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Abstract: The introduction of computational modeling into science curricula has been shown 
to benefit students’ learning, however the synergistic learning processes that contribute to 
these benefits are not fully understood. We study students’ synergistic learning of physics and 
computational thinking (CT) through their actions and collaborative discourse as they develop 
computational models in a visual block-structured environment. We adopt a case study ap-
proach to analyze students synergistic learning processes related to stopping conditions, ini-
tialization, and debugging episodes. Our findings show a pattern of evolving sophistication in 
synergistic reasoning for model-building activities.  

Introduction 
Computation is at the forefront of 21st century education (Wing, 2006). Technological advancements are result-
ing in the introduction of a variety of computational tools and practices into Science, Technology, Engineering, 
and Mathematics (STEM) curricula through computational modeling, simulation, data analysis and visualiza-
tion. Working in technology-enhanced environments also presents opportunities for collaborative learning and 
problem-solving. We aim to integrate computational thinking (CT) concepts and practices into STEM curricula 
(Sengupta, et al., 2013) so that learning of STEM and CT can be mutually supportive and help to develop im-
portant STEM practices like model-based reasoning, explanation, and argumentation. Computational modeling 
serves as an effective vehicle for science learning in K-12 (e.g. Basu, et al., 2016; diSessa, 2001; Wilensky & 
Reisman, 2006). Designed learning environments can support this mutually supportive integration (Basu, et al., 
2013; Hutchins, et al., 2018), and such environments have helped students achieve significant learning gains in 
both STEM and CT concepts and practices (Basu, et al., 2017; Sengupta, et al., 2013). But the mechanisms and 
processes students employ to develop and apply synergistic learning skills are not well understood.  

In this paper, we take on the challenge of understanding and unpacking students’ synergistic learning 
processes while they develop computational models of scientific phenomena using a block-based programming 
language. Typically, computational modeling involves an iterative process of conceptualization, algorithmic de-
sign, implementation as a program, and testing and refining the program to generate a correct model. Students 
activities related to these processes can be analyzed using log data collected from computer-based learning envi-
ronments. However, students’ underlying reasoning mechanisms when invoking and applying these processes, 
the difficulties they face, and how they overcome them are hard to unpack from their logged activities. To better 
understand these mechanisms, we ran a pilot study with students who worked in groups of two or three on mod-
el building and problem-solving tasks in physics. We used a screen recording system that simultaneously cap-
tured students’ interactive dialog as they worked on the system, and then performed a qualitative case study that 
combined analyses of log data and the interactions among the students to understand students’ reasoning pro-
cesses in synergistic learning of physics and CT concepts.   

Collaborative Learning and Problem-Solving 
Roschelle and Teasley (1995) defined collaboration as “a coordinated, synchronous activity that is a result of a 
continuous attempt to construct and maintain a shared conception of a problem.” Further research has shown the 
importance of developing shared understanding among the group members for successful task completion (Lar-
kin, 2006). In addition, interaction skills of making and encouraging contributions of ideas, monitoring of pro-
gress, and providing constructive feedback through argumentation and explanation are essential components of 
collaborative learning (Garrison & Akyol, 2013; Grau & Whitebread, 2012). In the context of our work, this 
translates to students developing and utilizing their shared understanding of domain and CT concepts to co-
construct their physics models, analyze and understand the behaviors generated by simulating their models, and 
where necessary, apply debugging processes to make refinements to and improve their models.  

Working in close proximity and sharing a computer screen, provides students opportunities to explicit-
ly discuss the model construction process, and develop arguments and explanations that support or challenge 



model constructs they propose or are proposed by their partners (Sins, et al., 2005). Therefore, students’ interac-
tive discourse provides opportunities for studying and understanding the reasoning processes they employ for 
synergistic learning during their computational model building activities. We briefly review discourse frame-
works that have been developed for analyzing collaborative discourse in STEM domains. 

Collaboration Discourse Frameworks 
The ICAP framework (Chi & Wylie, 2014) defines four different modes of engagement when considering learn-
ing behaviors: Interactive, Constructive, Active, and Passive.   A learner who is engaging passively receives in-
formation but does not respond. An actively engaged learner receives information and manipulates it in some 
way. A learner who is receiving information, manipulating it and then constructing something with that 
knowledge is considered to be constructive. Finally, if two constructive learners are conversing about constructs 
they have generated from information, they are considered to be interactive.   

The framework proposed by Weinberger & Fischer (2006) to analyze knowledge construction in a col-
laborative learning environment includes five categories of social modes: externalization, elicitation, quick con-
sensus building, integration-oriented consensus building and conflict-oriented consensus building. Externaliza-
tion is defined by a learner articulating their thoughts. Elicitation refers to the idea of using the other group part-
ners as resources, this can be seen when a learner questions other group members. Quick consensus building is 
the act of accepting the contributions of another learner in order to continue progress. Integration-oriented con-
sensus building occurs when one learner’s understanding about a concept is changed based on another learner’s 
reasoning. Conflict-oriented consensus building refers to the idea of different learners’ perspectives contradict-
ing each other, which leads to the debate and modification of conflicting ideas. 

In our work, we superimpose Weinberger & Fischer’s categories of social modes in knowledge con-
struction on the ICAP framework to develop our coding scheme. This combination results in a more encompass-
ing framework that considers a learner’s social modes along with their mode of engagement on the collaboration 
task. A collaborative interaction is categorized by the highest level of engagement reached by one or more 
learners in the group combined with the type of social mode associated with the group.  All three types of con-
sensus building modes are only present when the collaboration is considered interactive because the group can 
only reach a consensus when both learners participate in model building. Constructive externalization or elicita-
tion is categorized by a single student (the lead) is participating in model building and is narrating their actions 
and thought processes while the other students engage passively by following along silently, or actively, by ver-
bally agreeing. During constructive elicitation, the lead student questions the other students in the course of 
building the model and receives little to no response. If questioning by two or more students is substantial and 
leads to responses that indicate the students are acting constructively, the collaboration is considered to be inter-
active elicitation. If neither student is participating in the model building but are reading aloud resources or in-
structions, the collaboration is categorized as active externalization. Finally, when none of the students are ac-
tively working on the model or saying anything they are in a passive state.  

Framing our Research 

Learning Physics by Building Computational Models 
We use C2STEM, a learning-by-modeling environment that incorporates a physics domain-specific modeling 
language (DSML) into a block-based programming environment to promote learning of domain-specific and CT 
concepts and practices through computational modeling and problem-solving exercises. C2STEM uses Netsblox 
(Broll, et al., 2017), an extension of Snap! (http://snap.berkeley.edu/). The use of a physics DSML aims to help 
students focus on physics concepts, while also helping students to write self-documenting code. In addition, we 
scaffold the model-building process by explicitly providing a simulation framework, where students can initial-
ize variables and the use blocks to update the variables at each time step to capture dynamic behaviors.  

Figure 1 illustrates a computational model that simulates the dropping of a package from a drone hov-
ering at a specified height above a target. This requires students to think of the impact of gravity on the pack-
age’s velocity and position with time that increments in steps of Δt when the simulation is run. The student also 
has to model a stopping condition, using a conditional construct to model the object’s motion stopping when it 
hits the ground. Students can use graphing and tabulation tools shown as icons at the bottom of the stage. 



Figure 1. Example final computational model for package drop. 

Synergistic Learning 
The notion of synergistic learning is predicated on the idea that the simultaneous learning of two domains in an 
integrated context can lead to better learning of concepts and practices in both domains than when the domains 
are learned separately. Previous work has shown that integration may initially increase the conceptual burden 
for students, but students are quickly able to overcome these difficulties and learn both domains better (Basu, et 
al., 2013; 2016). Our previous studies with C2STEM have shown that learning by building computational mod-
els of kinematics phenomena helps students gain a deeper understanding of the underlying kinematics concepts, 
while also helping students gain a better understanding of CT constructs, such as variable initialization, condi-
tional, and loops (Hutchins, et al., 2018). Besides, a number of practices, such as abstraction, decomposition, 
and debugging transcend both domains (Sengupta, et al., 2013).  However, to our knowledge, limited work has 
focused on the identification of the synergistic STEM+CT processes that lead to these learning benefits.  

In this paper, we identify some of the synergistic learning processes that we have observed in previous 
studies, and develop a framework for analyzing and understanding students’ reasoning processes as they work 
through synergistic learning episodes during their model building tasks. In particular, we focus on the synergis-
tic modeling practices of initialization, debugging, and conditional behavior changes. In our modeling frame-
work, the initialization process can be identified by the addition, editing, and/or deletion of physics-DSML set 
blocks under the “When Green Flag Clicked” block (see Figure 1). Not only is variable initialization a key CT 
practice (Grover & Pea, 2013), students’ selection of physics variables to initialize in the context of a particular 
task offers insight into their conceptual understanding of the motion processes being modeled. Debugging, a key 
CT skill (Grover & Pea, 2018), is related to analyzing model behaviors, identifying sources of error in the mod-
els, and then correcting the identified errors in physics modeling. In C2STEM, the debugging process is a truly 
synergistic process, as students must diagnose whether errors in their models result from incorrect representa-
tion (modeling) of physics concepts (e.g., an incorrect use of velocity in computing a look-ahead distance (spe-
cific point at which object slows down to stop) or an incorrect specification of the CT (or programming) con-
structs (e.g., writing the Boolean condition expression that initiates the slowing down behavior). Finally, we in-
clude the use of conditional expressions to indicate changes in motion behavior (e.g., slow down to avoid a col-
lision). In all of these situations, the nature of the modeling tasks requires students to go back and forth between 
applying and checking their physics concepts and practices and their CT (or programming) concepts and prac-
tices to succeed in their model-building and model-checking tasks. We hypothesize that back and forth transi-
tion of concepts and practices across domains provides students with synergistic learning opportunities leading 
to better model building, and eventually better learning in both domains. 

Study Description and Data Analysis Methods  
The qualitative research method presented in this paper is guided by the question: What characteristics of syn-
ergistic learning and reasoning processes can we derive from students’ collaborative discourse as they work on 
computational modeling tasks? The primary data source used to answer this question was screen-capture video 
(using OBS™ software) that recorded students’ actions in C2STEM, along with webcam video and audio, of 
two students (‘S1’ & ‘S2’) engaging in collaborative model building. 

Our team conducted a two-month-long study that included 26 advanced sophomores assigned by our 
research team to work in groups of 2 or 3 on a kinematics and dynamics curriculum in C2STEM. The research 
team met with participants one school-day a week over a two-month period. Students completed one 45-minute 
CT training unit and four physics modules: three in Kinematics: 1D motion (with acceleration), 2D motion with 
constant velocity, and 2D motion with gravitational forces, and one in mechanics, i.e., an introductory unit on 
1D Force. All students worked collaboratively, either in pairs or triads. 

We used the rubric outlined in Table 1 to define and assess key learning objectives in physics and CT 
from the models that students constructed. The assessment results help us determine how successful students 



were in different aspects of model building and how their performance could be explained by their proficiency 
in synergistic learning and reasoning processes.  

 
Table 1: Rubric for evaluating students Models 
Expressing physics relations in a computational model (physics component): Point(s) 

Program expresses correct relations among and units for needed Physics variables. 2 

Program reflects the effect of [velocity/acceleration] on [position/velocity] each time step. 1 

Program resulted in an accurate calculation of given task submission question. 1 

Using programming concepts to model physics phenomena (CT component) Point(s) 

Program makes the distinction between actions that need to happen once during initialization and actions that 
need to be repeated in the simulation step 

1 

Program correctly determines which actions always happen or happen under certain conditions 1 

Program updates the variable corresponding to the package's velocity: (1) under the correct conditions (e.g. 
correct conditional logic), and (2) in the correct fashion (e.g. each simulation step) 

2 

All code in the program is reachable and can be executed; No duplicate code 1 
 

For analysis, we extracted and coded students’ discourse mechanisms from the OBS video and voice 
recordings, capturing sequences of actions that that closely related to learning objectives in the two domains 
(see rubric), while also recording the challenges they faced, and how they overcame them. Two coders coded 
the above episodes. Inter-rater reliability was checked by calculating Cohen’s kappa value which resulted in ex-
cellent agreement (k = 0.94) for collaborative discourse and good agreement (k = 0.71) for synergistic coding. 
For each task, we noted key actions and conversations that highlighted synergistic learning episodes and parsed 
these episodes to determine if the students’ focus was on the physics or the CT aspect of their model.  

Student Task Performance in Physics and CT 
Our qualitative case study analyzed the model-building activities and the accompanying dialogue of two stu-
dents who worked together on a laptop. We chose this group because they were the only pair in our study (all 
other students worked in triads), therefore, exchanges between them were easier to code. Besides this group was 
quite expressive, so we derived a lot of rich information from their dialog. Typically, one of them controlled the 
mouse and the keyboard, but the other student was always very attentive, and often initiated interactive dialog to 
discuss aspects of the modeling and debugging tasks. Their model scores (Figure 2) were assessed using the ru-
bric described above on four model building tasks from each curriculum unit: 1D Motion, 2D Constant Veloci-
ty, 2D Motion with Gravity, Forces. As demonstrated, the group initially struggled in CT (3 out of 5), but im-
proved to a perfect CT score by the final unit, even though the CT constructs and practices were more difficult. 
In physics, the group started off well, scoring a 3 out of 4 on the first two modeling tasks, improving to 4 out of 
4 on the final modeling tasks. It is important to note that for both 1D motion and 2D constant velocity, the group 
did not receive a point for “program resulted in an accurate calculation of given task submission question,” be-
cause this rubric item requires appropriate use of CT constructs. As such, further analysis of the modeling pro-
cess is needed to understand issues related to transitions between physics and CT applications in the modeling 
process in order to understand the cause for their error. 
 

 
Figure 2. Group 1 model building scores. 

Case Studies 
Utilizing our synergistic learning framework) we have extracted segments of work and accompanying dialog 
that correspond to episodes of initialization, formulating conditional logic/stopping conditions, and debugging. 
The segments are presented in the order in which they occurred to study the students’ progression in their model 
building skills and synergistic learning skills (Figure 2).  



Segment 1: Conditional Logic and Stopping Conditions 
Episode 1 below describes a conversation and activity segments for a dyad (students S1 and S2) working on the 
1D Motion module. In this task, students model the motion of a truck that speeds up from rest to a given maxi-
mum speed (defined by a speed limit), maintain that speed and slow down and stop at a stop sign. This requires 
the students to calculate a lookahead distance from a stop sign. These two segments demonstrate their applica-
tion of synergistic learning processes (their back and forth reasoning between the physics and CT concepts) to 
model the motion changes of the truck. We use the characterizations developed from the two collaborative 
frameworks to analyze and interpret the dialog constructs. 
 
Table 2: Episode 1 (use of conditionals) 

Student’s Words and Actions Physics and CT Collaboration 

S1: “15 m/s. So it needs to hit 15 m/s and then stop 
accelerating. So... If statements. If statements is the 
easiest way to do this.” 
S2: “I thought you would do a when block. 
S1: Why would you do a when block?” 
S2: “when the speed reaches...” 
S1: “Well, that's the thing because this starts a se-
quence, we need to put it inside the simulation step 
so that it will constantly repeat.” 

CT focused: S1 and S2 agree on the 
physics concept but disagree on how to 
model it computationally, i.e., what CT 
construct(s) to use. S1 and S2 attempt 
to develop a shared understanding of 
different conditional operators 

Interactive conflict-
oriented consensus 
building: S2 challenges 
S1’s reasoning about a 
CT construct. S2 sug-
gests a different idea 
and S1 pushes S2 to 
verbalize his reasoning.  

S2: “Oh, I see.” 
S1: “Right so if x velocity is greater than or equal 
to 15 then just change the x position by velocity. 
Else, change x velocity by acceleration.” 

Physics focused:  Since S2 seems to 
agree, S1 brings the conversation back 
in context of physics. Using the lan-
guage of the conditional block, S1 de-
scribes the relationships between posi-
tion, velocity and acceleration. 

Interactive quick-
consensus building: S2 
seems to agree with 
S1’s reasoning but as 
seen in the continuation 
of the conversation, he 
is not fully convinced. 

S2: “And you're telling me that's the easiest way?” 
S1: “That's the easiest way to do it because other-
wise we have to do this and that's not a loop.” 

CT focused: S2 turns the conversation 
back to CT and challenges S1 again on 
the choice of conditional structure.  

Interactive conflict-
oriented consensus 
building: S2 challenges 
S1 again on the choice 
of conditional structure. 
After showing S2 on the 
screen, S1 and S2 de-
velop a common under-
standing of the physics 
and CT concepts to use 
in their model. 

S2: “I would think like just like if velocity equals 
… like if velocity equals 15 m/s set acceleration to 
0 m/s…” 

Physics focused: S2 attempts to sup-
port his reasoning by bringing in the 
relationship between velocity and ac-
celeration. 

S1: “We could do that but that would be… eh... I 
just I don't like the way that sounds cause yeah but 
yeah I know what you're saying.” 
S1: “Ok so basically if velocity is equal…is greater 
than or equal to whatever. then change. then both of 
these…else just the bottom part. Ok.” 
S2: “Oh I see why you put that there.” 
S1: “Exactly” 

CT focused: S1 shows S2 on the mod-
el how his idea would work 

In this segment, the dyad was having trouble converting their physics understanding into the computational con-
structs because they were unsure about the conditional constructs. Their consensus-building collaborative dialog 
demonstrates how they applied explanations, and argumentation to develop a shared understanding of the model 
building task (e.g., why select the “if” block and not a “when” block). However, their explanations are not deep, 
therefore, their justification for their model building steps is shallow. For example, S1 verbalizes his actions to 
develop a consensus and shared understanding with his partner, but the explanation “just doesn’t like the way 
that sounds” implies an incomplete understanding of CT. On the other hand, the physics knowledge is strong 
(including a correct calculation of the lookahead distance), and this is reflected in their task performance score.  

Segment 2: Initialization 
The second episode in our case study involves the 2D constant velocity task focused on the initialization pro-
cess. In this task, students needed to program a boat to cross a river, stopping at two islands located at different 



points on the way. The key physics concepts students have to learn are 2-D velocity, and how to compute the 
resultant velocity, given that the river current. In this episode, students are considering the importance of initial-
izing the heading variable of the boat given the need to change the boat’s direction when moving towards a new 
target. 
 
Table 2: Episode 2 

Student’s Words and Actions Physics and CT Collaboration 

S1: "So it's 5 m/s in the x and y. So, we could set a different x ve-
locity and different y velocity. Because it needs to go 15, so we 
could set the x to 5 and in the same three seconds if we set the y 
velocity to 2, then it would go 6 forward and 15 to the right." 
S2: (agreement sound) 

Physics focused: S1 is 
verbalizing thought pro-
cess on the relationship 
between x and y velocities 
and the respective distanc-
es moved in 3s 

Constructive exter-
nalization: S1 exter-
nalizing his modeling 
constructs with S2 
following along, oc-
casionally agreeing  

S1: "let's move this back and set the heading." 
[S1 ADDS "set heading to" block and hardcodes it to the value 
291.28. Clicks on the block to change direction of the boat and 
then removes block from stage.] 
S1: "so we need to set position to 0, -10.6" 
[S1 ADDS and EDITS set position block] 

CT focused:  S1 adds an 
initialization blocks that 
supports his verbalization   

S2: "How come you threw that block away?" 
S1: "What, that block? (pointing) Because we've already set the 
heading." 
S2: "Alright, but when you reset it's..." 
S1: "Right." 
[S1 ADDS set heading block under GF and hardcodes to 291.28] 
S2: jokingly says other student's name 
S1: "My wits have taken leave." 

CT focused: S2 challeng-
es S1’s removal of one of 
the blocks —presumably 
place in the wrong location 
causing the simulation to 
reset to an initial value.   
  

Interactive conflict-
oriented consensus 
building: S2 chal-
lenges S1’s action of 
discarding a set 
block, S1 tries to ex-
plain his reasoning 
and after further 
prompting by S2, 
sees the error  

S1: "And then, set position, set velocity" 
[S1 ADDS set x velocity block under GF]  

Constructive exter-
nalization: 
S1 reverts to narrat-
ing actions with S2 
following along 

S1: "and that's all we need to know, because it won't let us acceler-
ate. It will let us accelerate in 2D air because that is when we start 
factoring in gravity. So then, start simulation, simulation step." 
[S1 ADDS start simulation to GF and simulation step flag]  

Physics focused: S1 con-
cludes that they have com-
pleted the physics required 
for the model 

This segment illustrates a synergistic process where an understanding of the physics variables is needed to accu-
rately model the object behaviors. We analyze how the students collaborate to resolve issues in the link between 
initialization and the modeling of the updates to capture dynamic behavior. The conflict-oriented consensus 
building approach allowed both students to consider the initialization process in the context of a complete mod-
el. By questioning the deletion, the group went from a predominantly constructive externalizing approach fo-
cused on the physics content, to an approach centered on generating consensus in understanding how the com-
putational model should be set up. This conflict-oriented approach also occurred in Segment 1 in which the stu-
dents also came to a consensus via questioning of the selection of a conditional block, but in this initialization 
scenario, we are beginning to see better justification as part of their reasoning. Although the improvements are 
observed in the synergistic discourse, the students’ model score on this task was similar to Segment 1. 

Segment 3: Debugging 
The final episode is an example of synergistic learning during debugging in a 2D gravity drop motion task, 
where the students modeled the delivery of two packages by a drone moving horizontally, calculating the look-
ahead distance needed to release each package in order to safely land each at the desired targets on the ground. 
It is important to note that the group’s score in both Physics and CT improved in this scenario, with the group 
developing a model that they used to correctly answer the task submission question. 
 



Table 3: Episode 3 

Student’s Words and Actions Physics and CT Collaboration 

S1: “Did we miscalculate? Did we miscalculate? Does it 
need to be like 9 meters or something? Let's try 9 meters 
just to be sure. I have a sneaky, sneaky suspicion.”  

Physics focused: S1 is pointing out 
that the physics calculations put 
into the model may be incorrect.  

Interactive integra-
tion-oriented con-
sensus building: S1 
and S2 work togeth-
er to find the error in 
their model, and 
they conclude that it 
is likely a time mis-
calculation 

[S1 edits subtraction in if via hardcode].  
S1: “Let's try this again.”  [S1 presses play] 
S1: “Drop…” 
S2: “It's not..” 
S1: “Yeah, that's not right.” 
S2: “Wait, I want to see it” [S2 takes control of mouse] 

CT focused: S1 and S2 are using 
the model to determine why the 
package is not ending up in the 
correct place 

S1: (inaudible) “Did we miscalculate the time?” 
S2: “We might have” 
S1: “We might have miscalculated the time. Let's go back 
and look at the time equation. We could do this one, too, 
couldn't we?” 
S2: (agreement sound) 

Physics focused: After their model 
does not work as expected, S1 and 
S2 go back to determining where 
they made an error in modeling the 
physics relations. 

 
This segment illustrates how the students use the animation of the object’s motion to realize they have made an 
error, and then work together to find its source. The discussion is mostly physics-focused, but it does require 
them to analyze how the sequence of blocks they have used to build the model relates to the behavior they are 
observing.  Their suspicion is that they did not model the release time of the object correctly. The episode does 
show some switching between a physics and CT focus in their conversations. This was also observed in the ear-
lier episodes, but this one demonstrates a level of maturity in that they are not arguing over what construct to 
use, but are trying to related behavior back to model structure, which implies higher level synergistic reasoning. 

Discussion 
When the S1 and S2 are successful in their modeling tasks, the conversation has the characteristic of integrating 
both CT and physics reasoning, and adopts a back and forth between the two domains in the model construction 
task. We believe that this back and forth, i.e., analyzing relevant domain concepts required for modeling and 
representing them using computational constructs, and going back and forth to establish the correctness of the 
physics and its computational representation is a key element of synergistic learning and reasoning. A conversa-
tion that integrates both CT and physics reasoning does not necessarily imply students will succeed, as seen in 
Episode 3. The students go back and forth between the physics concepts and the CT construct in their conversa-
tion, but run out of time before they come up with the correct form of the model. However, they gain a synergis-
tic understanding that they apply later in their modelling process. The dyad also discusses look-ahead distance 
calculations in the 1D constant velocity module, but this earlier conversation does not have them switching be-
tween physics and CT reasoning. The discussion that can be split into two completely separate conversations; 
one where students determine the physics calculations separately and then a second discussion about the compu-
tational modeling. When comparing the progress made between episode 1 and 3, it is clear that the students are 
better able to integrate their physics and CT knowledge. Their synergistic learning gains are shown as their 
modeling score increase in physics and CT from the 1D constant velocity to Forces modules (Figure 2). 

Conclusions and Future Work 
One challenge of using video analysis to study synergistic learning is recognizing evidence of synergistic learn-
ing in practice.   Another challenge in using video analysis to study synergistic learning is knowing where to 
look, amongst the many hours of video data.  We have found evidence of synergistic learning in three specific 
contexts: when students were (1) using conditional blocks, (2) initializing variables, and (3) debugging code.  
These findings will help us hone our search for episodes of synergistic learning in future research.  

Focusing on one student dyad, we first found evidence of synergistic learning, initially in their inability 
to reconcile the physics conceptual knowledge with the computational constructs required to construct the com-
putational model. This involved a lot of dialog about whether the physics knowledge was correct, and then 
whether the computational construct reflected that the physics knowledge had been applied correctly. Studying 
the students’ conversations in this phase provides us with some understanding of their difficulties, which can be 



in the domain concepts, the computational constructs, or the representation of the domain concepts correctly in 
the computational form. It is also clear from the students’ dialog that such exercises force them to think deeper 
about both the domain concepts and the computational constructs. Initially, this may increase their difficulties. 
However, by executing their computational representations, i.e., simulating their model, they have the oppor-
tunity to implement debugging processes that may help them understand and overcome their difficulties. It also 
provides us with opportunities to detect such episodes, and adaptively scaffold students who are unable to over-
come their difficulties. In our particular case study, the two students succeeded in working through their diffi-
culties on their own, after some initial stumbles.  

Our next steps include expanding our analysis to a broader group of students and extending our analy-
sis to gain insights into collaborative regulation. 
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