CMF, the potential new configuration
is checked for CMF before the swap is finalized. In the rare
case that no compatible sites are found, tiles that are further
away (instead of immediate neighbors) are checked. After
iterating over all the tiles with CMF in the original design,
the new design is imported back into Vivado, and the normal
flow is continued from the routing step.

VII. RESULTS

Several designs were analyzed and tested for CMF (but the
CMF removal technique was not applied). These include the



TABLE II: Circuit Implementation Properties - b13

TMR Number of Number of | Number of | Number of
Type fmaz Routing Nodes Cells Sites Tiles
Unmitigated | 82.4 MHz 233,780 25,542 3,688 2,033
TMR 67.7 MHz 1,373,762 104, 066 19,096 9,803
PCMF 64 MHz 1,434,069 103,297 19,096 9, 806

Note: PCMF has less cells than TMR because all VCC and GND cells are compounded in to a single cell when importing into RapidSmith2

TABLE III: Fault Injection Results - b13

TMR Number of | Number Percent Confidence Number of
Type Injections of Faults Sensitivity Intervals Sensitive Bits Improvement
Unmitigated | 2,193,073 29,436 1.342% 1.327 to 1.357% 784,860 to 802,876 1x
TMR 2,351, 568 43 1.8 x1073% | 1.3t0 2.4 x 10-3% 758 to 1,405 734
PCMF 2,396,265 3 1.3x1074% | 0t02.7x 107%% 0 to 158 10,721 %
TABLE IV: Radiation Test Results - b13
TMR Number of | Cross Section 95% MTTF - GEO
Type Fluence Failures (n/em?) Confidence (days) Improvement
Unmitigated | 1.70 x 1011 314 1.85x 1079 | 2.06 x 1077 2.49 x 102 1x
TMR 2.48 x 1011 6 2.42 x 10711 | 4.39 x 1071t 1.90 x 10* 76X
PCMF 3.98 x 1011 2 5.03 x 10712 | 1.21 x 10~11 9.15 x 10* 368x

Note: MTTF calculated for GEO orbit using the bit cross-section presented in [11] and likely over estimates the real MTTF.

TABLE V: Detected CMF In Circuits

Number of | Number of | Number of

Circuit CMF Tiles | CLB Tiles CMF Bits
b13 2,471 9,728 43
md5 6,821 15,697 56
sha3 89 8,209 14
aes 99 13,814 2

leon3 205 3,068 not tested
bl13 (UltraScale) 7,515 29,509 24

Note: Some designs were only analyzed for the CMF issue

b13, mdS, sha3, aes128 and leon3 circuits. The number of
tiles with CMF as well as the number of used CLB tiles
are reported in Table V. The number of detected CMF bits
(from fault-injection) is also reported for some designs. A
majority of bits found through fault-injection correlate to the
routing CMF issue, with a small number (less than 10%) due to
the SLICEM issue (discussed later). Due to limited resources
for fault-injection and limited beam availability, only the b13
design was selected for a comprehensive study for how this
technique effects reliability.

The bl13 design comes from the ITC’99 benchmark suite
and is a simple finite state machine that interfaces with a
weather station [24]. Test vectors used in the test to simulate
and compare the results are taken from an automatic test
pattern generation. It has been used by a mitigation working
group to test benefits of TMR [12]. The design was replicated
256 times in order to generate a circuit that utilized more of
the device’s resources. The circuit properties of the b13 are
reported in Table II for each TMR type: Unmitigated, Netlist-
TMR and this technique, dubbed PCMF for placement CMF.
There is a hefty price in applying TMR to a design that is
well known (trade-off with increased reliability). The PCMF

technique adds some overhead on top of TMR in terms of
routing cost. We believe that this overhead could be reduced
by considering swaps that would minimize the increase to the
half perimeter wirelength (HPWL) (or another metric) instead
selecting the first swap that meets that criteria, but leave this
as future work.

The design has been compared with other types of TMR
application for comparison in improvement using both fault-
injection and radiation testing, shown in Tables III and IV,
respectively. Confidence intervals are shown with 95% con-
fidence. Our tool took .9 seconds to analyze the design for
CMF and 180 seconds to remove CMF from the design.

Our fault-injection infrastructure consisted of a custom
setup using Nexys Video Artix-7 FPGA boards available from
Digilent. Each setup consists of 2 boards, one master and one
device under test (DUT), connected via the FMC card slot.
The master operates with a golden copy of the design (i.e.
no CRAM fault injections) in lockstep with the DUT running
the same design, but subject to CRAM upsets. After fault-
injection, the design was allowed to run for a period of time
to flush out any faults in the system, before being scrubbed
and repeating the process. After finding a fault the device was
reconfigured and the bit was injected again to verify the upset.
Fault-injection was preformed via JTAG.

The most important result from Table III is that our new
technique shows a 10,721 x improvement in design sensitiv-
ity over the unmitigated design and a 14.6x improvement
over netlist TMR. Three failures were observed during fault
injection. These errors are not related to routing CMF, but
is another, more rare, type of CMF. This CMF appears to
be related to SLICEM sites and future work will look into
resolving this type of CMF.

Radiation testing was performed using a neutron beam at
the Los Alamos Neutron Science Center (LANSCE) at Los
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Alamos National Laboratory (LANL) [25]. This testing shows
that our technique improves the MTTF over baseline TMR
from 19,000 to 91,500 days, an improvement of about 5x.
The failures observed were directly attributable to multi-cell
upsets (MCUs), i.e., the simultaneous changing of two or more
bits. No single bit upset failures were observed.

VIII. CONCLUSION AND FUTURE WORK

An automated tool was developed to identify CMFs which
limit the effectiveness of netlist-based TMR tools for SRAM
FPGAs. In addition, an incremental placement tool was de-
veloped in this work and was successfully able to remove
CMF by changing the placement of a few cells. Extensive fault
injection results demonstrate that this technique successfully
identified and removed most CMF. The estimated reliability
of a benchmark design was significantly improved by supple-
menting TMR with this technique.

Results from this initial experiment suggest that this tech-
nique is a promising approach for improving the effective-
ness of TMR in FPGA designs. Likewise, initial radiation
results also suggest this technique is promising. With a 5x
improvement in MTTF, the vast majority a failures are now
comprised of multiple upsets (instead of single upsets). Future
work will investigate the effectiveness of this technique on a
wide variety of designs as well as testing those designs in
other radiation sources (such as heavy ions). It will also be
interesting to investigate the if there is any correlation between
the MCUs observed and if there is any possible technique to
address them to further reduce the design’s sensitivity. While
currently only applicable to 7-Series devices, the UltraScale
family also contains a similar structure (2 clocks in the same
tile). Efforts are already underway to apply this technique to
the UltraScale devices.

As an additional technique for improving the reliability of
SRAM-based FPGAs in the presence of ionizing radiation, this
technique will allow SRAM-based FPGAs to be increasingly
considered for use in spacecraft and other environments with
high levels of radiation. Applying TMR to an FPGA design
and modifying the implementation of the design to remove
CMF are two complementary techniques that facilitate the
reliable use of FPGA designs in even the harshest radiation
environments. We anticipate that these techniques will be used
in future space missions employing SRAM-based FPGAs.
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