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Abstract.—As a result of the process of descent with modification, closely related species tend to be similar to one another in
a myriad different ways. In statistical terms, this means that traits measured on one species will not be independent of traits
measured on others. Since their introduction in the 1980s, phylogenetic comparative methods (PCMs) have been framed as
a solution to this problem. In this article, we argue that this way of thinking about PCMs is deeply misleading. Not only has
this sowed widespread confusion in the literature about what PCMs are doing but has led us to develop methods that are
susceptible to the very thing we sought to build defenses against—unreplicated evolutionary events. Through three Case
Studies, we demonstrate that the susceptibility to singular events is indeed a recurring problem in comparative biology that
links several seemingly unrelated controversies. In each Case Study, we propose a potential solution to the problem. While
the details of our proposed solutions differ, they share a common theme: unifying hypothesis testing with data-driven
approaches (which we term “phylogenetic natural history”) to disentangle the impact of singular evolutionary events from
that of the factors we are investigating. More broadly, we argue that our field has, at times, been sloppy when weighing
evidence in support of causal hypotheses. We suggest that one way to refine our inferences is to re-imagine phylogenies
as probabilistic graphical models; adopting this way of thinking will help clarify precisely what we are testing and what
evidence supports our claims. [Causality; graphical models; macroevolution; phylogenetic natural history]

Every so often, evolution comes up with something
totally new and unexpected, a so-crazy-it-just-might-
work set of adaptations that is the stuff of nature
documentaries. Many biologists likely have a favorite
example of a lineage that has evolved something
spectacular such as devilishly horned lizards that squirt
blood from their eye sockets or marine sloths that grazed
ancient seabeds.

As macroevolutionary researchers, it is hard to
know what to do with these types of events (Vermeij
2006). Their singular and unreplicated nature seems
incompatible with models that we typically use to
describe change over time, such as Brownian motion
(BM; Felsenstein 1973) or the Mk model (Pagel 1994;
Lewis 2001). Such models presume continuity, whereas
one-off events, such as the evolution of novel nutritive
function in exocrine glands leading to mammalian milk,
have no clear precedent in history. The evolution of such
traits may set in motion a cascade of changes across an
organism, such that descendant lineages may look very
different in many ways from their more distant relatives.
Or alternatively, a suite of traits may just happen to
change at the same time. In either case, it is these sorts of
idiosyncratic and unreplicated events that we often think
of when we think of the need to consider phylogeny in
analyses of comparative data. And this is not an abstract
concern; a wide breadth of macroevolutionary data

suggest that abrupt shifts and discontinuities have been
a major feature of life on Earth (Uyeda et al. 2011, 2017;
Landis and Schraiber 2017; Jablonski 2017). But as recent
controversies in phylogenetic comparative biology have
highlighted, our current methods (reviewed in O’Meara
2012; Pennell and Harmon 2013; Garamszegi 2014) are
not designed to deal with such dynamics.

For example, Maddison and FitzJohn (2015) recently
demonstrated that common statistical tests (e.g.,
Maddison 1990; Pagel 1994) for the evolutionary
correlation of discrete characters are prone to reporting a
significant association even when the pattern is driven by
a single (or, very few) independent transition(s) from one
character state to another. Maddison and FitzJohn (2015)
referred to such scenarios as cases of “phylogenetic
pseudoreplication” (see also Read and Nee 1995; Nee
et al. 1996).

We will argue that this unresolved challenge
permeates not just tests for discrete character
correlations, but nearly every method of finding
associations in comparative methods (Fig. 1). For
example, Rabosky and Goldberg (2015) show that
applying trait-dependent diversification models (e.g.,
BiSSE, Maddison et al. 2007) to real-world phylogenies,
which are usually not shaped like trees resulting
from simulations of a birth–death stochastic process
(Mooers and Heard 1997), often leads to support
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FIGURE 1. Singular, unreplicated events (vertical dashes) can generate apparently significant associations across several types of comparative
analyses. Case Studies I–III are indicated in panels I–III, and though we do not consider diversification models such as BiSSE in our examples,
they are similarly affected (panel IV). In each case, we map (in some cases, arbitrarily) the dependent variable (Y) on the phylogeny on the
left and the predictor trait on the same phylogeny to the right (X), and indicate whether the trait is a continuous trait (C), a discrete trait (D)
or a diversification rate. Colors on the branches indicate the state of the character on the phylogeny—either continuous trait value, discrete
character state, or diversification rate regime. Panels I and III correspond to variations of “Felsenstein’s worst-case scenario” and “Darwin’s
scenario,” respectively. We also suggest a common method used to analyze such associations: IC = Independent Contrasts (Felsenstein 1985);
OU = Ornstein–Uhlenbeck models (Butler and King 2004); Pagel = Pagel’s correlation test (Pagel 1994).

for trait-dependent diversification models regardless
of whether traits are actually affecting speciation
and extinction. The work of Beaulieu and O’Meara
(Beaulieu et al. 2013; Beaulieu and O’Meara 2014,
2016) has illuminated important underlying reasons
behind Rabosky and Goldberg’s findings: the failure to
consider alternative models in which the “background”
diversification rate changes across the tree (i.e., there
is a shift in diversification regimes unrelated to the
trait being considered). To address this shortcoming,
Beaulieu et al. (2013) borrowed an idea from molecular
phylogenetics (Galtier 2001; Penny et al. 2001), and
developed a Hidden States Model (HSM) for describing
the evolution of a binary character along a phylogeny. In
their HSM, the transition rates between character states
depend on the ‘hidden’ state of another, unobserved,
trait also evolving along the tree (also see Price 1997;
Felsenstein 2011 both of whom explored a related
model). Applying the same principle to trait-dependent
diversification models, they showed how models that
include background heterogeneity in diversification
rates provide a fairer comparison to the hypothesis of
genuine state-dependent diversification (Beaulieu and
O’Meara 2016). Rather than considering a biologically
unrealistic constant-rate null hypothesis, Beaulieu
and colleagues built models that allowed traits and
diversification to vary in biologically plausible ways
(also see Zenil-Ferguson and Pennell 2017 on this
point).

We think that the solution proposed by Beaulieu
and O’Meara (2016)—accounting for background shifts
in evolutionary regimes unrelated to the focal trait
association—is general and applies across comparative
biology. In this article, we develop this argument
through a series of three Case Studies, depicted in panels
I–III of Figure 1. We will show in each Case Study
that rare evolutionary events may deceive our methods
and distort our interpretations. For each study, we will
then sketch out possible solutions for making causal
inferences from comparative data. These solutions differ

in their modeling details and methods of inference, but
they share a core idea.

More specifically, all three Case Studies revolve
around the problem of how to discover plausible
histories of singular events, or transitions in evolutionary
regimes—a practice we call “phylogenetic natural
history”—and how to disentangle the impact of these
events from that of the hypothesized effects we are
investigating. In our examples, we highlight scenarios
where a single change in the background evolutionary
dynamics can lead to apparent associations between
factors of interest, as we find such cases particularly
illuminating. But the problems (and potential solutions)
we identify apply just as well to situations where
the background evolutionary dynamics change more
frequently.

By working through the Case Studies, we arrive
at two general recommendations for how to move
phylogenetic comparative methods (PCMs) forward.
First, we advocate for unifying hypothesis-testing and
data-driven approaches. Rather than being alternative
methods of investigating macroevolutionary processes
and patterns, they are complementary, and in our
view, essential, to one another. Second, we propose
that comparative biologists need to be more careful
about how we draw causal inference from phylogenetic
data. One particularly elegant solution is to render
comparative analyses as graphical models. These
graphical models can help clarify exactly what causal
statements we are making and what the limits of these
inferences are.

CASE STUDY I: FELSENSTEIN’S WORST-CASE SCENARIO

More than anything else, it was the famous series
of figures depicting the “worst-case scenario” (Figs. 5,
6, and 7 in the original; our Fig. 2) from Felsenstein’s
iconic 1985 article “Phylogenies and the comparative
method” that awakened biologists to the need for
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FIGURE 2. Felsenstein’s worst-case scenario (Felsenstein 1985) illustrates a problem quite like that identified by Maddison and FitzJohn. Here
we modify Felsenstein’s original generating process from simple BM, to A) BM with a single burst occurring on the stem branch of one of the
two clades (indicated by vertical dash). B) The distribution of trait values produces a figure very similar to Felsenstein’s original scenario, but
results in C) a single contrast (black) that is not well-described by the estimated BM process, and thereby generates a significant regression of
PIC Y and PIC X (dotted line) despite both X and Y in the shift and BM distributions being uncorrelated. D) As the ratio of the shift variance to
the BM variance increases, the proportion of contrast regressions that return a significant result increases dramatically (each point represents
200 simulations for a fixed phylogeny, with both the BM process and the random draw from the shift distribution being uncorrelated with
equal variance for both traits). While IC corrects for singular events consistent with BM, it does not correct for the more general phenomenon of
dramatic singular events driving significant results in comparative analyses. Note that the nonindependence of species is not the issue.

tree-thinking and started a revolution in modern
comparative biology. The idea is simple: as a result of
shared ancestry, measurements taken on one species
will not be independent from those collected on another
and especially so, if the two species are closely related.
This nonindependence can create apparent correlations
between traits that, are in truth, evolving independently.
To illustrate the effect of nonindependence of characters,
Felsenstein generated a scenario in which two clades are
separated by long branches (our Fig. 2). He then evolved
traits according to a BM process along the phylogeny; he
recovered a significant regression slope using Ordinary
Least Squares (OLS) despite there being no evolutionary
covariance between the traits.

While other researchers had hit upon similar notions
throughout the early 1980s (e.g., Clutton-Brock and
Harvey 1980; Mace et al. 1981; Ridley 1983; Stearns
1983; Cheverud et al. 1985), none of these had the
pervasive impact that Felsenstein’s presentation did (see
e.g., Losos 2011 who reproduces the figures and the
accompanying reasoning in his presidential address for
the American Society of Naturalists). The problem is

just so obvious—data from different clades clustering
in different parts of the bivariate plot—all you have to
do is look. And while of course his proposed solution,
“independent contrasts” (IC), was widely adopted, we
suspect it is the clarity with which Felsenstein articulated
the problem that has kept his article a hallmark of
biological education and a testament to the importance
of tree-thinking, even as his method has largely been
superseded by the least squares (Grafen 1989) (which is
identical to IC if BM is used to model the covariance
of errors: Rohlf 2001; Blomberg et al. 2012) and mixed
model (Lynch 1991; Housworth et al. 2004; Hadfield and
Nakagawa 2010) approaches.

However, an important part of this story is often
missed: Felsenstein also noted that the problem of
nonindependence does not occur if “characters respond
essentially instantaneously to natural selection in the
current environment, so that phylogenetic inertia is
essentially absent” (p. 6). Despite this comment, a
common misunderstanding of his argument is that
the problem inherent in a nonphylogenetic regression
of phylogenetically structured data is that species are
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not independent. In fact, independence of data is not
an assumption of standard (nonphylogenetic) linear
regression at all. Rather, standard linear regression
assumes that the errors of the fitted model are
independent and identically distributed (i.i.d.). As a
result, many applications of a “phylogenetic correction”
seem to be missing the point (Revell 2010; Hansen and
Bartoszek 2012): if all of the phylogenetic signal in a data
set is present in the predictor trait and the errors are i.i.d.,
then there is no need for any phylogenetic correction
(Rohlf 2001, 2006). (However, phylogenetic analyses are
nearly always needed to determine this condition in the
first place.)

We suggest that what made Felsenstein’s prima
facie argument so compelling was that it appealed to
biologists’ intuition that many large clades of organisms
are just different in many potentially idiosyncratic ways
(Vermeij 2006). If the apparent association between
traits found in a nonphylogenetic regression analysis is
simply a result of these idiosyncratic differences between
clades, then we would be inferring a relationship from
unreplicated data (Nee et al. 1996), irrespective of
the purely statistical consideration of whether errors
are i.i.d.

Here, we revisit Felsenstein’s worst-case scenario
in order to demonstrate that IC and Phylogenetic
Generalized Least Squares (PGLS) do not completely
address the problem that we tend to think they do—these
methods are still susceptible to singular evolutionary
events. To demonstrate this, we add a slight twist
to Felsenstein’s original example. First, we used a
phylogeny with two clades, each of which is internally
unresolved, similar to that of the 1985 article. We
emphasize that the only phylogenetic structure is that
stemming from the deepest split. We then simulated two
traits under independent BM processes, each with an

evolutionary rate ( 2) of 1. However, at some point on
a stem branch of one of the two clades we introduce
a singular evolutionary “event”—i.e., a dramatic shift
in a lineage’s phenotype—drawn from a multivariate
normal distribution with uncorrelated divergences and

equal variances that are a scalar multiple of 2. The
resulting distribution of the data suggests a situation
very similar to Felsenstein’s worst-case scenario—and
what we suspect is the type of problem envisioned by
most biologists when they warn their students of the
dangers of ignoring phylogeny.

One would hope that our tools for “correcting for
phylogeny” would recognize that the apparently strong
relationship between the two traits in our example was
driven by only a single contrast. However, this is not
the case. That single contrast results in a very high-
leverage statistical outlier that drives significance as the
size of the shift increases (Fig. 2). We can repeat the same
exercise with more phylogenetically structured data
(where the two clades of interest are fully bifurcating
following a Yule process) and obtain identical results
(Fig. 2, see Supplementary Material available on Dryad
at http://dx.doi.org/10.5061/dryad.p8066hd). This is

disconcerting since our intuition suggests that we do
not have compelling evidence for a causal relationship
between these two traits (i.e., there is very little reason
for us to believe from this correlation alone that one trait
is an adaptation to the other).

How can we formulate a better set of models that can
account for what our intuition tells us is a dangerous
situation for causal inference? We can do so by including
another phylogenetically plausible model: that trait
correlations result from a single random shift, drawn
from a different distribution than the one used to model
trait evolution across the rest of the branches.

Let us consider a situation quite distinct from
Felsenstein’s multivariate BM (mvBM) scenario. Here
traits do not evolve by mvBM, but rather undergo a
shift at a single point (perhaps an ancient dispersal event
where one clade invaded a new environment). In such a
scenario, we only need to consider the phylogeny in as
much as a given species exists on either side of the event
in question. We can then erect two statistical models: a
linear regression model and a singular event model.

Linear regression model:

Y = XX+ 0 + ;

X = ( )
(1)

where X and 0 are the slope and intercept to the
regression of Y on X, is a vector containing i.i.d. random
variables that describe the errors, and the predictor X
is generated by some stochastic process  ( ) on the
phylogeny (e.g., a random variable describing a single
burst in X on the stem branch of one of the two
clades with parameters ). Thus, under the laws of
conditional probability, the bivariate probability of X
and Y under the linear model conditional on parameters

LM = ( X, 0, ) is:

P(X,Y| LM,  )=P(Y|X, X, 0, )P(X|  )

×P( X)P( 0)P( )P(  )
(2)

where  are the parameters of the process for X on the

phylogeny, and 2 is the variance associated to . This
equation is derived from the assumed path of causation
between X and Y, since the likelihood function of trait
X, denoted by P(X|  ), is independent of Y, while the
likelihood function of Y, denoted by P(Y|X, X, 0, )
depends on X. The remaining terms in the probability
statement are interpreted as prior distributions for the
parameters in a Bayesian inferential framework.

Alternatively, X and Y may not be related to one
another at all. Rather, they may be the products of
singular random evolutionary events denoted by E1, and
E2, that happened to occur on the branch separating two
clades.

Singular events model:

Y = YIE1 + Y0 + Y

X = XIE2 + X0 + X,
(3)

where the variables IE1 and IE2 are indicator random
variables that take the value of 1 if an observation is from
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a lineage that experienced a phylogenetic event or shift,
and a value of 0 otherwise. Furthermore, Y0 and X0 are
the parameters that describe the trait means had they not
experienced the singular evolutionary event in question
and each linear model in equation (3) has errors with

variances 2
Y and 2

X , respectively.
For the singular event model (with parameters

SE = ( Y, Y0, X, X0, Y, X)) the bivariate probability
becomes:

P(X,Y| SE)

=P( Y)P( Y0)P( X)P( X0)P( X)P( Y)

×P(NE1 =1)P(NE2 =1)P(LE1|NE1)P(LE2|NE2)

×P(Y|LE1, Y, Y0, Y)P(X|LE2, X, X0, X), (4)

where P(NE1 =1) and P(NE2 =1) are the probabilities of
observing a single shift on the phylogeny, and P(LE1|NE1)
and P(LE2|NE2) are the probabilities of observing these
singular shifts in locations LE1 and LE2, respectively.

The linear regression and singular event models lead
to potentially very different distributions of trait data at
the tips. For example, under the singular event model,
the distribution of Y is conditionally independent of X
after accounting for LE1, Y, Y0—a testable empirical
prediction that will often result in these two models
being easily distinguishable with model selection. But
failing to consider the singular event model as a
possibility is a problem: even for the simple case of
two continuous traits, we have shown how easily data
simulated under the singular event model can result
in highly significant regressions for OLS, PGLS, and
IC regressions, regardless if the errors are simulated as
independent or phylogenetically correlated with respect
to the model and phylogeny. We also note that estimating
a transformation for the errors (Pagel 1999; Freckleton
et al. 2002) will not rescue the analysis; the estimated
value of will lie between 0 and 1 and we have found
both these more extreme cases (OLS and IC, respectively)
to be susceptible.

One might argue that the situation we describe is the
violation of the assumption of a BM model of evolution—
and this would, of course, be correct (see also Maddison
and FitzJohn 2015). Indeed, for decades it has been
common practice (but unfortunately, not universally
so) to test whether contrasts are i.i.d. after conducting
an analysis using IC (Garland et al. 1992; Purvis and
Rambaut 1995; Slater and Pennell 2013; Pennell et al. 2015)
and many researchers have followed Jones and Purvis
(1997) in dropping outlying contrasts from regressions.
Felsenstein recognized this particular vulnerability in
his method and correctly predicted that the underlying
model was an “obvious point for future development”
(p. 14). While today we have a much wider range of
comparative models to choose from including some that
allow for adaptive shifts, most continuous trait models
are Gaussian (e.g., Pagel 1999; Blomberg et al. 2003;
Butler and King 2004; O’Meara et al. 2006; Eastman
et al. 2011; Beaulieu et al. 2012; Uyeda and Harmon 2014)
and do not accommodate abrupt, discontinuous shifts in

phenotypes. It is only recently that alternative classes of
models have been considered (Landis et al. 2012; Elliot
and Mooers 2014; Schraiber and Landis 2015; Blomberg
2017; Boucher et al. 2017; Duchen et al. 2017). Whether or
not these other types of models can sufficiently account
for rare, singular events will be examined in the next
section.

Nevertheless, our primary point here is to suggest that
the phenomenon that made Felsenstein’s argument so
intuitive is not the violation of i.i.d. errors but rather
the biologically intuitive realization that unreplicated
differences colocalized on a single branch provide
only weak evidence of a causal relationship between
traits. Furthermore, models that actually describe such
scenarios—like our “singular events” model—are rarely
considered in comparative analyses. Admittedly, fitting
such models to biologically realistic cases more complex
than Felsenstein’s scenario will require estimating the
location and number of events and we therefore
view our “singular events” model as primarily an
illustrative alternative solution to Felsenstein’s thought
experiment. Nevertheless, the example illustrates that
the phylogeny imposes a challenge to the inference
of meaningful associations between traits not because
it renders errors nonindependent, but because the
structure of the phylogeny allows for ancient, potentially
unknowable causal factors (which may be few or even
singular) to drive widespread associations between
traits. Evaluating the validity of these associations as
evidence for a meaningful relationship, even in the case
of continuous traits, is precisely the unresolved challenge
identified by Maddison and FitzJohn (2015) in the case
of discrete character correlations (as we will further
elaborate in Case Study III).

CASE STUDY II: ADAPTIVE HYPOTHESES AND

SINGULAR SHIFTS

As stated above, the IC method is based on the BM
model of trait evolution. While this model is useful
(and has often been used) for testing for adaptation,
it is inconsistent with how we think of the process of
adapting to an optimal state (Lande 1976; Hansen 1997;
Hansen and Orzack 2005; Hansen et al. 2008; Hansen and
Bartoszek 2012). Hansen’s introduction of the Ornstein–
Uhlenbeck (OU) process to comparative biology and the
suite of methods built on his approach have been the
only real attempts to actually try and capture the basic
dynamics of adaptive trait evolution on phylogenies.

Multioptima OU models have been widely used to test
for the presence of shifts in evolutionary regimes (i.e.,
parts of the phylogeny with their own optima, or less
commonly, their own strength of selection parameters).
Tests of adaptive evolution come in two flavors: those
with an a priori hypothesis (or hypotheses) regarding
which lineages belong to which distinct regimes based
on ancestral state reconstruction of explanatory factors
(Butler and King 2004; Beaulieu et al. 2012) and those
where the locations of regime changes are themselves
estimated along with the parameters of the OU process
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(Ingram and Mahler 2013; Uyeda and Harmon 2014;
Khabbazian et al. 2016).

These two types of approaches represent two different
philosophies of data analysis that follow a schism that
cuts through comparative methods. For example, there
are two major ways to investigate the dynamics of lineage
diversification: test specific hypotheses about the drivers
of diversification rate shifts (e.g., the ‘SSE’ family of
models Maddison et al. 2007; FitzJohn 2012) or search
for the most-supported number and configuration of
shifts (Alfaro et al. 2009; Stadler 2011; Rabosky 2014).
The former (hypothesis testing) seeks to understand
the causes of evolutionary shifts, while the latter (data
driven) is a descriptive and exploratory approach to
understanding evolutionary patterns. As we alluded
to above, we refer to these data-driven approaches as
“phylogenetic natural history” due to their similarity to
the practice of natural history observations in nature but
projected backwards through phylogenetic space and
time (Maddison and FitzJohn 2015).

Of course, the types of inferences we can make will
be limited by our choice of approach. For example,
it may be tempting to use exploratory approaches
such as BAMM (Rabosky 2014) or bayou (Uyeda
and Harmon 2014) to search a vast range of model
space to find a particularly well-supported statistical
hypothesis, observe the shifts identified, and then
come up with post hoc explanations for why that
particular configuration fits an adaptive story that the
researcher can suddenly construct with great precision.
(Comparative biologists are of course not unique in
succumbing to such temptations; see e.g., Pavlidis
et al. 2012). In fact, discovering the location of well-
supported shifts on the phylogeny does not say anything
about causation; it is merely a descriptive technique
to find major features of the data where there is
evidence that the parameters governing the dynamics
of trait evolution have shifted on the phylogeny. It
is nonetheless useful—and we argue essential—that a
researcher know where these shifts occur. The reasons
for this are covered in Case Study I: these major shifts
are likely to drown out any biological signal in a data
set if they are unaccounted for by our hypothesis-
driven models. But even beyond these statistical
considerations, observing which lineages and clades
differ in evolutionary tempo and mode is as vital to
good macroevolutionary inference as traditional natural
history is to biology more generally—such knowledge
and familiarity with the organisms is essential to
generating “empirically-justifiable” synthetic theories
of evolution (Futuyma 1998). For these reasons, we
argue that hypothesis-driven and phylogenetic natural
history approaches are complementary: we must pit
our particular causal hypotheses against a descriptive
“stuff-happens” model built on idiosyncratic singular
evolutionary events.

To illustrate how we might go about uniting these
two modes of inference to disentangle the support for
causal models of evolution from that attributable to
singular events, we reanalyze a data set introduced by

Scales et al. (2009) on lizard muscle fiber proportions
(hereafter, the ‘Scales’ data set). (An expanded data set
was reanalyzed by Scales and Butler (2016) with slightly
modified hypotheses. However, the original 2009 article
serves as a clearer example with which to illustrate our
perspective; we do not delve into differences between
the two.)

Scales et al. (2009) are interested in the composition
of muscle fiber types in squamate lizards, and whether
these muscle fibers evolve adaptively in response to
the changing behavior and ecology of the organisms.
They propose three primary adaptive hypotheses for the
drivers of fast glycolytic (FG) muscle fiber proportions:
i) foraging mode behavior (FM; e.g., sit-and-wait vs.
active foraging vs. mixed); ii) predator escape behavior
(PE; e.g., active flight vs. crypsis vs. mixed); and iii) a
combined hypothesis of foraging mode and predator
escape (FMPE) that assigns a unique regime to every
combination of FM and PE represented in the data
set. For each hypothesis, they reconstruct a likely
phylogenetic history of these behavioral modes on the
phylogeny by conducting ancestral state reconstructions
(Fig. 3). After fitting the multioptimum OU models to
the muscle fiber data, they find strong support for the PE
hypothesis, which is 13.0 Akaike’s Information Criterion
(AICc) units better than the next closest model (FMPE).
Such a finding appears quite reasonable under the “Life-
Dinner Principle” (Dawkins and Krebs 1979), which
suggests that escaping a predator may have a far more
direct effect on fitness than obtaining a food item (Scales
et al. 2009).

However, AIC provides only relative support for
a model given a set of alternatives (see Pennell
et al. 2015 for more on this point in the context of
comparative methods). An examination of the particular
configuration of shifts in the three hypotheses may
give pause to researchers familiar with squamates. For
example, some may want to quibble with the suggestion
that the “sit-and-wait” foraging behavior of Phrynosoma
species, which are often ant-eating specialists that
leisurely lap up passing insects, should be grouped with
the “sit-and-wait” tactics of species such as Gambelia
wislizenii, a voracious carnivore that frequently subdues
and consumes other lizards close to their own size.
Looking at the reconstructions, it is also apparent that the
PE hypothesis is the simplest model that allows a shift
on the branch leading to Phrynosoma, a group that any
herpetologist would identify as “weird” for a multitude
of reasons (indeed, these are the eyeball-socket-blood-
squirters alluded to in the introduction). The question
then arises: is the signal in the data set for the PE
hypothesis driven entirely by the singular evolution
of different muscle fiber composition in Phrynosoma
lizards? If so, then any number of causal factors that
differ between Phrynosoma and other lizards could be
equally as likely as PE—including FM with a slight
reclassification of character states! We want to emphasize
that we are not criticizing any of the particular choices
the researchers involved in this study made. Rather, we
argue that such quandaries are the inexorable result
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FIGURE 3. A reanalysis of the Scales et al. (2009) data set of fast glycolytic muscle fiber fraction across 22 squamate lizards. A) A traitgram
depicting the distribution of the data and the reconstructed regimes for the best-fitting Predator-Escape (PE) hypothesis (blue = cryptic, yellow
= active flight, purple = mixed). B) Posterior distributions of weights estimated for the PE hypothesis when mixed with a RJMCMC analysis for
the original empirical data (purple), data simulated under the best-fitting estimated parameters for a Phrynosoma-only shift model (blue), and a
data set simulated under the best-fitting estimated parameters for the full PE model (yellow). Notice that the empirical data set has intermediate
weights. C) Posterior probabilities for all branches of the phylogeny estimated for the original empirical data (X-axis) and the simulated data set
under the PE hypothesis (dashed line is the 1 to 1 line). D) We estimate a high posterior probability on a regime shift in the genus Phrynosoma
from the empirical data only (red circle), indicating that while the PE hypothesis explains some patterns in the data, it does not fully explain the
shift present in the behaviorally and ecologically unique genus Phrynosoma.

whenever the primary signal in the data is due to a
singular historical event.

To explore the impact of the distinctiveness of simply
being a Phrynosoma lizard, we developed a novel
Bayesian model by building on the R package bayou
(Uyeda and Harmon 2014). To do so, we consider the
macroevolutionary optimum of a particular species to
be a weighted average of past regimes, as is typical in
all OU models with discrete shifts in regimes (Butler
and King 2004; Beaulieu et al. 2012), but in our case,
this weighted average is itself a weighted average of
two differing configurations of the locations of adaptive
shifts (often referred to as “regime paintings”). One
configuration assumes that shifts in the optima have
occurred where a discrete character, hypothesized to
shape the evolutionary dynamics of the continuous
character, is reconstructed to have shifted. The other
configuration is estimated directly from the data using
bayou’s reversible-jump Markov Chain Monte Carlo
(RJMCMC) algorithm.

E[Yi]=w( PE( ) PE)+(1−w)( RJ( ) RJ). (5)

This equation describes the expected value of a trait
for species i, Yi as a weighted average between the
expected trait value under the PE hypothesis and the
expected trait value under the reversible-jump estimate
of regime shift configurations. The vectors PE and RJ
are the values of the trait optima for the NPE and NRJ
adaptive regimes, while PE and RJ correspond to
the standard OU weight matrices that average over the
history of adaptive regimes experienced by species i over
the course of their evolution, with older regimes being
discounted proportional to the OU parameter (for a full
description of how these weight matrices are derived, see
Hansen 1997; Butler and King 2004).

In our model, the regime painting for our a
priori hypothesis PE is fixed, while we estimate the
parameters the configuration of shifts for the reversible-
jump component, RJ, as well as the values for the
optima PE and RJ; and standard parameters for the OU

model such as and 2 which are assumed constant
across the phylogeny. We also estimate the weight
parameter w, which determines the degree of support
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for the PE hypothesis against the reversible-jump regime
painting. We place a truncated Poisson prior on the
number of shifts for the reversible-jump analysis to be
quite low, with a mean of =0.5 and a maximum of

=10 (meaning that we are placing a prior expectation
of 0.5 shifts on the tree). Furthermore, we place a
symmetric -distributed prior on the w parameter with
shape parameters of (0.8, 0.8). Additional details on
the model-fitting can be found in the Supplementary
material available on Dryad.

We then fit this model to three different data sets:
i) the original Scales data; ii) data simulated using the
Maximum Likelihood estimates for the parameters of
the PE model fitted to the Scales data set; and iii) data
simulated under the Maximum Likelihood estimates for
a “Phrynosoma-only” model in which a single shift occurs
leading to the genus Phrynosoma. We then compared
the posterior distribution of the weight parameter w to
evaluate the weight of evidence for each hypothesis in
each data set.

We find that our approach places intermediate weight
on the PE hypothesis for the original Scales data set.
When we simulated data under the PE hypothesis, the
estimated weight given to the PE hypothesis was likewise
high (Fig. 3B). When data were simulated under the
Phrynosoma-only hypothesis, the weight given to the PE
hypothesis was low, as predicted (Fig. 3B). Furthermore,
the RJ portion of the model fit to the Scales data
set recovers only a single highly supported shift on
the stem branch of the Phrynosoma lizards (Fig. 3C,D).
This suggests that the PE hypothesis has statistically
supported explanatory power as its estimated weight
is well bounded away from 0. But it does not explain
everything. In particular, the PE hypothesis fails to
fully explain the shift leading to the Phrynosoma lizards
(Fig. 3C,D), which are more extreme than they should
be considering the other taxa in their regime (there
is only one, Holbrookia maculata, which does not show
such an extreme shift). In summary, the signal for
an association between muscle fiber composition and
predation escape behavior is generated in part, but not
completely, by variation that is specific to the genus
Phrynosoma. Therefore, the conclusions of Scales et al.
(2009) hold up, even when accommodating evolutionary
regime shifts unrelated to the factors being considered,
although the weight of evidence appears to be larger
than it actually is. This more subtle view of muscle
fiber evolution conforms quite well with our biological
intuition—variation in PE behavior is a good explanation
for observed patterns of muscle fiber divergence, but
Phrynosoma are a unique group with other factors likely
influencing their trait evolution beyond PE.

We can conduct the same analysis where we test not
the PE hypothesis, but the Phrynosoma-only hypothesis
against the reversible-jump hypotheses (Fig. 4). In this
case, we recover high weights for the Phrynosoma-
only hypothesis regardless if the model is fit to the
Scales data set, or to data simulated under either the
Phrynosoma-only hypothesis or the PE hypothesis. This
is because accounting for the Phrynosoma shift is the

primary feature of all three data sets (though weights
are somewhat higher for data simulated under the
Phrynosoma-only hypothesis than others). It may appear
unsatisfying that such high weights are recovered for the
a priori hypothesis when a singular event, which is easily
reconstructed by the RJMCMC, explains the distribution
of the data just as well.

However, the analysis favors the Phrynosoma-only
hypothesis simply because of the vague priors placed on
the number and location of shifts in the reversible-jump
analysis. Guessing correctly which of the 42 branches on
the phylogeny has a single shift with our hypothesis is
rewarded by the analysis (we will return to this issue
in Case Study III). In the original Scales data set, there
are weakly supported shifts in the clades leading to
the sister group of Phrynosoma lizards, and the branch
leading to Acanthodactylus scutellatus and Aspidoscelis
tigris. Finally, we can combine all three hypothesis
simultaneously by placing a Dirichlet prior on the vector
w=[wRJ,wPE,wPhrynosoma]. Doing so recovers strongest

support for the Phrynosoma-only model, intermediate
support for the PE hypothesis, and very little weight on
the reversible-jump hypothesis, which has no strongly
supported shifts (Fig. 5).

By combining phylogenetic natural history
approaches with our a priori hypotheses, we show
that we can account for singular evolutionary events
that are not well-accounted for by our generating
model. In the case of the PE hypothesis, we show
that it does indeed have explanatory power beyond
simply explaining a singular shift in Phrynosoma and
support the original authors’ conclusions. However, the
intermediate result likely only occurs because the PE
hypothesis places Phrynosoma in the same regime as
Holbrookia maculata, which does not share the extreme
shift that is found in Phrynosoma. Were this not the case
(as in our fitting of the Phrynosoma-only hypothesis), it
would still require visual inspection of the phylogenetic
distribution of traits under the hypothesis in question to
determine that a singular evolutionary event is driving
support for a particular model. As discussed above,
given a large enough tree such a priori hypotheses
are likely to be strongly supported; if you can predict
which one branch out of many will contain a shift then
you may be on to something. But given the dangers of
ascertainment bias and our biological intuition, we find
this interpretation unsatisfying (Maddison and FitzJohn
2015). As with Case Study I, these scenarios ultimately
reduce to whether or not coincident unreplicated events
are evidence of a causal link between traits (Maddison
and FitzJohn 2015), a problem we will address in Case
Study III.

Nevertheless, we show the value in combining a
hypothesis-testing framework with a natural history
approach to identifying patterns of evolution. We
show here that allowing for unaccounted shifts can
provide a stronger test and more nuanced conclusions
regarding the support for a particular predictor
driving trait evolution across a phylogeny. Furthermore,
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FIGURE 4. A reanalysis of the Scales et al. (2009) data set of fast glycolytic muscle fiber fraction across 22 squamate lizards against the Phyrnosoma-
only hypothesis. A) A traitgram depicting the distribution of simulated data under the Phyrnosoma-only hypothesis (yellow = squamates, purple
= Phyrnosoma). B) Posterior distributions of weights estimated for the Phyrnosoma-only hypothesis when mixed with a RJMCMC analysis for
the original empirical data (purple), data simulated under the best-fitting estimated parameters for a Phrynosoma-only shift model (blue), and
a data set simulated under the best-fitting estimated parameters for the full PE model (yellow). All analysis recover high weights. C) Posterior
probabilities for all branches of the phylogeny estimated for the original empirical data (X-axis) and the simulated data set under the PE hypothesis
(dotted line is the 1 to 1 line). D) Modest support for two additional shifts are recovered for the empirical data only (red circles).

predictors which provide additional explanatory power
(if e.g., regimes are convergent or if predictors vary
continuously) will be even more favored over natural
history models. Thus, our framework certainly does not
automatically reward more complex, freely estimated
models. Rather, the great uncertainty in possible models
is incorporated as a prior on the arrangement of shifts
and is limited in explanatory power, something that
researcher-driven biological hypotheses are much more
capable of accomplishing.

CASE STUDY III: DARWIN’S SCENARIO AND

UNREPLICATED BURSTS

We now turn to a case where both the explanatory
variable and the focal trait are discrete characters.
Detecting a signal of evolutionary covariation is more
difficult in discrete characters, but examining this
situation isolates the recurring problem we have
identified in the two previous Case Studies—whether
or not coincident unreplicated events are evidence of
causal links between traits. As we mention above,

Maddison and FitzJohn (2015) recently demonstrated
that commonly used methods return significant
correlations all the time—and in scenarios that seem
to defy our statistical intuition. For example, Pagel’s
(1994) correlation test would find the phylogenetic
codistribution of milk production and middle ear bones
highly statistically significant even though they both
are a defining characteristic of mammals, an inference
so obviously dubious that even Darwin (1872) warned
against it. This seems to be a clear case of phylogenetic
pseudoreplication (Read and Nee 1995; Maddison and
FitzJohn 2015). More broadly, Maddison and FitzJohn
describe the goal of correlation tests as finding the
“weak” conclusion that “the two variables of interest
appear to be part of the same adaptive/functional
network, causally linked either directly, or indirectly
through other variables” (p. 128). They assert that
with our current approaches, we cannot even clear this
(arguably low) bar. Here, we delve into this idea a
bit deeper. What constitutes good evidence of such a
relationship and why precisely do phylogenetic tests
for correlations provide such apparently unreasonable
results?
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FIGURE 5. A reanalysis of the Scales et al. (2009) data set of fast glycolytic muscle fiber fraction across 22 squamate lizards against with both
the Phrynosoma-only hypothesis and the PE hypotheses. Weights are depicted for each of the three data sets A) the original Scales data set B) A
data set simulated under the Phrynosoma-only model C) A data set simulated under the PE hypothesis. In B and C, the correct model receives
highest support with neither of the alternatives being well-supported. In the original Scales data set, the Phrynosoma-only hypothesis receives
the most weight (indicating a singular shift best explains the patterns observed in the data), while an intermediate weight is given to the PE
hypothesis (which explains a good amount of the remaining variation). In no analysis did the reversible-jump portion recover support for any
additional shifts.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article-abstract/67/6/1091/4985805 by U

niversity Libraries | Virginia Tech user on 21 August 2019



2018 POINTS OF VIEW 1101

Maddison and FitzJohn highlight two hypothetical
situations, that they refer to as “Darwin’s scenario” and
an “unreplicated burst.” They argue that these scenarios
provide little evidence for an adaptive/functional
relationship between two traits because the patterns of
codistribution only reflect singular evolutionary events
(Fig. 1). In Darwin’s scenario, two traits are coextensive
on the phylogeny, meaning that in every lineage where
one trait is in the derived character state, the other trait
is as well. As an example, consider the aforementioned
phylogenetic distribution of middle ear bones and
milk production in animals; all mammals (and only
mammals) have middle ear bones and produce milk.
These traits (depending on how they are defined) have
only appeared once on the tree of life and both occurred
on the same branch (the stem branch of mammals).
The unreplicated burst scenario is identical to Darwin’s
scenario except that rather than a single transition
occurring in both traits, there is a single transition in
the state of one trait (e.g., the gain of middle ear bones)
and a sudden shift in the transition rates in another trait
(e.g., the rates by which external testes are gained and lost
across mammals). Note that these scenarios do not differ
qualitatively from Felsenstein’s worst-case scenario nor
the Phrynosoma-only model scenario from Case Studies
I and II (Fig. 1). In all three scenarios, something novel
and interesting happened on a single branch and the
distribution of traits at the tips of the phylogeny reflects
this.

In their article, Maddison and FitzJohn (2015)
simulated comparative data and reported a
preponderance of significant results using Pagel’s
correlation test (1994) and Maddison’s (1990)
concentrated changes test. In order to hone our
intuition of the problems they present, we dig a
bit deeper and investigate the mathematical reason
that Pagel’s discrete correlation test (1994) returns a
significant result in Darwin’s scenario. [We should
note here that Brookfield (1993) conducted a similar
analysis that was more-or-less completely overlooked.]
To make the problem tractable, we assume that the traits
were selected for study without first looking at their
phylogenetic distribution, a condition that we (as well
as Maddison and FitzJohn 2015) suspect is rarely met in
practice (more on this below).

Again, under Darwin’s scenario, there is a single
concurrent origin of two traits leading to perfect
codistribution across the phylogeny for all taxa
stemming from branch L (a condition we define
mathematically as event A). Under the independent
model, both traits X and Y have to switch from 0 to 1 on
the same branch L once. For these traits, we can make the
assumption that the likelihood of evolving these traits at
all is quite small. In other words, replaying the tape of
life, under Markovian assumptions, will likely lead to
many worlds where milk and middle ear bones don’t
exist at all. However, we do not study traits that don’t
exist. Thus, for traits such as these, we can expect that
there is likely to be only one origin of the trait on the
phylogeny. Therefore, the probability of the independent

model denoted as P(Mind|A) given the assumptions
above is

P(Mind|A)=P(Nx(t)|Nx(T)≥1)P(Ny(t)|Ny(T)≥1)

= (t/T)2, (6)

where t is the branch length of branch L containing both
shifts (Karlin and Taylor 1981) and Nx and Ny are the
stochastic processes that denote the number of shifts of
trait X and Y at time t, respectively (see Supplementary
Material available on Dryad for exact derivation of the
probability the independent model). Since this is the only
way Darwin’s scenario can occur on a branch for Mind,
the probability in Eq. (6) is equivalent to the likelihood
value L(Mind) evaluated at the maximum likelihood
estimate of Mind.

In contrast, for the completely dependent model Mdep,

it is enough to follow what happens in a single trait
since the second will just simply change along. The
probability of the dependent model P(Mdep|A) under
Darwin’s scenario is

P(Mdep|A)= (t/T) (7)

(see full derivation of this probability in the
Supplementary Material available on Dryad). The
likelihood value at the maximum likelihood estimate
of this model turns out to be just the probability from
Eq. (7), that is L(Mdep)= t/T. Therefore, the test statistic

D used in the likelihood ratio test for Pagel’s discrete
correlation test comparing models Mind and Mdep is

simply proportional to the ratio of the length of the
branch where the shift occurred to the total length of
the tree:

D=2(lnL(Mdep)−lnL(Mind))

=2(ln(t)−ln(T))−4(ln(t)−ln(T))

=2(ln(T)−ln(t)). (8)

In other words, the results of the analysis are
predetermined. Under Darwin’s scenario, including
additional taxa in the analysis will increase the support
for the dependent model simply as a consequence of
increasing the total length of the tree (i.e., because T
increases and the difference between ln(T) and ln(t) will
get larger as long as the additional sampled taxa do not
break Darwin’s scenario).

The assumptions used to derive this result differ very
slightly from those used in available software; however,
we can use simulation to test the validity of our result
and to demonstrate that this is the mathematical reason
that Pagel’s test returns a significant result. Using the R
package diversitree (FitzJohn 2012), we simulated a set of
20 taxon trees where both traits underwent a irreversible
transition on a single, randomly chosen, internal branch.
We then fit a Pagel model with constrained (Mdep)

and unconstrained (Mind) transition rates. We also
constrained the root state in both traits to 0, rates of
losses of both the traits to 0, and gain rates in the
dependent model following the gain of the other trait
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FIGURE 6. Darwin’s scenario–the singular origin of two coextensive traits on the phylogeny–represents a boundary case to finding the
correlation between discrete characters. Pagel’s correlation test for Darwin’s scenario can essentially be reduced to the difference in probability
between choosing the same branch twice vs. choosing the branch only once. We demonstrate that here, showing our predicted differences in
log likelihood between the independent and dependent trait models (y-axis) against the empirical estimates of the difference in log likelihood
between models for simulated Darwin’s scenarios on different phylogenies. Dotted line indicates equality. Points falling off the line represent
slight violations of the assumptions we used to derive our prediction. Particularly, we assume that the rates of gain of the traits are so low that
only one shift is ever observed. The shading of the points indicates cases where this assumption is violated, as outlying points with max(Q)
values much greater than 1/T (where only 1 shift is expected) are much more likely to fall off the predicted line.

to be extremely high. Plotting the empirically estimated
differences in the MLEs against the predictions making
the simplifying assumptions above reveals a strong
modal correlation between them (Fig. 6). Differences
likely reflect the fact that we have not explicitly made the
assumption that P(Nx(t)=1)=P(Ny(t)=1)≈1 when we
fit the model with diversitree. Furthermore, we compare
here only fully dependent and independent models.
This can be seen when calculating the probability of
one switch in each trait P(Nx(t)=1,N(t)y =1). In the
fully dependent case that simply becomes P(Nx(t)=1),
in the independent case it becomes P(Nx(t)=1)P(Ny(t)=
1) but in the correlated case it becomes P(Ny(t)=
1|Nx(t)=1)P(N(t)x =1)=1 affecting the likelihood ratio
test based on estimations of the correlation (see
Supplementary Material available on Dryad). However,
such intermediate cases will only introduce slight
differences and may not be distinguishable from the
fully dependent case under Darwin’s Scenario (though
they will be important in more intermediate cases, see
Supplementary Material available on Dryad).

Maddison and FitzJohn (2015) hinted that the
coincident occurrence of single events could be a way
of measuring the evidence for a correlation, but did not
work out the details as we have done here. The key
to understanding the above results is to recall Gould
and Eldredge’s famous dictum (1977) that “stasis is
data.” The remarkable coincidence is not just that the
two characters happened to evolve on the same branch
but that they were never subsequently gained or lost
throughout the rest of the tree. For even a modestly sized

tree, this coincidence is so unlikely that the alternative
hypothesis of correlated evolution is preferred over the
null. It is therefore not completely unreasonable that
Pagel’s test tells us that these traits have evolved in an
entirely correlated fashion.

However, one key consideration should make us
suspect of this line of reasoning. As Maddison and
FitzJohn (2015) point out, the traits we use in comparative
analyses are not chosen independently with respect to
their phylogenetic distribution (as we assumed in our
analysis). Rather, researchers’ prior ideas about how
traits map unto trees likely inform which traits they
choose to test for correlated evolution. For example, it
is common practice among systematists to search for
defining and diagnostic characteristics for named clades;
these traits are of especial interest and are likely the
same sorts of traits that are researchers might include
in comparative analysis, thereby greatly increasing the
likelihood of finding traits with independent, unrelated
origins that align with Darwin’s scenario. We agree
with Maddison and FitzJohn (2015) that this type
of ascertainment bias is likely prevalent in empirical
studies, even if it is usually more subtle than testing
for a correlation between milk and middle ear bones.
However, the presence of ascertainment bias does not
mean it is not worth attempting to discover the source
of the signal. Understanding the exact mathematical
reasons why Pagel’s test infers a significant correlation in
a given case provides a clear boundary condition that can
help develop quantitative corrections for ascertainment
bias. Furthermore, the issues of ascertainment bias
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are likely to rapidly dissipate as we move away from
the boundary case of Darwin’s scenario. As a result,
extending our analytical approach to more complicated
scenarios will likely provide an even more meaningful
estimate of the weight of evidence supporting a
hypothesis of correlation.

THE STRUCTURE OF A SOLUTION

We have shown in the three Case Studies that many
PCMs, including those that form the bedrock of our field,
are susceptible to being misled by singular evolutionary
events. This fundamental problem has sown doubts
about the suitability and reliability of many methods in
comparative biology (e.g., Losos 2011), even if it was not
obvious that these issues were connected. But again, the
fact that apparently different issues share a common root
makes us hopeful that there can be a common solution.

As we illustrate through our Case Studies, we think
that accounting for the possibility of idiosyncratic
evolutionary events will be an essential step towards
such a solution. However, we will need to think hard
about how best to model such events. In Case Study
II, we present one solution to the problem that involves
explicitly accounting for the possibility of unaccounted
adaptive shifts using Bayesian Mixture modeling. We
believe this approach has a great deal of promise as
it provides simultaneous identification of biologically
interesting shifts and the explanatory power of a
particular hypothesis.

However, we do not claim that such an approach is the
only solution or that it solves the problem completely.
Indeed, we find that in all three Case Studies, the
uniting philosophy is to consider models that account
for background shifts in evolutionary regime, rather
than strict adherence to a particular methodology. For
example, we highlighted in the introduction that we
think HSMs (following Beaulieu et al. 2013; Beaulieu and
O’Meara 2016) are a potentially powerful, and widely
applicable solution, even though we did not consider
these in detail here.

And there are still other potential solutions which
we have not even mentioned yet. In our own work
(Uyeda et al. 2017), we have used a strategy similar
to the Bayesian Mixture Modeling presented in Case
Study II, but instead of modeling the trait dynamics
as a joint function of our hypothesized factors and
background changes (represented by the RJMCMC
component), we did the analyses in a two-step process:
first, we used bayou (Uyeda and Harmon 2014) to
locate shifts points on the phylogeny, then used Bayes
Factors to determine if predictors could “explain away”
shifts found through exploratory analyses. For PGLS
and other linear modeling approaches, modeling the
errors using fat-tailed distributions (Blomberg et al.
2012; Landis et al. 2012; Elliot and Mooers 2014;
Duchen et al. 2017) may mitigate the impact of singular
evolutionary events on the estimation of the slope (also
see Slater and Pennell 2013, for an alternative approach

using robust regression). Furthermore, we also think
that rigorous examination of goodness-of-fit and model
adequacy following any comparative analysis is critical
for finding unforeseen singular events driving signal
in the data set (Garland et al. 1992; Boettiger et al.
2012; Slater and Pennell 2013; Pennell et al. 2015). Which
of these solutions (including those that were included
in our Case Studies and those that were not) will
be the most profitable to pursue will probably differ
depending on the question, data set, and application—
we anticipate that there will not be a one-size-fits-all
solution—but we do think that any compelling solution
will involve a unification of phylogenetic natural history
and hypothesis-testing approaches.

But we want to take this a step further. While it is
useful to account for phylogenetic events in our statistical
models, a greater goal of comparative biology should
be explain why these events exist in the first place. We
return to Maddison and FitzJohn’s (2015) “weak” goal of
finding whether or not “two variables of interest appear
to be part of the same adaptive/functional network,
causally linked either directly, or indirectly through
other variables.” We ultimately disagree with them that
this constitutes a weak conclusion; the challenges of
making these inferences from any comparative data
set are significant. Furthermore, we find the often
repeated axiom “correlation does not mean causation”
to be unhelpful. While it is accurate in the strict
sense, some patterns of correlations will at least be
consistent with a given model of causation whereas
others will not be. And it is clear from reading the
macroevolutionary literature, biologists do not shy away
from forming causal statements from correlative data
regardless. While some might reasonably wish us to
simply highlight these claims as violating statistical
principles, we think it is worthwhile to take seriously
the question: “What would it take to infer causation from
comparative data?” And even if we are to conclude that
all the evidence for a hypothesized causal relationship
stems from one or a few evolutionary events, is this
finding biologically meaningful?

PHYLOGENIES ARE GRAPHICAL MODELS OF CAUSATION

One way to gain a foothold on the problem of
causation is to build, communicate, and analyze PCMs
in a graphical modeling framework—a perspective that
has recently been advocated by Höhna et al. (2014,
2016). Graphical models that depict hypothesized causal
links between variables make explicit key underlying
assumptions that may otherwise remain obscured;
indeed, the precise assumptions of PCMs were hotly
debated in the early days of their development (McNab
1988; Harvey et al. 1995; Westoby et al. 1995a,b; Nee
et al. 1996; Westoby 2007) and remain poorly understood
to this day (Hansen and Orzack 2005; Hansen and
Bartoszek 2012). As examples of how using graphical
models force us to be more clear in our reasoning,
consider the graphs in Figure 7. We depict three
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FIGURE 7. Graphical models of alternative causal relationships between a predictor (X) and a trait of interest (Y). Note that each node has
independent, uncorrelated error as an input, but these have not been shown for clarity. A) X follows the phylogeny with observed states (gray)
and unobserved ancestral states (white) and is a cause of trait Y. However, the phylogeny and pattern of evolution of X are irrelevant, and this
graph can be modeled with methods such as OLS regression. B) The trait Y has unobserved causes (Ei) that follow the phylogeny (gray) that can
be modeled using, for example, BM. The trait X is a cause of Y. This graph can be modeled using methods such as PGLS and PIC. C) The trait Y
evolves on the phylogeny and is affected by trait X all throughout its history. Thus, the history of both X and Y must be modeled (e.g., BM of X
and Ornstein–Uhlenbeck for Y). This graph can be modeled using methods such as SLOUCH.

different models of causation that have phylogenetic
effects that each require alternative methods of analysis
to estimate the effect of trait X on trait Y. In our
example, a four species phylogeny provides possible
pathways for causal effects, but variables may have
entirely nonphylogenetic causes or may be blocked from
ancestral causes by observed measurements, rendering
the phylogeny irrelevant (e.g., Fig. 7A). Edges connect
nodes and indicate the direction of causality, where the
nature of phylogenies allows us to assume that ancestors
are causes of descendants, and not vice versa. This
asymmetry results in a what is known as a probabilistic
Bayesian Network (a type of directed acyclic graph,
or DAG) that predicts a specific set of conditional
probabilities among the data.

Depending on the Bayesian network structure, the
appropriate method of analysis can range from a
nonphylogenetic regression (Fig. 7A), to commonly used
comparative methods such as PGLS (Fig. 7B), to methods
that require modeling both the evolutionary history of
interaction of both trait X and trait Y (Fig. 7C) (Hansen
1997; Butler and King 2004; Hansen et al. 2008; Revell
2010; Hansen and Bartoszek 2012). We emphasize that
this implies that the use of phylogeny in interspecific

comparisons is an assumption that depends on the precise
question being asked and the hypothesized causal
network. It is often assumed and asserted that PCMs are
simply a more rigorous version of standard regression.
This is simply not true.

In cases where phylogeny does matter, we must specify
the generating model for unobserved states in our causal
graphs. For example, it is common to assume a BM model
for residual variation in PGLS or that ancestral states
are reconstructed using stochastic character mapping
in OU modeling of adaptation. However, BM and
other continuous Gaussian or Markov processes are
only a few of the many types of processes that may
generate change on a phylogeny. We have shown that
discontinuous processes and singular events are poorly
handled in our current framework and lead to much
confusion about what exactly, our statistical methods
are allowing us to infer from comparative data. Such
models can be similarly illustrated using graphical
models (Fig. 8). By making our models explicit, we see
that the phylogeny is best thought of as a pathway
for past factors to causally influence the present-day
distribution of observed states. These “singular-event”
models are alternatives to the more continuous models
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A B

FIGURE 8. Graphical models of Darwin’s Scenario between a predictor (X) and a trait of interest (Y). Note that each node has independent,
uncorrelated error as an input, but these have not been shown for clarity. A) Singular event model. Here two independent factors cause a change
on ancestral states X3 and Y3 (K and L respectively). However, they are independent events and coincidentally occur at the same point on the
phylogeny. B) Similar to the previous model, but K and L are causally linked. Thus, whenever K occurs, it probabilistically causes L which causes
a shift in Y. If only one event occurs however, this model is only distinguishable from graph (D) proportional to the probability that events K
and L occur on the same branch (see Case Study III).

we typically examine. Furthermore, representing our
models as graphs, we are poised to take advantage of
the sophisticated approaches for causal reasoning (e.g.,
Pearl 1995, 2009; Sugihara et al. 2012; Shipley 2016) that
subsume familiar tools such as path analysis, structural
equation modeling, and graphical modeling into a
more generally applicable structural theory of causation.
These tools have been embraced by fields such as
computer science, epidemiology and the social sciences,
but largely ignored by comparative biologists [rare
exceptions are the recent introductions of phylogenetic
path analysis by Hardenberg and Gonzalez-Voyer (2013)
and the application of causal models to make inferences
from paleontological time-series by Reitan and Liow
(2017)].

One clear case where such graphical modeling
would improve inference are cases where considering
phylogeny reverses the sign of the relationship between
two variables. This is precisely what Nee et al. (1991)
found looking at the relationship between body size
and abundance in British birds; depending on how
they aggregated the data (means of species, means of
genera, means of tribes, etc.) the direction of correlation
flipped back and forth. This reversal in the sign of
the relationship between two variables X and Y when
conditioning on a third Z is a general, and widely
studied, statistical phenomenon known as “Simpson’s
paradox” (Blyth 1972). Nee et al. (1991, 1996) hold up
their findings of the British bird study to be emblematic;
in their view, the presence of Simpson’s paradox in their
data clearly implies that phylogeny is key to making
sense of interspecific data.

However, as Pearl (2014) has convincingly
demonstrated, Simpson’s paradox is not really
paradoxical at all when considered from the standpoint
of Bayesian Networks. In fact, Pearl shows that the
appropriate way to analyze the data depends crucially
on what one assumes is causing what. To understand
how causal inference resolves Simpson’s Paradox,
we now present a rather artificial, but nevertheless
illustrative example (Pearl 2009). Consider three traits:
body size (B), abundance (N) and migratory behavior
(M) in birds. Given the Bayesian Networks presented

in Figure 9, we have two possible hypotheses for the
causal relationships between the traits. We further
consider the possibility that we do not have adequate
data on M, and thus only B and N are observed. Our
goal is to estimate the causal effect of B on N. In
Figure 9A, body size influences whether or not species
become migratory, and both migratory status and
body size influence species abundance (but in opposite
directions). Furthermore, under this scenario, both body
size and migratory status will have phylogenetic signal.
We can evolve traits along the phylogeny depicted in
Figure 9C and obtain a bivariate plot that looks like
Figure 9D. Under the alternative Bayesian Network,
migratory behavior still has a positive effect on species
abundance, but also increases body size, which in turn
causes decreases species abundance. These two causal
structures are observationally equivalent—meaning that
any distribution simulated under one can be replicated
under the alternative causal structure. Therefore, both
networks can produce data sets with phylogenetic signal
in both body size and migratory behavior, and both can
produce a data set with the distribution in Figure 9D
(see Supplementary Material available on Dryad for
additional details on generating Fig. 9).

How then should we analyze the data if we want to
understand the effect of body size on species abundance?
If we assume that body size influences migratory
behavior, then increasing body size (e.g., if natural
selection leads a species to become larger) will increase
the probability of that species becoming migratory—
and the two opposing effects will result in relatively
little change in species abundance. Therefore, we should
perform OLS regression to estimate the net causal
effect of increasing body size. We also note that all the
phylogenetic signal is coming from the evolution of body
size, which becomes irrelevant once we observe body
size, and thus we do not need to perform PGLS. In
contrast, if migratory behavior causes changes in body
size, then selecting for an increase in body size will
not result in a lineage changing their migratory status
at all. Therefore, we are assured that increasing body
size will likewise always decrease species abundance.
Consequently, we should perform PGLS to account for
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FIGURE 9. Simpson’s paradox in PCMs. Panels (A) and (B) depict two alternative Bayesian Networks. In (A), body size is a cause of both
species abundance and migratory behavior, and trait B evolves on the phylogeny . We represent evolution on the phylogeny using a “tree plate”
(see Höhna et al. 2014; dashed box) where (unobserved) node states can influence tip states. In (B), body size still affects species abundance, but
migratory behavior itself is a cause of both body size and species abundance, but the phylogenetic effect is present in migratory behavior (in this
case, we simulated with a Brownian threshold model). (C) A phylogeny similar to that of Darwin’s scenario used to simulate the data set (D),
with migratory species (black) and nonmigratory (white) taxa. The data in (D) can be generated by either causal structure. However, to estimate
the effect of B in both networks, one must use different analytical approaches. To estimate the net effect of B on N in network (A), the appropriate
method of analysis is OLS regression (black line). This is because increasing body size will simultaneously decrease species abundance and
increase migratory behavior, which itself increases abundance, leading to a net slight increase in abundance. However, under network (B) the
correct method is PGLS (gray line) as increasing body size will have no effect on migratory behavior, and unaccounted phylogenetic residual
error is present in the observed data. Here, increasing body size will only have a direct effect of decreasing species abundance, which is reflected
in the estimate of the slope. The resolution of Simpson’s paradox rests entirely on causal assumptions; which are immediately apparent from
graphical models but difficult to express with standard mathematical formulae.

the phylogenetic signal in the residual variation imposed
by (unobserved) migratory status.

By working through the logic of comparative analyses
using graphical models we have come to essentially
the same line of reasoning of Westoby et al. (1995a,b),
who, in the early days of PCMs, challenged the growing
consensus that phylogeny needed to be included in
any interspecific comparison—a consensus which has
only gotten stronger as the years passed by (also
see McNab 2003 for a related critique). Westoby and
colleagues were concerned that including phylogeny

in interspecific comparisons necessarily favored some
causal explanations over others. At the time, their
critique was dismissed as innumerate hogwash (Harvey
et al. 1995; Nee et al. 1996) and this evaluation has
largely stuck. However, from our example of bird size
and abundance, it is apparent that Westoby et al. were
right all along: PCMs are a powerful tools for drawing
inferences from interspecific data but they necessarily
imply some types of causal structures and negate others.
It is too much to ask of our methods to decide what
questions we ought to ask. As Westoby et al. (1995a)
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put it: “No statistical procedure can substitute for
thinking about alternative evolutionary scenarios and
their plausibility” (p. 534).

CONCLUDING REMARKS: ARE OUR MODELS VALID

TESTS OF OUR CAUSAL HYPOTHESES?

By explicitly including phylogeny into our graphical
models of causation, we are forced to reckon with the
scope of the inference problem and the ability of our
data to be informative. While most of the statistical
assumptions of methods are often well-known (e.g.,
for linear models, we assume that errors have equal
variance and are normally distributed, etc.), Gelman
and Hill (2006) argue that there is a more fundamental
assumption—validity of data—that is almost always
implicit and often overlooked:

“Most importantly, the data you are
analyzing should map to the research
question you are trying to answer. This
sounds obvious but is often overlooked
or ignored because it can be inconvenient.
Optimally, this means that the outcome
measure should accurately reflect the
phenomenon of interest, the model should
include all relevant predictors, and the model
should generalize to the cases to which it
will be applied.” (Gelman and Hill 2006)

We believe that far less discussion in comparative
methods has been focused on the issue of statistical
validity of the data collected to the research questions
being posed by a given study. This is in large part because
comparative data and the phylogeny that underly it are
largely beyond the control of the researcher, but careful
consideration of the data is required to understand
what research questions can be reasonably answered.
For example, we find that most comparative research
questions have a poorly defined scope of inference: it
is unclear to what population a model or inference
should generalize to. If we ask “are milk and middle
ear bones correlated?”, we must also specify “in what
organisms?”. Since no organisms other than mammals
have the particular traits we define as “milk” and
“middle ear bones,” we actually do not need statistics
at all to determine whether these traits are correlated—
we have sampled nearly the entire population relevant
to the question! In nature, they are perfectly collinear. If
we wish to expand our scope of inference to hypothetical
organisms that evolve milk and/or middle ear bones we
are free to do so. However, we have collected a very poor
data sample for such a question. It is not the fault of the
statistical method to demonstrate that a poorly designed
experiment does not represent its scope of inference,
rather it is our job as researchers and statisticians to
ask whether or not such a relationship addresses our
biological question and whether the sample of data
collected is valid for the question being asked.

In this article, we have tried to synthesize a wide
variety of statistical and philosophical concepts to lay

out a roadmap for where we think comparative biology
should go. We certainly do not have all the answers.
Of the paths we have explored, there are many details
that need to be worked out, and we fully anticipate
that there are many alternative paths that we have not
even considered. However, we argue that if we are
going to make substantial progress in using phylogenetic
data to test evolutionary hypotheses, we will need to
reckon more seriously with the idiosyncratic nature
of evolutionary history, and to more clearly articulate
precisely what we want to test and whether our models
and data are suitable for the task.
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