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Abstract— To enable expanded and safer access for un-
manned aerial vehicles in the National Airspace System, a
reliable system to detect and track them needs to be established.
This paper combines two radar systems into a single network
to provide tracking of UAVs across a wide area. Each radar
detects the UAV’s path and those detections are combined into
tracks using a recursive random sample consensus algorithm.
Outdoor flight experiments show the ability of the system to
track a UAV across two different radar fields of view.

I. INTRODUCTION

Access to the National Airspace System (NAS) for a wide
array of commercial and private parties with Unmanned
Aerial Vehicles (UAVs) will benefit society by enabling
UAV use for package delivery [1], security and defense [2],
medicine [3], and recreation [4]. To enable safe operation
of potentially dense traffic, as analyzed by [4], a system
guaranteeing collision avoidance needs to be implemented.
To effectively ensure this guarantee, full knowledge of ac-
tivity in the airspace needs to be achievable, with some
degree of forecasting the expected behavior of airspace
occupants. This work presents a system that can detect
and track airspace obstacles, especially UAVs, for planned
integration into NASA’s Unmanned Aircraft System (UAS)
Traffic Management (UTM) System.

A significant amount of research has investigated the
benefits of using multiple radar sensors. Combining detec-
tions from multiple radars to gain greater accuracy has been
discussed in [5]–[8]. Methods to detect and track targets with
traditional, single-transceiver radars are well established and
have been used for UAS applications [9]–[13]. In addition, a
variety of algorithms have been developed to best understand
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how to process radar data [13]–[19]. Recursive Random
Sample Consensus (R-RANSAC) is one such algorithm and
was developed in [18]. R-RANSAC operates by determining
valid target models that fit acquired measurements. This pa-
per expands upon that by applying the algorithm to multiple
radar units in a network simultaneously.

These radar platforms were used together to form a radar
sensor network (RSN). RSNs were also used in [5]–[8].
McLaughlin, et al. [5] discussed the feasibility of using a
network of low C-SWAP radars to detect meteorological data
in the low-altitude airspace over the country which could
supplement traditional, long-range radars. Dutta, et al. [6]
built physical devices and networked them together. They
used the detections to track ground targets such as cars and
people, but only up to 20 meters (m) away.

Both Liang, et al. [7] and Bartoletti, et al. [8] discussed the
advantages of using a network of radar sensors for tracking.
Laing, et al. [7] demonstrated the increased robustness of
target tracking with a network of radar sensors when com-
pared to a single radar. Bartoletti, et al. [8] looked into the
design of these networks to improve the detection of targets
and decrease uncertainty. However, in both cases their results
were limited to simulations.

[9]–[13] performed testing with physical radar systems.
The study by Silver et al. [9] performed testing with a
ground-based GPS reflectometry radar receivers and found
they were able to identify buildings in their field of view
(FOV) using their passive sensor. Chan et al. [10] uti-
lized radar data collected from F/A-18 radar systems to
demonstrate the better accuracy of a fuzzy-gain filter when
compared to a two-stage Kalman filter (traditionally used for
target tracking). It also did not require any target dynamics to
track them. However, their radar had a low scanning rate (10
seconds), which increases the amount of target uncertainty.
Another study, Park et al. [11], used multiple radars and
analyzed the collected data using clustering. That study also
relied on provided altitude information to fully document the
targets, an assumption that is not generally feasible.

Several studies [13]–[19] have focused on the algorithms
used for detecting and tracking targets. [14] used a low (C-
SWAP) weather radar in conjunction with a Kalman filter,
reiterative minimum mean square error, and joint probabilis-
tic data association to clarify the data. However, the study ran
into issues due to slow mechanical scanning and a limited
FOV. An older study by Reid [15] used clustering to help
identify tracks, sort data, and then simulated it with a single
sensor.

Cook et al. [16], [17] showed the use of fuzzy logic
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Fig. 1. The dash-dotted line is the left radar track (ending at time t), the
dotted line is the right radar track (beginning at time t0), and the double
line represents the combined tracks. The R-RANSAC algorthim provides
the framework for continuous tracking of the aerial vehicle, providing for
wider coverage.

for target tracking and state estimation. [16] was able to
track all of their targets with an accuracy of less than 8.7
m. However, it was limited by a low sweep rate of three
seconds (s). [17] demonstrated an improved accuracy of
UAVs location estimation through fusing the data of multiple
sensors (including radar) over the accuracy of any single
sensor.

This work expands on [18], [19], and on previous work
in [13] which used variants of R-RANSAC. [18] introduced
R-RANSAC and presented the algorithm’s feasibility with a
few simulations. [19] applied this algorithm to visual tracking
of multiple targets. In this work, the algorithm will be used
for tracking with radar detections, as was also the case
in [13].

The radar platform used in this work has also been utilized
in previous work by the authors as a part of a Local Air
Traffic Information System (LATIS). In [12], the radar was
mounted to a UAV and multiple UAV fly-bys were used to
create a repository of midair encounters to provide data to the
community. The same radar platform was used on the ground
to detect, track, and avoid potential collisions between a UAV
and multiple intruders [13].

In summary, the work presented in this paper builds on
former contributions in [13] and [12], which include the
usage of low C-SWAP phased-array radars as active sensors
and using the R-RANSAC algorithm for target tracking.
These sensors are capable of detecting UAVs at distances
of up to 100 m away and can detect multiple targets in the
presence of noisy measurements.

The capabilities of target detection and tracking were
further extended in this work by combining multiple radars
within a network to cover an arbitrarily large area. The data
is then combined for a better understanding of the aerial
targets, as briefly described in Figure 1.

The remainder of the paper will proceed as follows: Sec-
tion II contains the methods used to perform the experiments
and collect the results. Section III includes the results from
in-field flight experiments. Finally, Section IV reviews the
conclusions made from these results and future directions
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Fig. 2. Block diagram of the data flow from separate radar inputs to one
continuous track.

that can be explored.

II. METHODS

This section will outline data flow from the radar de-
tections to continuous tracks as illustrated by Figure 2.
Subsection II-A explains the design of the radars which
publish range and bearing measurements of possible targets
to the network over User Datagram Protocol (UDP). The
UDP messages are received, parsed, and broadcast on a robot
operating system (ROS) network for further analysis. Next,
Subsection II-B will highlight how the range and bearing data
are converted into a local north-east-down (NED) Cartesian
frame (Equation (6)) and then rotated into a global NED
frame through rotations determined by a calibration process
(Equation (7)). Finally, Subsection II-C will review how R-
RANSAC takes the global NED measurements from both
radars to produce one continuous track.

A. Radar

To track UAVs, the local RSN uses X-Band phased-array
radar systems developed at Brigham Young University. These
systems use 2 ms linear frequency-modulated continuous-
wave (FMCW) sawtooth pulses, which repeat at a rate
of approximately 450 Hz. The FMCW pulses reflect off
targets and are received by four spatially-separated antennas
which form a phased-array (see Figure 3). Phased arrays
are used to provide direction-of-arrival (DOA) estimation
without needing to move and aim the antenna. After being
received by the antennas, and at each of the four channels,
the signals are down-mixed with the transmit pulse to base-
band, which generate beat frequencies of possible targets
that are linear with distance. These signals are filtered,
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Fig. 3. X-band phased array radar used in field experiments.

amplified, and digitally sampled at 2 Mega-samples per
second (Msamples/sec).

After sampling, a field programmable gate array (FPGA)
further processes the data by running a fast Fourier transform
(FFT) to separate signal power into range bins. These range
bins are cross-correlated across each of the four channels
and averaged over 32 pulses before being sent to the CPU.
The CPU takes the averaged correlation data from the FPGA
and runs target detection and DOA estimation algorithms to
generate a list of targets with their range and bearing. This
list is sent to the ROS network over a UDP connection as
shown in Figure 2.

Some challenges with radar include the various ways noise
and interference can introduce false targets or inaccurate
range and angle estimation. False targets can arise from
in-band interference or large power returns that rail the
amplifiers. Inaccurate range estimation can arise from multi-
path scenarios, such as a ground-bounce. Inaccurate angle
estimation can come from anything that introduces phase
differences between the channels such as phase noise in the
radar electronics, inferior performance of a channel, or the
angle sensitivity due to longer distances of a target in a polar
coordinate system.

B. Calibration

System calibration involves defining the rotation between
the radar’s body-fixed frame and a larger, common frame.
The body-fixed frame of the radar is defined by aligning the
−z-axis with the radar boresight vector. Further, the body-
fixed +y-axis is defined by zero degrees azimuth, and the
frame is completed by defining the +x-axis using the right-

hand rule. The larger, common frame is an inertial NED
frame based off a tangent plane on the geodetic ellipsoid.
The origin of this plane is located at the earth-centered, earth-
fixed (ECEF) position of a user-selected base radar station,
and is aligned with the local cartographic map.

The calibration for each radar is accomplished by solving
the orthogonal Pocrustes problem [20] to find the rotation
Rcal between the body-fixed radar frame and the local NED
inertial frame. The orthogonal Procrustes problem takes
two sets of data as inputs: a time history of a known
vehicle’s local NED measurements converted from RTK-
GPS, A ∈ R3×n, and correspondingly, time-synced radar
target estimates, B ∈ R3×n, where n is the number of
synced measurements. Synced measurements are radar detec-
tions that correspond with RTK-GPS measurements within a
prescribed time and range tolerance.

The time tolerance defines the maximum temporal separa-
tion allowed between detections from the radar and positional
reports from the vehicle. For example, if the vehicle reports
its position at 2.43 s, the radar reports a set of detections
at 2.41 s, and the time tolerance is 0.03 s, these sets of
points are considered temporally paired. These points are
then pruned a second time using a spatial range tolerance
parameter. The range returned by the radar at that reported
time must be within the spatial tolerance of the euclidean
distance between the radar and vehicle’s RTK-GPS positions.
If both of these conditions hold, it is considered a paired
point for use as an input to the orthogonal Procrustes
problem. Temporal and spatial bounds were tuned to 0.01
s and 3 m for the ground test, and 0.08 s and 4 m for the
aerial tests. Tighter bounds were required for the ground tests
to account for increased clutter.

Figure 4 presents the overall process of calibration using
high resolution RTK-GPS on both the ground station radar
and the vehicle.

To place both of these sets of data in the same frame,
we first define the origin of the local NED inertial frame.
This is done by measuring the latitude (φ), longitude (λ),
and altitude (h) of the radar base station using RTK-GPS.
These geodetic coordinates are then converted into the ECEF
frame by the following equations [21]:

x = (N(φ) + h) cos(φ) cos(λ) (1)

y = (N(φ) + h) cos(φ) sin(λ) (2)

z =

(
b2

a2
N(φ) + h

)
sin(φ) (3)

N(φ) =
a2√

a2 cos2(φ) + b2 sin2(φ)
(4)

where a is the semi-major axis and b is the semi-minor axis
of the ellipsoid (earth).

High precision vehicle RTK-GPS positions recorded over
the course of the test are similarly converted to the ECEF



frame. These ECEF positions are then expressed in the local
NED inertial frame by using

pNED = Rn/e
(
pECEF − pRef

)
, (5)

developed in [22], where pECEF is the ECEF position of the
vehicle, and pRef is the ECEF position of the reference origin
assigned to the position of the base radar station. The rotation
Rn/e is defined as

Rn/e =

− sinφ cosλ − sinφ sinλ cosφ
− sinλ cosλ 0

− cosφ cosλ − cosφ sinλ − sinφ

 , (6)

where φ and λ are the geodetic latitude and longitude
corresponding to the position of the NED frame origin.

The next preparation step before computing the calibration
rotation matrix is to express the radar detections in the local
NED inertial frame. The vehicle is flown in front of the radar,
and the radar records possible targets in polar coordinates
of range and bearing. These coordinates are upsampled
to spherical coordinates using range, zenith, and azimuth.
Zenith is defined off the radar’s boresight and azimuth is
measured CCW around boresight in a right-hand manner.

Due to the current setup using a 1-D radar system, azimuth
is assigned as 0 or π depending on the sign of bearing.
Zenith is then assigned as the absolute value of the bearing
measurement. With the targets now in spherical coordinates,
a traditional spherical to 3-D Cartesian transformation is used
to place the targets in the body-fixed radar frame.

At this point the RTK-GPS positions and the radar targets
are in Cartesian coordinates with a common origin at the base
radar station. As stated earlier, the GPS measurements are
denoted by the matrix A and the converted radar detections
by B. Both are 3× n matrices where the columns are time
stamped [x, y, z]T measurements.

Where this is the calibration step, we take advantage of
our full knowledge of the system. We first assume that our
calibration pass with the target was slow enough that any
radar detection within a tolerance of 0.01 s (this changed
slightly for different tests, see results in Section III) of a
GPS measurement was a time matched data point. We further
pruned clutter from the detections by requiring that these
time matched detections be within 3 or 4 m of a range
calculated from the GPS data. As seen by the well defined
path in Figure 8, this was sufficient to remove almost all
clutter from the radar detection dataset. These pruned A
and B matrices are then used as inputs to the orthogonal
Procrustes problem.

Rcal = argmin
Ω
||ΩA− B||F , (7)

where Ω is a unitary matrix that produces the minimum of
the argument in (7) and || · ||F represents the Frobenius
norm. This produces the rotation matrix from the inertial
NED frame to the radar frame, Rcal. The transpose, Rcal

T,
is used to rotate all the radar detections, including clutter,
into the inertial frame aligned with the cartographic map.
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t
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Fig. 4. The dash-dotted line is the path of the vehicle and the dashed
line is the boresight of the radar. For calibration, the vehicle and radar are
each located by using high precision RTK-GPS measurements to create the
tracks within their respective frames. Where ri and θi denote a range and
angle off boresight at a time ti between t0 and t. The Procrustes algorithm
allows alignment of the radar targets with the global NED frame.

The detections in the inertial frame become the input to the
R-RANSAC algorithm.

C. R-RANSAC

Once calibration has been performed, the R-RANSAC
algorithm determines which measured targets are tracks from
the vehicle. R-RANSAC is based largely on the work done in
[13] and is not newly developed in this paper but is applied
to this unique application. In general, R-RANSAC operates
using RANSAC to create tracks that fit a tuned model, then
propagates those tracks with a tuned Kalman filter. A brief
overview of the primary tuning variables is discussed here,
but for an in-depth understanding, the reader is referred to
the literature.

Detections from multiple radars are used as simultaneous
inputs to R-RANSAC at each time step. If any subset of
points fit a good track as determined by RANSAC, they are
grouped by fit models and each of these models is propagated
as an active target detection. This process ideally eliminates
all noise and clutter from the radar detections, reporting only
positions of real vehicles or other obstructions in the FOV
of the radar.

Four R-RANSAC parameters are tuned for this work. The
first parameter is the maximum number of models retained
by R-RANSAC, M. This is not the max number of ”good”
models, but the maximum number of potential models to
propagate. A low number of targets is expected, thus this
parameter was set low. The next parameter is the number
of consecutive missed detections, CMD, allowed before
a track is considered unstable and no longer propagated.
CMD is set low to better prune clutter in the radar returns.
The third parameter is the lifetime threshold, τT . It defines
the minimum lifetime of a model before it is considered
good enough to propagate. We relied on the idea that real
detections are more consistent than clutter, and have a longer
lifetime. The final parameter is the inlier region threshold,
τR, which determines if measurements fit the model. This is
also set low to reflect the cohesive nature of detections of a



moving target, as opposed to the more random nature of the
clutter. The following values were used:M = 5, CMD = 3,
τT = 4, and τR = 8.

III. RESULTS

Two separate tests were conducted to track targets across
two partially overlapping FOVs from two radars. In both
cases, the vehicle target recorded RTK-GPS latitude, longi-
tude, and altitude, whether on the ground or in the air. This
information was used as truth data for radar attitude calibra-
tion and for verification of final R-RANSAC results. Also,
the RTK-GPS positions of the radars were recorded at the
beginning of the test to calculate the proper transformation
of vehicle positions from ECEF to a local NED Cartesian
coordinate system with the origin set at the location of the
first radar.

The first test involved a human walking along the ground
carrying an RTK-GPS unit and a corner reflector for a bright
radar target. The second test was conducted with a hand-
operated remote control airborne target vehicle. This vehicle
was an X-8 octorotor with a breadth of approximately 0.5
m2 and a height of 0.25 m. The vehicle had a small corner
reflector which was aimed in the general direction of the
radars for the duration of the flight.

The rest of this section will compare the ground test results
with the aerial results for each of the three stages of data
analysis: (a) collecting of raw radar detections, (b) calibration
of radar frames, and finally (c) using R-RANSAC to filter
raw detections by tracking likely sequences of true target
movements. Figures 5 and 6 show the pre-calibrated results
from the radar (step a) which is in direct comparison to the
calibrated plots in Figures 7 and 8 (step b). Finally, Figures 9
and 10 show the R-RANSAC reporting a continuous track
from the two radars (step c).

The calibration step had to be computed for both tests
for two reasons. The first is that since each test happened on
different days, the radars were not mounted in the exact same
spots both days, nor with the same attitude. Compounding
the difference in attitude is that, since the radars only report
targets in two dimensions, they can only track and report
targets in a mostly flat fan shaped FOV. To track targets on
the ground, the radars have to be pointed down, as opposed
to being pointed up to track the aerial vehicle in the second
test. The calibration step allows computation of an accurate
rotation from the cartographically aligned local NED inertial
frame into the radar’s body fixed frame in both cases. Thus,
the data in the figures that follow have all been projected
onto the N-E plane, removing altitude information from the
aerial test plots.

In addition to the GPS position of the target, Figures 5
and 6 shows unfiltered radar detections plotted with respect
to their own axes. In this frame, the radar FOVs are aligned.
Without calibration, the radars only know the positions of
the detections with respect to themselves. The ground test
shows much more clutter due to trees and other ground-
level items creating false target detections. This condition
required slightly tighter tolerances for time-syncing and
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Fig. 5. Overlaid FOVs of pre-calibrated radars with GPS of a ground
target.
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Fig. 6. Overlaid FOVs of pre-calibrated radars with GPS of an aerial target.

pruning during the calibration step, as opposed to the aerial
tests. The final target detections were produced using the
same R-RANSAC parameters for all tests.

Also visible in Figures 5, 6 and 9 are narrow bands at
regular intervals which is interference caused by ground-to-
air communication. We are using a high-powered Ubiquiti
5.8 GHz Wi-Fi system that that causes the radar to generate
false targets when the Ubiquiti transmitter beam, or large
reflections from it, are received by the radar antennas. This
interference occurs because the radar’s wide-band antennas
easily receive the Wi-Fi signals. There is also a lack of
RF filtering in the receive channels which allows mixing
products to be aliased and digitally sampled. We lowered
the Wi-Fi power to minimize this noise, but to properly
resolve these interference issues, narrow-band antennas and
an X-band band-pass filter in the receive chain are being
developed.

With full knowledge of the system during the calibration
step, the pruning, as described in Section II, is very accurate.
Figures 7 and 8 show only radar detections that satisfies the
pruning criteria of the time and range tolerances. The only
axes shown are the N-E inertial axes. By pairing each radar’s
detections with the GPS data, an accurate rotation matrix is
achieved for each radar, allowing each to report its targets
correctly in the NED inertial frame. R-RANSAC receives
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Fig. 7. The calibrated radar sightings with the ground target.
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Fig. 8. The calibrated radar sightings with the aerial target.

all radar detections properly mapped in a common frame,
allowing association of duplicate measurements in the areas
where the FOVs overlap. The aerial plot (Figure 8) shows
a small loop on the right with no radar detections. This is
due to the vehicle being too low and thus out of view of the
thin, 2-D radar FOV.

Figures 11 and 12 give us confidence in our calibration.
Figure 11 shows radar detections from a second aerial test on
the inertial NED frame. These were calibrated with a rotation
matrix created by matching themselves with the second
flight’s GPS data. Figure 12 shows the same detections and
GPS data from the second flight, however the radar detec-
tions were rotated into the inertial frame using the rotation
matrix computed from the first aerial flight’s calibration.
There is a slight rotation offset visible between these two
plots, reflecting small shifts in the radar stands used for
these tests, which were not rigidly mounted. Over time, the
mounts are prone to induce small attitude deviations due to
equipment shifts and environmental factors. Regardless, the
closeness of these datasets demonstrates a promising result
for the use of a long term calibration of rigidly mounted
radar units.

To simulate a more real-world scenario, the full radar
dataset with no pruning was used with R-RANSAC. Figures
9 and 10 show that most clutter is removed by the tuned
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Fig. 9. R-RANSAC tracks with ground target. Note that a semi-truck drives
past the radar during this test, which is seen by the linear group of tracks
at approximately 40 meters east of the origin.
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Fig. 11. Visual calibration verification created for a second aerial test using
its own computed Rcal.
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Fig. 12. Visual calibration verification created for a second aerial test using
the Rcal computed from the first aerial test data.

R-RANSAC tracker. These plots only use the GPS positions
of the target as a truth verification tool, and demonstrate the
consistent tracks reported by R-RANSAC are accurate.

Figure 9 shows a linear track at approximately 40 m to
the east of the radars. This was a semi-truck that entered the
radar’s FOV during testing. R-RANSAC correctly identified
it as a likely track due to the consistency of the radar returns.
Both figures show that R-RANSAC accurately groups the
targets from both radars in the common FOV as a single
track.

IV. CONCLUSION

This work demonstrates that R-RANSAC can be used to
accurately track multiple targets across overlapping radar
FOVs. While air detections are much easier, due to sig-
nificantly reduced clutter (i.e., false returns) in the target
information reported by the radars, ground tracking is still
accurate and possible. Successful aerial tests demonstrate
the feasibility of the current radar platform for continued
development of NAS applications. A 3-D radar is currently
under development to allow expanded coverage. Further
work will investigate the feasibility of calibration in real-
time without GPS.
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