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ABSTRACT
In this paper, we explore a model of collective behavior us-

ing EUGENE, an algorithm for automated discovery of so-called
“dynamical kinds”. Two systems are of the same dynamical
kind if their underlying causal dynamics are similar, as defined
using dynamical symmetry. We apply EUGENE to simulation
data from a model capable of generating a range of qualitatively
different collective behaviors, from aligned motion to circular
milling. These behaviors are measured using both global and lo-
cal order parameters, and this data is analyzed with EUGENE.
We find that EUGENE is capable of differentiating between these
systems when global order parameters are used, and can only
identify more coarse characteristics when local order parame-
ters are considered.

INTRODUCTION
Collective behavior refers to group-level complexity that can

emerge from local interactions among multiple individuals. Be-
sides being studied extensively in natural animal groups [1], such
as bird flocks and fish schools, collective behavior is of interest
to the larger scientific community for its ability to generate de-
sired behaviors without directly controlling each individual in a
group. This work finds application in engineering in particular,
for example, in the design and control of robotic swarms, granu-
lar media, and engineered organisms [2–4].

Collective behavior can be generated in models for multi-
agent systems that apply agent-based rules [5] or view the group

∗Address all correspondence to this author.

as a continuum [6]. These models have been shown capable of
capturing a variety of behaviors that either replicate observations
of nature [7] or are relevant to an engineering application [8].
As an example, the model in [9] defines interactions among a
group of self-propelled particles through potential functions and
includes an external source to diversify the types of collective be-
haviors the model can produce. These behaviors include aligned
motion, unaligned swarming, and circular milling patterns, and
are distinguished by selecting model parameters.

For the model in [9] and in the literature in general, collec-
tive behavior is quantified by defining order parameters, whose
values capture the level of coordination in the group. Examples
of order parameters include linear momentum [10], angular mo-
mentum [7], and a measure of closeness in space [9]. A detractor
of such order parameters is that they are defined irrespective of
the system dynamics and take a human-centered, global perspec-
tive on the group’s behavior. Not only does this ubiquitous view
neglect the perspective of an individual (which would be relevant
to an animal group, for example), there has not been a rigorous
demonstration of the parameters’ optimality for measuring order
or complexity as far as we know. This open question on what
order parameters are appropriate to measure collective behavior
may be answered by using model-free data-driven methods to di-
rectly study collective dynamics without imposing any model on
the system.

Data-driven methods have been used to study collective be-
havior, at least in terms of pairwise relationships that can be used
to build an interaction network. For example, information flow
has been measured to detect animal group interactions among
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fish [11,12] and insects [13] moving in groups, and time-delayed
embeddings have been used for studying causality in economic
systems [14] and neural networks [15]. These studies use a va-
riety of methods, such as entropy (based in information theory)
and manifold embedding (taken from dynamical systems). To a
lesser extent, tools from the field of causal discovery have been
used to learn about the causal structure of collectives in terms
of both individual-level relationships and connections between
high-level features of the collective [16, 17]. Recently, work
on the automated discovery of scientifically relevant kinds has
provided a set of tools for indirectly assessing the similarity of
underlying dynamics in complex systems [18]. However, these
tools have yet to be applied to the empirical investigation of col-
lective behavior.

To gain a broad understanding of how data-driven analytical
methods can be used to quantify collective behavior, it is nec-
essary to test a system for which the dynamics can be precisely
defined. To be useful for investigating collective behavior in real
systems where it is difficult or impossible to obtain accurate in-
formation about the behavior of all members, we ideally require
an analytical method that is sensitive to detailed causal structure
and insensitive to possible confounding factors. Such factors in-
clude the choice of variables used to describe the collective, mea-
surement noise, and stochasticity in the underlying dynamics. A
new algorithm in the EUGENE collection of automated discov-
ery tools [19] satisfies all of these desiderata.

In this paper, we seek to understand the potential of EU-
GENE to study collective behavior using an established model.
We demonstrate the application of EUGENE to measure different
behaviors generated by the self-propelled particle (SPP) model
in [9]. We show that this algorithm is capable of distinguish-
ing between different behaviors using low-dimensional parame-
ters as input, rather than the high-dimensional full state of the
system. In addition, we present a local version of such conven-
tional order parameters, to which EUGENE can be analogously
applied, and we find that results are less sensitive to behavioral
differences. We find that EUGENE can differentiate behaviors in
model data, even when the full state of the system is not given.
This work supports EUGENE’s use in future work to analyze
field data from animal groups for which the full dynamics may
be very difficult to observe and the rules governing interactions
cannot be known.

SELF-PROPELLED PARTICLE MODEL
SPP model with external leader particle

The self-propelled particle model used in this study investi-
gates the collective behavior of a multi-agent system interacting
with an external leader particle (ELP). This model is developed
and studied in [9] for the wide range of collective behaviors it
produces. The agents in the group are N identical, self-propelled
particles of mass m moving in two dimensions. The position

vector of the i-th particle is denoted as xi(t), i = 1, . . . ,N, and
its velocity as vi(t) = ẋi(t), where t ∈ R is the time variable.
Interactions between particles are governed by attractive and re-
pulsive forces, and all agents also interact with a fixed ELP. The
dynamics of the i-th agent, i = 1, . . . ,N, are given by

mv̇i = (α−β‖vi‖2)vi +Fi +F0
i (1)

with α, β > 0, αvi is a self-acceleration term, and −β‖vi‖2vi is
a friction term. The force between agents is

Fi =−
N

∑
j=1
j 6=i

∇xiΦ(‖xi j‖) (2)

where xi j = xi−x j and Φ is a generalized Morse potential given
by Φ(z) = −cae−z/la + cre−z/lr for a positive scalar z. The con-
stants ca, cr, la, and lr give the strength and cut-off length for the
attractive and repulsive forces, labeled with a and r, respectively.
The force between the ELP and agent i is

F0
i =−γ∇xiΦ(‖xi0‖) (3)

where xi0 = xi − x0 is the relative position with respect to the
ELP, and γ is the strength of interaction between particles (γ ≥ 0).
By varying γ and the self-acceleration term α in simulation, we
analyze the generated behaviors with EUGENE.

Global order parameters
In line with the analysis in [9], we compute three physics-

based order parameters using the state of the whole system of
particles. These parameters capture linear and angular momenta,
and hence alignment and rotation of the group with respect to
the ELP, and cohesion with respect to the ELP’s fixed position.
At time t, the normalized group linear momentum (polarization)
P(t), the normalized group angular momentum M(t), and a mea-
sure of cohesiveness C(t) with respect to the ELP are defined as

P(t) =
‖∑

N
i=1 vi(t)‖

∑
N
i=1 ‖vi(t)‖

(4)

M(t) =
‖∑

N
i=1 xi0(t)×vi(t)‖

∑
N
i=1 ‖xi0(t)‖‖vi(t)‖

(5)

C(t) =
1
N

N

∑
i=1

exp
[
−‖xi0(t)‖

4la

]
(6)

We comment that, while the polarization is independent of the
ELP, the angular momentum and cohesion are defined based on
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relative velocities or positions with respect to the ELP. In [9], the
authors found that these parameters allowed for distinguishing
between distinct states better than considering analogous order
parameters defined with respect to the system’s center of mass,
which would be an intuitive alternate form. As a note, M and C
in this work correspond to M0 and C0 in [9].

Local order parameters
While we observe in [9] that the group’s state is qualitatively

well-described by these order parameters, it is often extremely
difficult to obtain such detailed information from a natural sys-
tem, particularly with very large groups. To complement these
global parameters, we also define local order parameters from
the perspective of an individual agent, with motivation that this
data may be more easily attainable and may in fact be useful to
recover the group-level behavior.

We define local order parameters with respect to a randomly-
chosen focal agent f , which is selected independently and used
for all time steps in a single simulation. Once this focal agent
is selected, we define a range R and consider all agents in the
ball of radius R centered at the focal agent’s position, x f (t). We
call this set of agents NL(t). The local linear momentum (local
polarization) with this limited perspective is

PL(t) =
‖∑i∈NL(t) vi(t)‖
∑i∈NL(t) ‖vi(t)‖

(7)

The local angular momentum is defined using the relative posi-
tion of agents in NL(t) with respect to x f . Specifically,

ML(t) =
‖∑i∈NL(t) xi f (t)×vi(t)‖
∑i∈NL(t) ‖xi f (t)‖‖vi(t)‖

(8)

where xi f = xi − x f is the relative position of the agents with
respect to the selected focal agent. The cohesion is similarly
defined with respect to the focal agent, as

CL(t) =
1

|NL(t)| ∑
i∈NL(t)

exp
[
−
‖xi f (t)‖

4la

]
(9)

where | • | gives the cardinality of a set.

Five distinct behavioral states
Since the goal of this paper is generating simulation data

evidencing different behaviors in a system of particles, we se-
lect model parameters based on the parameter study in [9] that
show a range of states. For these simulations, we take N = 50,

TABLE 1. SYSTEM BEHAVIORS AND THEIR ASSOCIATED α

AND γ . THE TRIPLE [P, M,C] CORRESPOND TO GENERALLY
ORDERED (1) AND DISORDERED (0) STEADY STATES, AND IN-
CLUDE A SHORT DESCRIPTION OF THE BEHAVIOR.

State α γ [P, M,C] Behavior

A 0.2 0.0001 [0,0,0] No organized motion

B 0.02 0.3 [0,0,1] Cohesive unaligned motion

C 0.8 0.8 [0,1,1] Milling on a circle

D 0.5 4.0 [1,0,0] Cluster on a linear path

E 0.2 6.0 [1,1,1] Cluster on a circular path

A B C D E
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 C
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1

FIGURE 1. MEAN VALUES OF STEADY-STATE GROUP MO-
MENTUM (P), ANGULAR MOMENTUM (M), AND COHESIVE-
NESS (C) WITHIN THE 5 BEHAVIORAL STATES.

m = 1, β = 0.5, lr = 0.5, la = 2, ca = 0.5, and cr = 1. The
parameters α and γ are varied to obtain different group behav-
iors. We use two different sets of initial conditions to generate
random position and velocity vectors for the agents. The agents
are initially dispersed uniformly within a square of side length
2la that is centered around the origin. For all simulations, the
same initial conditions are used to allow for the comparison that
EUGENE requires.

The simulation is run for the time interval [0,1000] and the
entire run (including the initial transient) is used for analysis.
This mostly transient data was selected since EUGENE relies on
creating maps between systems at a variety of states. In contrast
to most analyses for models of collective behavior, analysis with
EUGENE is much less informative when the system is in steady-
state.

We generate data for five different system behaviors (de-
noted A, B, C, D, and E) by varying α and γ , summarized in
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FIGURE 2. SNAPSHOTS OF GROUP MOTION FOR THE FIVE BEHAVIORAL STATES (LABELED FOR EACH COLUMN). FIGURES IN
THE FIRST, SECOND, AND THIRD ROW ARE AT t = 950, 960, AND 970, RESPECTIVELY. ELP IS LOCATED AT THE ORIGIN.

table 1. These simulations capture a range of behaviors. State
A acts as a control condition, since the particles show no strong
alignment, rotation, or cohesion about the ELP. State B shows
cohesive behavior, but with no alignment or organized milling.
State C shows particles moving on an approximately circular tra-
jectory, with agents distributed all along the circumference of the
circle similarly to motion on the rim of a wheel. State D shows
highly aligned motion of the group as a whole along a linear path.
State E shows motion again on an approximately circular trajec-
tory, but in contrast to State C, the particles are concentrated in
a cohesive group and move together in an aligned fashion. To
ensure that these model parameters generate the desired behav-
iors, we simulated the model for the time interval [0,1000] and
computed the order parameters over the last 750 seconds. These
values are given in figure 1 and summarized generally as “or-
dered” (1) or “disordered” (0) in table 1.

Snapshots of representative steady-state group motion over
time for these behaviors are shown in figure 2. Nevertheless,
the analysis detailed below is performed on the transient data for

each simulation. Time series showing this data for each com-
bination of order parameter and behavior are shown in figure 3,
with both the global and local order parameters for polarization,
angular momentum, and cohesion plotted over the time interval
[0,1000]. These data are used as input for the analysis with EU-
GENE.

EUGENE ALGORITHM FOR AUTOMATED DISCOVERY
EUGENE is an algorithm for determining the similarity be-

tween two systems’ underlying causal dynamics [18]. Unlike
examples in the existing literature which rely on low dimen-
sional [20] or time delay [21] embeddings, it leverages dynami-
cal symmetries - commutations between an evolution and trans-
formation of a system - to verify that two systems are of dif-
ferent kinds. The original algorithm, however, is not designed
for stochastic systems or cases of partial information, so we im-
plement an extension of EUGENE that compares samples from
carefully selected distributions over states of one system with the
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FIGURE 3. TIME SERIES DATA FOR EACH BEHAVIORAL STATE (LABELED FOR EACH COLUMN). THE FIGURES IN THE FIRST,
SECOND, AND THIRD ROW CORRESPOND TO POLARIZARION, ANGULAR MOMENTUM, AND COHESION, RESPECTIVELY. THE TWO
LINES ARE THE GLOBAL AND LOCAL ORDER PARAMETERS CALCULATED FOR EACH TIME SERIES.

corresponding distribution from another system. These distribu-
tions will be identical if and only if the two systems share the
same dynamical symmetry, and the degree to which the distribu-
tions diverge provides an informative measure of how much the
dynamics of one system diverges from that of the other.

Dynamical symmetries and kinds
As given in [22], a dynamical symmetry is a transformation

σ on the variables of a system such that the final state of the
system is identical regardless of whether σ is applied to the sys-
tem before or after an intervention on the system’s index variable
(e.g. transformation over time). This definition was generalized
in [18] to accommodate stochastic dynamics, which we adopt in
the following form:

Definition 1 (Dynamical symmetry). Let V be a set of ran-
dom variables. Let σ be an intervention on the variables in
Int ⊂ V . The transformation σ is a dynamical symmetry with
respect to some index variable X ∈ V − Int if and only if σ has
the following property: for all probability distributions f and g,

the final probability distribution over V is the same whether σ is
applied when the distribution of X is given by px(x) = f (x) and
then an intervention on X makes it such that px(x) = g(x), or the
intervention on X is applied first, changing its distribution from
f (x) to g(x), and then σ is applied.

Dynamical symmetries are sensitive to both causal structure
(i.e., the set of relations indicating which variables directly influ-
ence which others) and the functional form of causal influence.
Thus, if the (possibly stochastic) dynamics underlying one sys-
tem is described by, say, a differential equation of slightly dif-
ferent form than that of another system, the two will generally
possess distinct yet similar dynamical symmetries. Thus, if one
can directly compare the dynamical symmetries between systems
with unknown dynamics, one can quantify their degree of dy-
namical similarity in a manner that is data-driven and model-free.

Current approach
The EUGENE algorithm that has been adapted from [19]

can detect differences in dynamical symmetries in this general
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FIGURE 4. SCHEMATIC OF EUGENE ALGORITHM. f1 AND
f ′1 ARE COMPOSED OF MULTIPLE REALIZATIONS STARTING
FROM INITIAL CONDITIONS ic1 AND ic2, RESPECTIVELY, AND
EVOLVING IN TIME HORIZONTALLY. RESULTING TIME SE-
RIES ARE VIEWED AS THE RED AND GRAY DYNAMIC DISTRI-
BUTIONS (SNAPSHOTS SHOWN CHANGING OVER TIME). EU-
GENE TAKES THE POINTWISE CUMULATIVE JOINT DISTRIBU-
TION BETWEEN THESE TWO FUNCTIONS TO CHARACTERIZE
SYSTEM A. THE SAME PROCESS IS PERFORMED FOR SYSTEM
B, AND THE ENERGY DISTANCE BETWEEN THE TWO DISTRI-
BUTIONS DEFINES DIFFERENCE IN DYNAMICAL KIND.

sense. To do so, the algorithm requires two sets of time series
for each of the systems A and B to be compared. Each set of
time series contains a realization of the evolution of the system
starting from the same initial condition. If the system is stochas-
tic (or if the variables in terms of which it is described are in-
complete), each realized time evolution in a set will be distinct.
However, the distribution over states at any given time is fixed
for each system (assuming the dynamics are unchanging). The
function that maps this distribution for one initial condition (ic1)
to the distribution for another initial condition (ic2) in the same
system is a dynamical symmetry. By comparing the function for
system A with that for system B, we can assess the similarity of
their dynamics. Rather than estimate these functions directly, the
EUGENE algorithm compares the joint distribution over states
for system A at a time t after ic1 and at a time t after ic2 with
the corresponding distribution from system B. Cumulative den-
sity functions are compared by computing the energy distance
between them [23].

For analyzing data from the SPP model, the EUGENE al-

gorithm requires two realizations of the simulation for each set
of parameter values of interest, where each realization is a multi-
dimensional time-series spanning a fixed amount of time, ∆t. The
first realization is computed for a certain initial condition, ic1.
Using the same simulation parameters, a second set of realiza-
tions is produced using a second initial condition, ic2. We refer
to the time series of the first realization as ~f1, and that of the sec-
ond realization as ~f ′1, where each is of length n corresponding to
the number of samples in the series. Then, using a new set of sim-
ulation parameters, two more sets of realizations are given using
the same initial conditions used previously. These new sets of re-
alizations will be referred to as ~f2 and ~f ′2. Both ~f1 and ~f ′1 belong
to the first simulation configuration, while ~f2 and ~f ′2 belong to the
second. Similarly, ~f1 and ~f2 share initial conditions (ic1), while
~f ′1 and ~f ′2 share a different set of initial conditions (ic2). Each pair
of time series elements f1,i and f ′1,i for i ∈ {1,2, . . . ,n} (that is,
each pair of values at a given time for a given system) is treated as
a realization of a pair random variables with a joint density func-
tion, ρ1,i( f1, f ′1). The same is true for pairs f2,i and f ′2,i which are
presumed to be governed by a joint density function, ρ2,i( f2, f ′2).
Consider the cumulative distribution cd fA over pairs of simulta-
neous values of f1 and f ′1, and cd fB over pairs of values of f2 and

f ′2, where cd fA(F1,F ′1) = ∑
n
i=1

1
n
∫ F1
−∞

∫ F ′1
−∞ ρ1,i( f1, f ′1)d f1d f ′1 and

cd fB(F2,F ′2)=∑
n
i=1

1
n
∫ F2
−∞

∫ F ′2
−∞ ρ2,i( f2, f ′2)d f2d f ′2. If the marginal

distribution over values of f1 is approximately the same as that
over f2, then the difference between cd fA and cd fB is driven en-
tirely by the difference in dynamical symmetries between sys-
tems A and B. We compute a metric to quantify this difference.
Specifically, EUGENE computes an estimate of the energy dis-
tance between cd fA and cd fB [23]. A schematic for this algo-
rithm is given in figure 4.

RESULTS AND DISCUSSION
By using the SPP model as an input into EUGENE, we con-

firm that EUGENE is able to identify the distinct behavioral
states by distinguishing them as different dynamical kinds. In
figure 5, the pairwise distances between the five behavioral states
are shown as distance matrices for each of the global and local or-
der parameters. The color axis on the right denotes the pairwise
distances between the states, with distance = 0 corresponding to
the two states being of the same dynamical kind and distance > 0
corresponding to the states being of different dynamical kinds.
The magnitude of this difference is measured by the distance.

Despite the fact that the model has not converged to steady
state as seen in figure 3, EUGENE is able to pick up trends for
the global order parameters, which are shown in the first row of
figure 5. The expected trends for the five system behaviors are
the [P, M,C] values in table 1. For global polarization P, for ex-
ample, EUGENE finds that the behavioral States A, B, and C are
the same, which is to be expected since their P values are low.
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FIGURE 5. DISTANCE BETWEEN FIVE BEHAVIORAL STATES AS COMPUTED BY EUGENE. EACH SUBFIGURE SHOWS A DISTANCE
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The algorithm also detects that State D and E are the same (with
high P values) and distinct from A, B, and C. When using angu-
lar momentum as the input, the States A and B are found to be
similar with low angular momentum, and likewise with States C
and E, which have high angular momentum. Interestingly, State
D seems to be more alike the behavioral states with high angular
momentum, despite having a low M value. For the cohesive-
ness parameter, behaviors with high cohesion, States B, C, and
E, are found to be the same. State D, even though it has a small
measure of C, appears closer to B, C, and E, likely due to its
clustering behavior on a linear path. Importantly, when using all
three global order parameters, EUGENE is able to distinguish
that all the behavioral states are different (minimum value for
off-diagonal entries > 0.5), which we expect to be true by de-
sign. However, these behaviors might be perceived differently if
considered from the point of view of an individual rather than a
group perspective.

When considering the local interactions, an individual might
interpret the polarization of the agents around it much differently
than if it could see the entirety of the group. EUGENE is able
to detect these differences in the distance matrix for local polar-
ization PL. Similarly to the global polarization, States A and B
are the same as each other, and likewise for States D and E. State

C, on the other hand, is now more similar to D and E. The dif-
ference in the local and global polarization parameter is seen in
figure 3, where State C distinctly changes from near zero, glob-
ally, to one, locally. The switch in similarity is likely because an
agent that is milling on a circle, as in State C, would see itself
as being more aligned with the individuals nearest to it. In the
local angular momentum ML, the individual would have more
difficulty detecting its angular momentum without knowing the
entirety of the group, and thus EUGENE finds that all the behav-
ioral states are nearly the same. For local cohesion CL, the result
is similar with the behaviors having pairwise distances close to
zero. Finally, when considering all three local order parameters,
the distance matrix shows similar structures to the local polariza-
tion plot, which means the local interactions are dominated by
the PL parameter.

Notably, EUGENE is able to distinguish between the five
states using only low-dimensional descriptors, rather than the
high-dimensional state of the system. However, even though we
select the previously defined order parameters as input, the re-
sults are not identical to the binary distinctions of steady-state
high or low values that are usually used to classify these param-
eters. This suggests that some of the emergent dynamics which
occur in the transient may be different or absent when only the
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asymptotic behavior of the system is considered. Since animal
group behavior may arguably never reach steady-state, EUGENE
may give a more realistic classification of these behaviors when
applied to biological data. We note that the absolute distances
when local parameters are used are low overall, and that the
states are generally grouped into two kinds. This suggests that
from the perspective of a single agent, these behaviors are not
distinct, which is understandable when superimposing a sensing
space (circle of radius 1) on any of the agents in figure 2. For
recovering these different group-level behaviors, other inputs for
EUGENE should be considered.

This work represents a first exploration of causal discovery
to understand qualitatively different behaviors using a model-
agnostic method for classifying the underlying dynamics driv-
ing the system. Here, we show that states known to be different
can be distinguished from their time series data. In future work,
this method will be used to study data from biological systems,
whose dynamics may be governed by observable and unobserv-
able variables, such as physiology and sociality, respectively.
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