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Spin relaxation in fluorinated single and bilayer graphene
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We present a joint experiment-theory study on the role of fluorine adatoms in spin and momentum scattering
of charge carriers in dilute fluorinated graphene and bilayer graphene. The experimental spin-flip and momentum
scattering rates and their dependence on the density of fluorine and carrier doping are obtained through weak
localization and conductivity measurements, respectively, and suggest the role of fluorine as resonant magnetic
impurities. For the estimated fluorine concentration of a few hundred ppm, the observed spin lifetimes are in
the range of 1–10 ps. Theoretically, we established tight-binding electronic structures of fluorinated graphene
and bilayer graphene by fitting to density-functional supercell calculations and performed a comprehensive
analysis of the spin-flip and momentum scattering rates within the same devices, aiming to develop a consistent
description of both scattering channels. We find that resonant scattering in graphene is very sensitive to the
precise position of the resonance level, as well as to the magnitude of the exchange coupling between itinerant
carriers and localized spins. The experimental data point to the presence of weak spin-flip scatterers that, at the
same time, relax the electron momentum strongly, nearly preserving the electron-hole symmetry. Such scatterers
would exhibit resonance energies much closer to the neutrality point than what density-functional theory predicts
in the dilute limit. The inclusion of a magnetic moment on fluorine adatoms allowed us to qualitatively capture the
carrier-density dependence of the experimental rates but predicts a greater (weaker) spin (momentum) relaxation
rate than the measurements. We discuss possible scenarios that may be responsible for the discrepancies. Our
systematic study exposes the complexities involved in accurately capturing the behavior of adatoms on graphene.

DOI: 10.1103/PhysRevB.100.035421

I. INTRODUCTION

Surface functionalization, which exploits the all-surface
nature of two-dimensional atomically thin layers, is a pow-
erful tool to engineer desired properties absent in pristine
materials. Adatoms and molecular groups on graphene, for
example, are shown to induce a band gap, modify its optical
emission, and enhance its solubility in aqueous solution [1–3].

Chemisorbed adatoms, such as hydrogen, introduce iso-
lated magnetic moments [4,5] and strong local spin-orbit cou-
pling (SOC) to graphene [6–14]. Owing to the gapless Dirac
bands, adatoms on graphene and bilayer graphene (BLG) can
form sharp impurity states situated close to the charge neutral-
ity point. As a result, the interaction between the impurities
and the mobile carriers is resonantly enhanced [15–18]. The
impurity’s resonant nature depends on the valence orbitals and
the adsorption site of the adatom [10,19–22]. We adopt the
terminology that resonant impurities are to be distinguished
from strong midgap scatterers which are described by a
deep potential well of finite radius [15,16,23] and therefore
influence the charge scattering sector much more than simple
vacancies [22]. Both vacancies and strong midgap scatterers
induce resonance levels directly at the charge neutrality point.
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Due to the aforementioned resonant enhancement, adatom-
induced magnetic moments on graphene can be a very effec-
tive source of spin-flip scattering, the unintentional presence
of which provides a possible explanation for ultrafast spin
relaxation in pristine graphene devices [24,25]. Local SOC
induced by adatoms can also be a source for spin relaxation
and manipulation [26]. Engineering adatoms thus provides
a potential route to instill magnetic and spintronic function-
alities in graphene. Here, fluorination provides an attractive
opportunity. For example, first-principles calculations predict
a sizable local SOC of about 10 meV in dilute fluorinated
graphene [12].

Experimentally, the fluorination of graphene is relatively
straightforward. Heavily fluorinated graphene exhibits a large
band gap [27–30] and is spin-half paramagnetic [31]. In the
dilute limit, fluorination on single-layer graphene (SLG) and
BLG induces strong midgap state scattering in the measured
conductivity [32–34], which are electron-hole symmetric.
These data are reproduced in Fig. 7 in Appendix A. Using
weak localization (WL) as a probe, previous experiments by
some of us also uncovered an anomalous large dephasing
rate τ−1

φ in fluorinated SLG [32]. This observation points to
the existence of fluorine-induced magnetic moments, similar
to hydrogenated graphene [35], although a quantitative and
mechanistic assessment has yet to be made. Unlike hydrogen
[4,36], the formation of a magnetic moment in fluorinated
graphene remains inconclusive among first-principles studies
[37,38] presumably due to the self-interaction error in the
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exchange-correlation functionals [39,40]. Furthermore, both
fluorine concentration and carrier doping [41] can play a role,
making the magnetic properties of fluorine adatoms a complex
issue to address.

In this joint experiment-theory study, we attempted to
provide a quantitative model to simultaneously capture the
effect of fluorine adatoms on both spin and charge scatter-
ing. We are motivated by the availability of a complete set
of conductivity and WL measurements on fluorinated SLG
and BLG devices. These come from our previous studies
[32–34] and data reported in Sec. II. Theoretical investigations
are built upon our previous calculations discussing the spin
[24,25] and momentum [22] relaxations of resonant impurities
in graphene. Fluorinated SLG and BLG are described in
a tight-binding (TB) model motivated by density-functional
theory (DFT) calculations.

Our systematic comparison of measurement and model-
ing revealed several insights. The theory and experiment
consistently describe the carrier-density dependence of the
scattering rates, supporting the resonant scattering mechanism
for both spin and momentum relaxation. But we also find con-
siderable quantitative differences, with our theory finding a
greater spin-relaxation rate than the experiment and underesti-
mating the momentum relaxation rate. The high experimental
momentum relaxation rate is consistent with fluorine being
a strong midgap scatterer with electron-hole symmetry while
our DFT results on large supercells of fluorinated graphene
show a broad resonance away from the charge neutrality point.
In plain terms, the DFT-induced exchange coupling is much
greater, while the position of the resonance level is far off,
than what would be needed to account for the measured data.
The difficulty to capture the experimental observations has
motivated us to examine several potentially relevant scenarios.
In particular, the varying local curvature of the graphene
sheet may play an important role, the effect of which on the
electronic structure and magnetic screening of fluorine should
be carefully examined. Similarly, we see a need to investigate
the magnetic and momentum scattering of adatom clusters, as
they could produce resonances close to the charge neutrality
point and thus a better match to the strong midgap scatterer
model than individual adatoms. In addition, it is worthwhile
to reexamine whether it is appropriate to use an independent
scattering approximation for weakly resonant states such as
fluorine in our DFT calculations. We hope that our work
stimulates further studies in these directions.

The paper is organized as follows. Section II describes
the WL data in fluorinated BLG, while Sec. III introduces
the basic theory for the DFT and TB model of fluorinated
SLG and BLG and the calculation of the spin and momentum
relaxation rates. Results, comparison to experiments, and dis-
cussion are presented in Sec. IV. Here, we point out the major
differences between model and experiment and speculate on
possible reasons. We conclude in Sec. V. Technical details and
supplemented studies are presented in the Appendices.

II. EXPERIMENT

The recipe used for fluorination and device fabrication and
the characteristics of fluorinated SLG and BLG devices were
described in previous studies [32–34]. References [32,34]

found that a dilute fluorine adatom concentration gives rise
to a momentum relaxation of charge carriers consistent with
strong midgap scattering [15,16,34] which is characterized by
resonance levels at the zero energy, i.e., the charge neutrality
point, and consequently electron-hole symmetric conductivity
σ , in agreement with experimental observations.

Here, we first describe data on the density-dependent de-
phasing rate τ−1

φ (n) in fluorinated BLG. Measurements of

σ (n) and τ−1
φ (n) in the same devices enable us to investigate

the effect of a single fluorine adatom on both charge and spin
relaxation quantitatively in a self-consistent manner and in
both SLG and BLG. This is the central objective of this paper.

Fluorine concentrations of nF = 2.2, 3.8, and 4.4 ×
1012 cm−2 were obtained for the BLG devices W38, W02, and
W03, respectively, using Raman spectroscopy and conductiv-
ity measurements in Ref. [34]. We obtain τ−1

φ (n) using magne-
toconductance measurements σs(B) similar to that described
in Ref. [32] in the carrier-density regime of n > nF in each
device. The WL expression for BLG [42] accurately describes
our magnetoconductance data, from which we determine the
phase decoherence length lφ and subsequently the dephasing
rate τ−1

φ (see Appendix A). We obtained τ−1
φ (n) over a range

of carrier densities in the 1012 − 1013 cm−2 regime at a fixed
temperature T = 1.7 K. We have also obtained through ex-
trapolation the T = 0 limit τ−1

sat (n) in W03 by a temperature
dependence study (see Fig. 8 in Appendix A).

Figure 1 plots τ−1
φ (n) of all BLG devices at T = 1.7 K.

The magnitude of τ−1
φ ranges from 0.1 to 1 ps−1, which is

more than one order of magnitude larger than what is reported
in the literature for pristine BLG [42]. Figure 1 also shows
that τ−1

φ is approximately electron-hole symmetric, as is the

conductivity σ (n) itself [34]. Furthermore, τ−1
φ scales well

with nF and is well described by an empirical power law of
n−1. Following our earlier studies on fluorinated SLG, we

FIG. 1. Density-dependent dephasing rates versus carrier den-
sity τ−1

φ (n) on a double-log plot in fluorinated BLG devices W03
(red, nF = 4.4 × 1012 cm−2), W02 (blue, nF = 3.8 × 1012 cm−2),
and W38 (green, nF = 2.2 × 1012 cm−2) at T = 1.7 K. Square sym-
bols are for electrons and triangles are for holes. The gray dashed
line corresponds to a power law dependence of n−1.
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FIG. 2. Experimental scattering rate ratio τ−1
φ /τ−1

m versus car-
rier density n in fluorinated SLG and BLG. Solid orange triangles
correspond to a SLG device (sample A) reported in Ref. [32] with
nF = 5 × 1011 cm−2. This data was taken on the hole side. The BLG
data, on the electron side, are shown in blue (W02), green (W38), and
red (W03) squares. Open symbols indicate T = 1.7 K, while solid
symbols show the T = 0 extrapolation τ−1

sat . The gray dashed and
dotted lines correspond to a power-law dependence of n−1, differing
by a factor of two.

tentatively attribute the enhanced τ−1
φ to spin-flip scatterings

caused by fluorine-induced magnetic moments.
Figure 2 plots the ratio of the dephasing rate over the

momentum scattering rate τ−1
φ /τ−1

m as a function of carrier
density n, combining current and prior data from fluorinated
SLG and BLG samples [32,34]. Here, τ−1

m = ne2/σm� where
m� is the effective mass of BLG (see Fig. 9 in Appendix A).
The collapse of all BLG data onto a single line, independent of
nF, strongly indicates that both τ−1

φ and τ−1
m originate from the

fluorine adatoms. From the SLG trend line to the BLG trend
line, the ratio τ−1

φ /τ−1
m increases by only a factor of 2, in spite

of a nF change of close to a factor of 10. These observations
have inspired us to seek a unified theoretical framework that
can capture the effects of fluorine adatoms in both charge
and spin scattering sectors, and on both SLG and BLG in a
self-consistent manner.

III. THEORY

We model a single fluorine adatom in the TB approxima-
tion as an Anderson-like impurity—with an energy offset ε

of the adatom level compared to the carbon pz orbitals, and a
hybridization ω. Moreover, we assume that the adatom carries
an effective local magnetic moment that couples with itinerant
spins via an on-site exchange interaction parameterized by
coupling J . The spin and momentum relaxation rates τ−1

s and
τ−1

m , respectively, are obtained through the fully analytical
T-matrix approach [24,25]. We use the generalized Fermi-
golden rule based on the T-matrix, and broaden the final rates
with a Gaussian with zero mean and width �eh. This last step
accounts for electron-hole puddles and other unknown sample
imperfections.

Two different adsorption positions, dimer (d) and nondimer
(nd), are taken into account for BLG (see Appendices B and
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FIG. 3. Perturbed DOS of fluorinated (blue solid) and hydro-
genated (red dashed) graphene structures: Panel (a) corresponds to
SLG with impurity concentration (per carbon atom) η = 400 ppm
and panels (b) and (c) to BLG with the d and nd adatom absorption
positions, respectively, both with concentration η = 200 ppm. The
high concentration values are chosen for better visibility. The black
dashed lines on the background show the unperturbed DOS. Inspect-
ing panels (a)–(c), one observes broad (200–300 meV) resonance
levels in fluorinated SLG and BLG with ESLG

res = −262 meV, EBLG
res,d =

−253 meV, and EBLG
res,d = −247 meV, respectively. To the contrary,

hydrogen acts in all three cases as a very narrow (width below
10 meV) resonant scatterer with the corresponding resonant energies
ESLG

res = 16 meV, EBLG
res,d = 23 meV, and EBLG

res,nd = 19 meV. The blue
(fluorine) and red (hydrogen) vertical arrows indicate the energy
positions of the resonances.

C for more details). We assume that those positions on the
top layer of BLG are equally populated during the process of
fluorination. The model TB parameters are obtained from fit-
ting the spin unpolarized electronic band structure computed
within DFT, see Appendix B. The fits displayed in Figs. 10
and 11 in Appendix C show good qualitative and quantitative
agreements between the first-principles supercell calculations
and the effective TB model. The extracted TB parameters for
fluorine are summarized in Table I of Appendix C. For the
sake of compactness and later discussions, we also provided
there the corresponding hydrogen adatom data.

Based on the fitted orbital parameters describing the
adatom impurities, we compute the perturbed density of states
(DOS) for SLG and BLG graphene with fluorine and hydro-
gen adatoms according to Eq. (C9) in Appendix C. Those
perturbed DOS data are displayed in a comparative way in
Fig. 3. We see that fluorine generally induces spectrally broad
resonances when compared to the hydrogen atom: Fluorine
resonances lie at about Eres ≈ −250 meV, significantly away
from the charge neutrality point. To the contrary, the reso-
nance levels of strong resonant impurity like hydrogen lie very
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FIG. 4. Spin-relaxation rate in fluorinated SLG. The experimen-
tal data (black symbols) are from sample A of Ref. [32]. The blue
solid line shows the spin-relaxation rate based on the fluorine TB
model with J = 0.56 eV, �eh = 64 meV, and fluorine concentration
η = 131 ppm, which is based on experimental estimates. The red
dashed line corresponds to the spin-relaxation rate in the alternative
scenario of a strong resonant impurity represented by hydrogen,
which for the same value of η, J = 9 meV, and �eh = 77 meV,
restores the electron-hole-symmetry. Corresponding TB parameters
are provided in Appendix C.

close to the charge neutrality point at about Eres ≈ 20 meV.
The exact values for all considered cases are specified in
Fig. 3. As a consequence of the relatively large negative
resonance offsets for fluorine, the corresponding calculated
(spin and momentum) relaxation rates are expected to dom-
inate on the hole side [22]. However, the measured σ and
τ−1
φ are roughly electron-hole symmetric, which would favor

hydrogenlike impurities. Explicit data on the relaxation rates
are given in the following Sec. IV.

Since DFT results are not conclusive [37,38] on whether
fluorine carries a magnetic moment or not, the exchange
coupling J on fluorine is set to a value that gives the best
agreement between the TB model and experiment. Those
values are specified in the next section when we analyze
the experimental data in terms of the effective TB model. A
reasonable value of J and good agreement between model
and experiment would strongly indicate that fluorine adatoms
indeed induce magnetic moments that dominate the spin
relaxation.

The spin-relaxation mechanism under consideration is
based on resonant scattering off magnetic impurities where
local magnetic moments interact via the exchange interaction
with itinerant spins: An electron scattering resonantly off
the impurity experiences a local spin-flip exchange field.
The narrower the resonance level, the longer is the lifetime the
electron experiences this exchange-field, and the higher is the
probability that the impurity randomizes the electron’s spin.
Details of the resonant-scattering spin-relaxation mechanism
can be found in Refs. [24,25]. For the sake of compactness,
the analytical formulas are also provided in Appendix C.

IV. THEORY VERSUS EXPERIMENT, AND DISCUSSION
ABOUT ALTERNATIVES

Figure 4 plots the measured τ−1
sat (black symbols) and

computed spin-relaxation rate (blue solid) in fluorinated
SLG for both electron and hole carriers. Fixing the fluorine
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FIG. 5. Spin-relaxation rate in fluorinated BLG. The experimen-
tal data (black symbols) are from sample W03 (extrapolated to
T = 0). The blue solid line shows the spin-relaxation rate based
on the fluorine TB model with J = 0.47 eV, �eh = 20 meV, and
fluorine concentration η = 572 ppm, which is based on experimental
estimates. The red dashed line corresponds to the spin-relaxation rate
in the alternative scenario of a strong resonant impurity represented
by hydrogen, with the same values of η and �eh, and J = −40 meV.
Corresponding TB parameters are provided in Appendix C.

concentration to the experimentally estimated value of η =
131 ppm (nF = 5 × 1011 cm−2) and taking into account a
broadening �eh due to electron-hole puddles, the only free
parameter in our model is the exchange coupling J . On the
hole side, no value of J can be found to match the calculated
τ−1

s to the experimental data. For illustration, we show the
calculated τ−1

s using J = 0.56 eV and �eh = 64 meV consis-
tent with experimental estimates [43]. This model calculation
produces τ−1

s of the experimental magnitude on the electron
side but overshoots the measurement on the hole side by
more than an order of magnitude. This comparison shows the
discrepancy between the single impurity TB model (fitted to
DFT), and measurements from the point of view of electron-
hole symmetry. Similar behavior is found when we compare
theoretical and experimental values of τ−1

s in fluorinated
BLG. Figure 5 shows experimental data (black symbols) from
sample W03 with η = 572 ppm (nF = 4.4 × 1012 cm−2) and
calculated spin-relaxation rate (blue solid) with J = 0.47 eV,
�eh = 20 meV, and the experimentally estimated concentra-
tion. Measured data are reproduced satisfactorily on the elec-
tron side; however, they significantly deviate on the hole side
(not shown). This is again in a contrast with the measured
τ−1
φ as displayed in Fig. 1, which is manifestly electron-hole

symmetric.
The ratio of spin to momentum relaxation rates, τ−1

s /τ−1
m ,

exposes further difficulty of reconciling the BLG measure-
ments and calculations that are motivated by first-principles
data for fluorine. Though Fig. 5 shows a good agreement
between the calculated and measured τ−1

s in fluorinated BLG
on the electron side, the comparison of τ−1

s /τ−1
m for the same

range of energies shows that the model underestimates the
experimentally obtained momentum relaxation rate (sample
W03) by about a factor of 40, see Fig. 6(a). The similar
comparison was omitted in SLG because there the simple
TB model was not able to capture the experimental spin-
relaxation rate in the hole doping region.
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FIG. 6. Spin to momentum relaxation rate ratio of fluorinated
(a) BLG (sample W03, black symbols) and (b) SLG (sample A, black
symbols). (a) The fluorine TB model (blue solid) underestimates τ−1

m

by a factor of 40, while the alternative scenario of a strong resonant
impurity, here hydrogen, (red dashed) underestimates the rate by a
factor of 6. (b) The alternative scenario of a strong resonant impurity,
here hydrogen, (red dashed) underestimates τ−1

m by a factor of 7.

Discussion about alternative scenarios

The above comparisons point to a key difference between
experiment and DFT calculations, i.e., fluorine appears to
behave like a strong resonant impurity in experiment, while its
TB description based on DFT is certainly not. In other words,
because the electron side is so far away from the resonance,
the momentum scattering caused by fluorine adatoms is too
weak to capture the measured conductivity. Below we offer
a few thoughts on what can cause the disagreement, with the
hope to stimulate further studies.

(1) Charging effects: Based on the observation of charging
effects in the DFT data (see Appendix C), we have also treated
each fluorine adatom in BLG as a scattering center carrying
an effective charge −e and thus considered an upper bound
for additional charged impurity scattering in this scenario.
The details are given in Appendix C. The additional charge
impurity contribution enlarges τ−1

m,eff and reduces the model
calculation discrepancy in τ−1

s /τ−1
m to a factor of about 15,

as shown in Fig. 13 in Appendix C. This is an improvement
compared to Fig. 6(a) but the deviation remains significant.

(2) Clusters: We considered the possibility of small fluorine
clusters (<2 nm), as clusters may give rise to symmetric
conductivity [44,45]. Clustering simultaneously quenches the
Raman signal [46] of an isolated adatom, reduces its resonant
impurity scattering strength [44,45], and most likely quenches
potential magnetic moments [31,47] which would affect both
the spin-relaxation rate and the scattering-rate ratio. We can-
not rule out their presence in our samples, but clustering
cannot solve the τ−1

s /τ−1
m puzzle in our opinion. A quantitative

evaluation could shed further light on the role of clustering.
(3) Lattice deformation: Another important factor is lattice

deformation. Experimentally, we have noticed that the pres-
ence of local curvatures, e.g., created by exfoliating to a rough
substrate such as SiO2, is essential to the fluorination process.
This suggests that the local bonding and ionic environment
of a fluorine adatom in real devices is likely quite different
from that of a DFT simulation. A realistic description of the
adatoms may be crucial to capture their electronic proper-
ties accurately. This can potentially reconcile the difference
between the DFT electronic structure of fluorine adatoms
appearing as weak resonances off the charge neutrality point

and the experimental indication of fluorine being a midgap
scatterer. More elaborate DFT studies would be needed to
confirm this hypothesis.

(4) Strong resonant impurity: Though not supported by
our DFT calculations, the quantitative similarities between
the conductivity measurements of fluorinated [32] and hy-
drogenated [48] graphene motivated us to model fluorine as
a hypothetical strong resonant impurity, which induces reso-
nance levels very close to the charge neutrality point and thus
producing the experimentally observed electron-hole symme-
try [22]. To analyze that possibility quantitatively, we used
the known orbital TB parameters for the hydrogen adatom
for SLG [11] and BLG [25], see also Appendix C. To match
the experimental τ−1

s with the known impurity concentrations
nF, we need the small exchange strength of J = 9 meV and
�eh = 77 meV for SLG (see Fig. 4), and J = −40 meV and
�eh = 20 meV for BLG (see Fig. 5), which in both cases gives
significant improvements compared to the original models.
The relatively small values of the exchange coupling J suggest
that spin-flip scatterings caused by fluorine adatoms are poten-
tially weak. As mentioned in the Introduction, the induction
of a magnetic moment in fluorinated graphene is quite subtle
and depends on a set of other parameters such as doping
and fluorine concentration. Furthermore, a recent study [49]
showed that vacancy-induced magnetic moments in graphene
can be screened by itinerant electrons, where the Kondo
temperature depends on gating and the local curvature of the
graphene sheet. Should similar physics occur for fluorine, a
fraction of the fluorine-induced moments may be screened and
manifests as a reduced exchange coupling J in our fittings.

Examining the rates’ ratio between the spin and momen-
tum relaxation, we still observe an underestimation of the
momentum relaxation in both BLG and SLG samples by about
a factor of 6 and 7, respectively, see Fig. 6. The underesti-
mation is consistent with a previous study, where we showed
that even strong resonant adatoms such as hydrogen do not
produce momentum relaxation rates as high as a vacancy
or strong midgap scatterer does [22]. Experimental data of
charge scattering in fluorinated and hydrogenated graphene
[32,48], on the other hand, seem to fit the scattering model
of a strong midgap scatterer rather well [15–18]. This is
another puzzling aspect of the fluoro-functionalized graphene
that needs to be understood before quantitative assessments of
scattering processes can be accurately made.

(5) Correlation effects and spin relaxation of nonmagnetic
origin: Other possibilities include correlated-impurity effects
currently not evaluated in our spin-relaxation model and
possibly phase breaking mechanisms that are nonmagnetic
in origin, that could complicate the WL data analysis. In
this regard, it is worth mentioning that calculations have
shown that SOC terms which preserve the mirror symmetry
of the graphene plane, i.e., Sz, can lead to spin-dependent
scattering that mimics the effect of spin-flip scattering in
the WL measurements [50]. Fluorine induces a local SOC
of about 10 meV [12]. However, according to earlier studies
in Ref. [26] on fluorinated SLG, an approximately 1000
times higher concentration would be necessary to reach the
measured dephasing rate. This suggests that the local SOC in-
duced by fluorine is not the dominant source of spin relaxation
observed in experiment.
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V. CONCLUDING REMARKS

In conclusion, we performed a comprehensive experiment-
theory study to investigate the spin and charge relaxation
in dilute fluorinated SLG and BLG. Experimental evidence
points to fluorine being the dominant source of both spin and
momentum scattering. In the charge channel, fluorine behaves
as a strong midgap scatterer that is situated at the charge
neutrality point whereas, in the spin channel, the experiment
suggests it is a weak spin-flip scatterer.

Theoretically, we performed first-principles calculations
in supercell geometry and obtained TB models of fluorine
adatom on SLG and BLG. Employing the T-matrix formal-
ism, we further investigated spin and momentum relaxation
in the limit of independent dilute magnetic scatterers. The
modeling predicts fluorine-induced resonances off the charge
neutrality points, leading to a marked difference between
electron and hole transport channels. This is at odds with the
experiment. Also, the model predicts a rather strong spin-flip
scattering and weaker momentum relaxation rates than the
experimentally measured data. The agreement with the exper-
iment cannot be reconciled by considering charged adatoms
(due to charge transfer between fluorine and graphene), nor
by reducing the exchange coupling. However, the agreement
improves significantly if we use a strong resonance model
represented by hydrogen adatoms, which is very close to
the midgap scatterer model, yielding only weakly electron-
hole asymmetric results. This model still underestimates the
momentum relaxation rate by a fewfold.

The comparison between experiment and theory highlights
practical complications and challenges that need to be over-
come before the electronic properties of the fluorine adatom,
a widely used functionalization element on two-dimensional
materials, can be accurately captured in DFT calculations.
There is still a profound lack of understanding (and agree-
ment) on the presence or absence of a magnetic moment on
dilute fluorine adatoms on graphene. From our study, we also
see that the basic electronic structure obtained from DFT
can miss significant practical sample features, such as the
structural deformations discussed above. The original data
and rather deep theoretical analysis into the current state of
knowledge about the system should provide further impetus
to investigate the fascinating physics of resonant scattering
and spin relaxation in graphene functionalized not only with
fluorine, but also other types of adatoms.
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APPENDIX A: EXPERIMENTAL DEPHASING
AND SATURATION RATE

In Fig. 7, we plot conductivity data obtained in previous
studies on fluorinated SLG [32] and BLG [34]. Both show

electron-hole symmetry. The momentum relaxation rate τ−1
m

extracted from these data are proportional to the fluorine con-
centration nF. Figure 8(a) plots the magnetoconductance σs(B)
of W03 at ne = 6 × 1012/cm2 and selected temperatures. Fits
to Eq. (1) of Ref. [42] are shown as dashed lines and provide
an excellent description of data. The phase decoherence length
lφ obtained from the fits ranges from 30 to 114 nm, from
which we obtain the dephasing rate τ−1

φ through τ−1
φ = Dil

−2
φ

where Di is the diffusion constant given by

Di = σd h2

8πm�e2
. (A1)

Here, σd is the Drude sheet conductance measured around
T = 200 K and m� the n-dependent effective mass of BLG
calculated for the current density range using experimentally
determined TB parameters [51,52]. The values of m� are given
in Fig. 9. The fits also use li = l� = 10 nm, although varying
li and l� by a factor of 2 up or down has negligible effect on lφ
which is given by the low magnetic field regime (B � 0.5 T).
The values of li and l� are roughly the interfluorine spacing,
similar to what we found on fluorinated SLG [32]. Similar
measurements and analyses are performed up to T = 35 K
and at electron densities n ranging from 5 × 1012 cm−2 to
1.3 × 1013 cm−2. Figure 8(b) plots the resulting τ−1

φ (T ) at

different carrier densities. It is clear from the plot that τ−1
φ (T )

follows a linear trend given by τ−1
φ = aT + τ−1

sat , with the
slope a ranging from 0.05–0.08 ps−1/K. We attribute the aT
term to electron-electron collision-induced dephasing. It can
be further written as

a = αkB
ln g

h̄g
, (A2)

where g = σd h/e2 is the dimensionless Drude sheet conduc-
tance. The resulting α ranges between 1.5 and 1.8 (see the
table in Fig. 8), in excellent agreement with previous WL
studies in pristine SLG [53], BLG [42], and our fluorinated
SLG samples [32]. The T = 0 dephasing rate τ−1

sat of sample
W03 is used to compare to calculations.

FIG. 7. (a) Measured σ (Vg) of SLG sample A (black) and B
(red) from Ref. [32]. nF = 5 × 1011 cm−2 in sample A and 2.2 ×
1012 cm−2 in sample B. (b) σ (n) of BLG sample W38 (olive),
W02 (cyan) and W03 (magenta) from Ref. [34]. nF = 2.2, 3.8, and
4.4 × 1012 cm−2, respectively. The same three samples are used in
the current study.
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n [1012 cm−2] 5 6 7.5 9.5 13

α 1.81 1.63 1.51 1.63 1.56

FIG. 8. (a) Sheet conductance σs versus B for BLG sample W03
measured at electron density n = 6 × 1012 cm−2. From bottom to
top: T = 1.6, 2.5, 3.5, 5.0, 7.5, 10 K. Dashed lines are fits to the WL
expression in BLG of Ref. [42]. (b) Dephasing rate τ−1

φ in sample
W03 as a function of temperature at varying electron densities n.
From bottom to top: n = 13, 9.5, 7.5, 6.0, 5.0 × 1012 cm−2. The table
presents the extracted coefficient α in Eq. (A2).

APPENDIX B: DFT CALCULATION

The electronic structure of fluorinated BLG has been calcu-
lated within the DFT [54] using the plane wave pseudopoten-
tial code Quantum ESPRESSO [55]. A 10 × 10 supercell for
fluorinated SLG and 7 × 7 supercell of Bernal stacked BLG in
a slab geometry with a vacuum spacing of 15 Å were consid-
ered. The reduced Brillouin zone was sampled with 10 × 10
k-points. The atomic positions in the supercell calculations
have been relaxed using the quasi-Newton algorithm based on
the trust radius procedure. For the atomic species, we have
used projector augmented-wave pseudopotentials [56] with
the PBE exchange-correlation functional [57] with kinetic
energy cut-offs of 50 Ry for the wave function and 350 Ry
for the density. The supercell sizes were chosen such that
interference effects between the periodic images of fluorine in

FIG. 9. Experimental effective mass of electrons and holes in
BLG using tight-binding parameters γ0 = 3.43 eV, γ1 = 0.40 eV,
γ4 = 0.216 eV, γ3 = 0, 
 = 0.018 eV as obtained in Refs. [51,52].

the supercell approach can be neglected. Therefore, we take
these calculations as a reliable basis for our TB model which
we will employ for the experimental measurements of dilute
fluorinated graphene.

APPENDIX C: MODEL

1. Tight-binding model

We describe fluorine in SLG and BLG [24,25] as an
Anderson-like impurity that possesses a nonitinerant magnetic
moment. In the BLG case, we distinguish whether fluorine
adsorbs on the dimer or nondimer carbon site, Cd and Cnd,
respectively. Within the TB approximation, the full model
Hamiltonian reads

H = H0(γ0, γ1) + H ′(ε, ω) + Hex(J ) . (C1)

The Hamiltonian H0 describes unperturbed SLG or BLG with
the nearest-neighbor intralayer hopping γ0 and the interlayer
hopping γ1 (γ1 = 0 in the SLG case), H ′ describes the fluorine
chemisorption with the on-site energy ε and hybridization
strength ω, and Hex represents the exchange interaction term
with coupling J . In more detail, for SLG we have

HSL
0 = −γ0

∑
〈m,n〉σ

|amσ 〉 〈bnσ | + H.c. , (C2)

and for AB-stacked BLG

HBL
0 = −γ0

∑
〈m,n〉σ
λ∈{t,b}

∣∣aλ
mσ

〉 〈
bλ

nσ

∣∣ + γ1

∑
mσ

∣∣at
mσ

〉 〈
bb

mσ

∣∣ + H.c. ,

(C3)

where γ0 = 2.6 eV and γ1 = 0.34 eV. Our AB stacking as-
sumes that γ1 connects the sublattice A of the top (λ = t) and
the sublattice B of the bottom layer (λ = b), respectively. A
carbon 2pz orbital with spin σ , which resides on the lattice site
m, is represented by the one-particle state |cmσ 〉, where c =
{a, b} depends on the sublattice degree of freedom of the site
m. Similarly, | fσ 〉 stands for the fluorine 2pz orbital with spin
σ . The fluorine adsorption is characterized by the two orbital
TB parameters—the on-site energy ε and the hybridization
strength ω:

H ′ = ε
∑

σ

| fσ 〉 〈 fσ | + ω
∑

σ

(| fσ 〉 〈c∗
σ | + H.c.) , (C4)

where |c∗
σ 〉 denotes a carbon orbital that bonds with fluorine.

To distinguish SLG and BLG cases, we use ε and ω without
any subscripts for the former case, and we add the subscripts
d and nd for the dimer and nondimer BLG positions, respec-
tively. We extract the orbital parameters ε and ω by fitting
the TB model Hamiltonian H0 + H ′ to DFT data for spin
unpolarized electronic band structures of fluorinated SLG
and BLG, respectively. The resulting parameters are given in
Table I together with the values for hydrogen as extracted in
Refs. [11,25].

Figures 10 and 11 show the comparison between DFT
(symbols) and TB model (solid) electronic band structures for
fluorinated SLG and BLG.

Fluorine’s local magnetic moment is captured by the ex-
change term in Eq. (C1),

Hex = −J ŝ · Ŝ . (C5)

035421-7



SUSANNE WELLNHOFER et al. PHYSICAL REVIEW B 100, 035421 (2019)

TABLE I. TB parameters in eV for fluorine (upper row) and
hydrogen (lower row) adatoms in SLG (left double column), and
BLG (right four column). The subscripts d and nd stand for dimer
and nondimer BLG absorption positions, TB parameters carrying no
subscripts refer to SLG.

Adatom ω ε ωd εd ωnd εnd

Fluorine 5.5 −2.2 7.0 −2.5 8.0 −3.0
Hydrogen 7.5 0.16 6.5 0.25 5.5 0.35

The energy-independent exchange strength J couples the itin-
erant electron spin with the localized impurity spin (spin 1

2 )
being represented by the array of Pauli matrices ŝ and Ŝ,
respectively.

2. Charging effect

The simple TB model above does not reproduce the gap
opening between the two bands just above the Fermi level at
the K point in the dimer configuration, see Fig. 11. Though,
by adding a potential offset to H0 which raises the on-site
energies of all 2pz orbitals on the upper layer, i.e., H0 +
U

∑
m,σ |ct

mσ 〉 〈ct
mσ |, we can qualitatively improve the match-

ing of the two considered electronic band structures. Fitting
U , we found U = 0.16 eV; see Fig. 12. We attribute this
potential offset to charging effects: The high electronegativity
of the fluorine leads to charge redistribution among the BLG
sheets. This potential offset is ignored in the calculation of the
spin-relaxation rates. The DFT calculations predict also for
fluorinated SLG a charge transfer from graphene to fluorine
[12], though no modification of the TB model is needed to
reproduce the band structure.

3. Relaxation rates for resonant impurity scattering

The relaxation rates are computed from the underlying
TB model, Eq. (C1), employing the fully nonperturbative
T-matrix approach [24,25]. The impurity’s spin degrees of
freedom double the one-particle state basis |cmσ 〉, | fσ 〉 →
|cmσ 〉 ⊗ |�〉, | fσ 〉 ⊗ |�〉, where � = {↑,↓} stands for the
component of the impurity spin along the quantization axis.
Introducing singlet (� = 0) and triplet (� = 1) spin states and

K ΓMΓ

-0.5

0

0.5

1

E-
E F

 [e
V

]

FIG. 10. DFT (black dotted) and TB (blue solid) calculated
electronic band structure of a 10 × 10 supercell of fluorinated SLG
graphene. The TB parameters are ω = 5.5 eV and ε = −2.2 eV.

K ΓMΓ
-1

-0.5

0

0.5

1

E -
E F

 [e
V

]

Γ M K Γ
-1

-0.5

0

0.5

1

E-
E F

 [e
V

]

FIG. 11. DFT (black dotted) and TB (blue solid) calculated
electronic band structure of a 7 × 7 supercell of BLG with one
fluorine adatom in the dimer (left) and nondimer (right) adsorption
position on the top layer. The TB parameters are ωd = 7.0 eV and
εd = −2.5 eV for the dimer configuration and ωnd = 8.0 eV, εnd =
−3.0 eV for the nondimer configuration.

downfolding the Hamiltonian by decimating the | f 〉 degrees
of freedom, one obtains an analytic expression for the T matrix
[24,25] T(E ) = ∑

�,m�
T�(E ) |c�,m�

〉 〈c�,m�
|, where

T�(E ) = V�(E )

1 − V�(E ) GC(E )
, V�(E ) = ω2

E − ε + (4� − 3)J
.

(C6)

The T matrix contains the Green’s function, GC(E ) =
〈c∗

↑|(E + iδ − H0)−1|c∗
↑〉 = 〈c∗

↓|(E + iδ − H0)−1|c∗
↓〉, of the

unperturbed SLG or BLG which is projected to the carbon

K ΓMΓ
-1

-0.5

0

0.5

1

E-
E F

 [e
V

]

Γ M K Γ
-1

-0.5

0

0.5

1
E-
E F

 [e
V

]

FIG. 12. DFT (black dotted) and TB (blue solid) calculated elec-
tronic band structure of a 7 × 7 supercell of BLG with one fluorine
adatom in the dimer (left) and nondimer (right) adsorption position
on the top layer. In addition to the TB parameters ωd = 7.0 eV
and εd = −2.5 eV for the dimer configuration, and ωnd = 8.0 eV,
εnd = −3.0 eV for the nondimer configuration, a finite potential
offset of U = 0.16 eV is assigned to the top layer of BLG in the TB
calculation to account for charging effects.
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atomic site C hosting the fluorine adatom. In detail, GC(E ) ≡
�C(E ) − iπνC(E ), where

�C(E ) = E

2D2
ln

∣∣∣E2(E2 − γ 2
1 )

(D2 − E2)2

∣∣∣ + γ1
C

2D2
ln

∣∣∣E + γ1

E − γ1

∣∣∣ ,
(C7)

νC(E ) =
∑
μ=±

|E | − μ
Cγ1

2D2
�(D − |E |)�(|E | − μγ1) .

(C8)

The symbol D =
√√

3πγ0 � 6 eV denotes the effective
bandwidth, and 
C = 0 for Cd-site and 
C = 1 for Cnd-site
in the BLG case, respectively. By setting γ1 = 0, the above
formulas apply to the SLG case [24].

The adsorption of fluorine on graphene induces resonance
levels in the graphene spectrum which directly affect the
relaxation rates. We determine the resonance energy, i.e., the
energy at which an incoming electron resonantly scatters off
the impurity, from the perturbed DOS per atom and spin,
which is given by

�C(E ) =
∑
μ=±

�
μ
0 (E ) − (η/π )

1

4
Im

×
∑

�

{[
− d

dE
GC(E )

]
(2� + 1)T�(E )

}
, (C9)

where, �
μ
0 (E ) = (2|E | − μγ1)/(4D2) �(D − |E |) �(|E | −

μγ1) is the unperturbed BLG DOS per atom and spin for the
high (μ = +) and low (μ = −) energy band, respectively.

Using the T matrix and the generalized Fermi’s golden rule,
the spin-dependent relaxation rate at a given energy for given
adatom concentration η is obtained from [24,25]

1

τC
σσ ′

= η

2

2π

h̄

{
δσσ ′ |T1(E )|2 + 1

4
|T1(E ) + (σ · σ ′)T0(E )|2

}

× [P+
C (E )�+

0 (E ) + P−
C (E )�−

0 (E )]2

�+
0 (E ) + �−

0 (E )
. (C10)

Here, we introduced the projection factor Pμ
C(E ) =

2(|E | − μ
Cγ1)/(2|E | − μγ1)�(D − |E |)�(|E | − μγ1),
which specifies the contribution of the site C to the low and
high energy bands μ at a given energy E . In the SLG case
with γ1 = 0, one has correspondingly �+

0 (E ) = �−
0 (E ) and

P+
C (E ) = P−

C (E ). The adatom concentration η is defined as
the number of adatoms divided by the number of carbon

0.1 0.15 0.2 0.25
E [eV]

0.001

0.01

τ s-1
/τ

m
,e

ff
-1

BL exp
F, (model + ch) × 1/15

FIG. 13. Spin to momentum relaxation-rate ratio of fluorinated
BLG. Here we consider fluorine as a charged impurity; this reduces
the discrepancy between the fluorine TB model and the experimental
data (black symbols, sample W03) to a factor of 15.

atoms in the structure. The quantity η is related to the areal
impurity concentration, nF, via ηSL = nFAuc/2 for SLG and
ηBL = nFAuc/4 for BLG, where Auc = 3(

√
3/2)a2

cc is the area
of one graphene unit cell with the carbon-carbon distance acc.

From Eq. (C10), we obtain both the spin-relaxation
rate, 1/τC

s = 1/τC
↑↓ + 1/τC

↓↑, and the momentum relaxation
rate, 1/τC

m = 1/τC
↑↑ + 1/τC

↑↓. In the case of fluorinated
BLG, we assume that both dimer and nondimer sites con-
tribute statistically equally to the relaxation and, therefore,
the final spin-relaxation rate is given by their unbiased
average:

1/τs(m) ≡ 1/
(
2τ

Cd
s(m)

) + 1/
(
2τ

Cnd
s(m)

)
. (C11)

We checked that the results presented in the main text of the
paper do not change qualitatively under variation of the ratio
of dimer and nondimer adsorption positions. Finally, the effect
of charge puddles present in the experimental samples are
taken into account by a Gaussian broadening of the relaxation
rates by �eh.

4. Charged impurity scattering

For calculating the momentum relaxation rate for charged
fluorine scattering, we employ the model of Refs. [58–61]
in the approximation of zero temperature. For simplicity, we
further assume that each fluorine adatom carries a charge of
−e, neglect the finite distance of fluorine to graphene [12],
and set the relative permittivity of the fluorine environment to
graphene on SiO2 [62]. Both the short (resonant scattering)
and long-range (charged impurity) contributions to the mo-
mentum relaxation rate are then combined by the Matthiesen’s
rule to obtain τ−1

m,eff in Fig. 13.
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