
A systematic approach for analyzing students'
computational modeling processes in C2STEM

Nicole Hutchins1, Gautam Biswas1, Shuchi Grover2, Satabdi Basu3, and Caitlin
Snyder1

1 Vanderbilt University, Nashville TN 37212, USA
2 Looking Glass Ventures, Palo Alto CA 94306, USA

3 SRI International, Menlo Park CA 94025, USA
nicole.m.hutchins@vanderbilt.edu

Abstract. Introducing computational modeling into STEM classrooms can pro-
vide opportunities for the simultaneous learning of computational thinking (CT)
and STEM. This paper describes the C2STEM modeling environment for learn-
ing physics, and the processes students can apply to their learning and modeling
tasks. We use an unsupervised learning method to characterize student learning
behaviors and how these behaviors relate to learning gains in STEM and CT.

Keywords: Learning by modeling, Computational model-building, STEM+CT.

1 Introduction

Modeling is fundamental to science. The Next Generation Science Standards (NGSS)
[12] have reinforced the importance of model-based STEM learning to engage students
in authentic STEM practices. Our Collaborative Computational STEM (C2STEM) [8]
learning environment provides opportunities for students to construct computational
models in STEM domains (e.g., [5, 16, 17]) and use these models for problem solving
[1, 18]. Such “constructionist” approaches have helped students learn STEM and com-
putational thinking (CT) concepts and practices [16, 3], but some students face diffi-
culties in translating STEM knowledge into computational models [5]. Therefore, stu-
dents’ learning and model building processes merit further investigation.

This paper adopts an exploratory approach to characterize students’ learning and
model building processes in C2STEM. We apply hierarchical clustering on students’
activity data to address the research questions: (1) What patterns of behavior do learners
exhibit during computational modeling tasks in a science domain? and (2) What can we
glean from these patterns about student learning of science and CT?

2 Background

Our learning-by-modeling paradigm helps students learn by developing, testing, and
refining computational models. Such modeling environments provide mechanisms for

2

students to work with multiple representations, receive rapid feedback through the vis-
ualization of model behaviors [5, 11], and engage in CT practices [18]. Classroom stud-
ies conducted with systems such as CTSiM [3], ViMap [14] and CT-STEM [10] have
produced successful summative learning results [5, 15, 18]. We aim to extend this work
by analyzing students’ model building processes, including impact on learning gains.

Early efforts in the analysis of log data from students’ programming process focused
on methods to quantify students’ modeling progress at each model revision by calcu-
lating the distance between the student and expert model [1]; identify program states
and assess the likelihood of reaching a “sink” state in which a student was likely to get
stuck [5]; and apply exploratory data-driven approaches to design partial solution feed-
back [13]. In this work, we used unsupervised learning to closely examine the processes
students used towards mutually supportive learning of physics and CT, and made at-
tempts to relate their learning performance to groups of student behaviors (e.g., [4, 19]).

Fig. 1. A completed C2STEM model incorporating DSML blocks.

3 The C2STEM Environment

C2STEM scaffolds students’ model-building by creating a block-based DSML [8] that
provides domain-relevant variables (e.g., acceleration and velocity), and explicit con-
structs (blocks) for initializing and updating the values of these variables (see Figure
1). This supports exploratory learning by allowing students to execute their developing
models and observe the behaviors generated using animations and data tools [8]. While
an initialization block (e.g., green_flag) is common across block-based environments,
we provide additional scaffolding by explicitly providing a simulation_step block to
help students separate initialization steps from the dynamic update step. In contrast to
equation-based modeling, this sets up a temporal step-by-step approach to modeling to
gain a better understanding of how the behavior of a system evolves over time.

4 Methods

Thirty-five middle school students worked on a 1D motion module in C2STEM that
consisted of a training unit and 4 modeling tasks. We used a summative assessment
adapted from other studies to measure disciplinary knowledge in physics [2, 7] and CT
[1, 6]. Normalized learning gains calculated using	 "#$%%&$%	–	"(&%&$%

)*+	"#$$,-.&	/0#(&	–	"(&%&$%
.

3

Fig. 2. C2STEM Task Model.

We performed cluster analysis to characterize students’ model building behaviors
based on actions employed on a constant velocity task (Figure 1). We analyzed data for
29 students, excluding data from students who did not complete either the pre-test or
post-test or performed less than five actions. Student actions were recorded in log files
with timestamps. We extend a task model developed in our previous work [1] (Figure
2) to interpret students’ model building actions. The lowest level captures the discrete
model building actions possible, the middle associates a specific purpose for the actions
as C2STEM subgoals and the top provides more generic labels to the actions, typically
useful for understanding student behaviors across multiple learning environments.

The following features helped cluster students by their model-building activities:

1. Ratio of total simulations runs to total actions performed (RTP): Frequency of SA
operations performed.

2. Ratio of data tool access to total number of simulation runs (RDT): Frequency of IA
and/or SA operations performed.

3. Average time per access of data tools (TDT): IA/SA related actions.
4. Average number of actions between simulation runs (ABP): Average size of SC

tasks; actions between plays imply a construction process influenced by debugging.
5. Number of blocks Under Green Flag (NBG): a SC task related to variable initializa-

tion demonstrating conceptual understanding of problem domain.
6. Number of blocks in simulation step construct (NST): Updating functions (in SC).
We derived a dendrogram structure using the UPGMA hierarchical clustering scheme
[9]. The maximum distance between levels heuristic was used to determine the cut-off
level and the number of clusters formed. The groups were characterized by distinguish-
ing features, which were then used to explain groups’ pre-post learning gains.

5 Results

Table 1. Characterizing clusters based on frequency (mean, sd) of features.

GR RTP (SA) ABP (SA/SC) RDT (IA/SA) TDT (IA/SA) NBG (SC) NST (SC)

1 0.29 (0.09) 1.96 (0.5) 0.05 (0.05) 4,946.1 (6070.7) 4.25 (0.96) 0.25 (0.5)

2 0.24 (0.03) 2.55 (0.52) 0.24 (0.06) 17,007.4 (20,436.7) 3 (0) 7 (2)

3 0.31 (0.12) 2.14 (0.0) 0.05 (0.05) 21,822.7 (30,106.5) 3.75 (0.34) 8 (0)

4

Summative assessment results showed that normalized learning gains were statisti-

cally significant, with t-tests in Physics (p = 0.009) and CT (p = 0.0001). Cluster anal-
ysis produced three distinct groups. Group 1 achieved the highest learning gains in CT
[0.50 (0.19)] and moderate Physics learning gains [0.21 (0.23)]. Group 1 is defined by
their minimal use of the data tools, highest number of initialization blocks, and very
little in terms of update actions to generate dynamic behavior (SC actions). This group
also had the least amount of actions between plays (ABP) and the second highest ratio
of total plays to total actions (RTP). This may indicate their reliance on trial and error.
Given the significant CT learning gains and trial and error approach, we conjecture that
these results suggest a focus on programming.

Group 2 achieved the highest learning gains in Physics [0.31 (0.17)] and lowest CT
gains [0.22 (0.25)]. Group 2 used data tools (RDT) the most, and had the second largest
time usage (TDT). The group had few initialization blocks, forgetting to initialize the
simulation step size block [set delta t to [n] seconds]. This may have impacted their
ability to interpret results from the data tools (for instance, setting delta-t to 1 second
would have resulted in variable values updating as integers. Finally, this group had the
highest ABP and lower RTP indicating the least amount of testing, implying possible
weakness in CT practices such as debugging (as indicated by their low CT gains).

A review of the clustering dendrogram indicates that at the next largest distance,
Group 3 breaks into 1 outlier and two subgroups. Subgroup 1 showed higher physics
gains [0.23 (2.56)], but lower CT gains of [0.37 (0.36)] (markedly higher than Group
2). All students in this group utilized the data tools, with the highest average TDT and
implemented the highest, indicating a more systematic debugging process. Subgroup 2
demonstrated moderate Physics gains, 0.21 (0.16) and higher CT gains, 0.50 (0.16).
Their feature values indicate a similar trial and error approaches to Group 1, with low
ABP and high RTP, but differences in SC actions may provide useful information into
how this approach may impact Physics learning.

6 Discussion and Conclusions

This paper presents initial analyses in linking students’ model building behaviors to
their pre-post assessment scores. High performers showed better ability to model the
update functions. Although exploratory, this work provides unique insights and ap-
proaches to the evaluation of block-based computational model building processes in
STEM classrooms. As next steps, we are continuing our pattern analysis with larger
student populations across different science topics. In addition, we are building more
sophisticated logging mechanisms to better understand synergistic learning processes
and design adaptive feedback to help students overcome their conceptual difficulties.

Acknowledgments. We thank Marian Rushdy, Naveed Mohammed, and our other col-
laborators at Vanderbilt University, Stanford University, Salem State University, SRI
International, and ETS. This research is supported by NSF grant #1640199.

5

References

1. Basu, S., Biswas, G., & Kinnebrew, J. S. (2017). Learner modeling for adaptive scaffolding
in a computational thinking-based science learning environment. User Modeling and User-
Adapted Interaction, 27(1), 5-53.

2. Basu, S., McElhaney, K., Grover, S., Harris, C., and Biswas, G. (2018). A principled ap-
proach to designing assessments that integrate science and computational thinking. Proceed-
ings of ICLS’18.

3. Basu, S., Dickes, A., Kinnebrew, J.S., Sengupta, P., & Biswas, G.: CTSiM: A Computational
Thinking Environment for Learning Science through Simulation and Modeling. Conference
on Computer Supported Education, pp. 369-378, Germany (2013)

4. Berland, M., Martin, T., Benton, T., Smith, C.P., and Davis, D.: Using learning analytics to
understand the learning pathways of novice programmers. Journal of the Learning Sciences
22(4), 564-599 (2013)

5. Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., and Koller, D.: Programming
pluralism: Using learning analytics to detect patterns in the learning of computer program-
ming. Journal of the Learning Sciences, 23(4), 561–599 (2014)

6. Grover, S., Jackiw, N., & Lundh, P.: Concepts before coding: non-programming interactives
to advance learning of introductory programming concepts in middle school. Computer Sci-
ence Education, (2019). DOI: 10.1080/08993408.2019.1568955

7. Hestenes, D., Wells, M., Swackhamer, G.: Force concept inventory. The physics teacher,
30(3), 141-158 (1992)

8. Hutchins, N., Biswas, G., Maroti, M., Broll, B., and Ledezci, A. (2018). C2STEM: A design-
based approach to a classroom-centered OELE. Proceedings of AIED ‘18.

9. Johnson, S. C.: Hierarchical clustering schemes. Psychometrika, 32(3), 241-254 (1967)
10. Jona, K., Wilensky, U., Trouille, L., Horn, M. S., Orton, K., Weintrop, D., Beheshti, E.:

Embedding computational thinking in science, technology, engineering, and math (CT-
STEM). In Future Directions in Computer Science Education Summit Meeting, Orlando, FL
(2014)

11. Jonassen, D., Strobel, J., Gottdenker, J.: Model building for conceptual change. Interactive
Learning Environments, 13(1-2), 15-37 (2005)

12. NGSS Lead States: Next Generation Science Standards: For states, by states. National Acad-
emies Press, Washington, DC (2013)

13. Piech, C., Huang, J., Nguyen, A., Phulsuksombati, M., Sahami, M., and Guibas, L.: Learning
program embeddings to propagate feedback on student code. In Proceedings of the 32nd
International Conference on Machine Learning. pp. 1093–1102, Lille, France (2015)

14. Sengupta, P., Dickes, A., Farris, A. V., Karan, A., Martin, D., & Wright, M.: Programming
in K-12 science classrooms. Communications of the ACM, 58(11), 33-35 (2015)

15. Sengupta, P., Farris, A. V., Wright, M.: From agents to continuous change via aesthetics:
learning mechanics with visual agent-based computational modeling. Technology,
Knowledge and Learning, 17(1-2), 23-42 (2012)

16. Sengupta, P., Kinnebrew, J.S., Basu, S., Biswas, G., Clark, D.: Integrating Computational
Thinking with K-12 Science Education Using Agent-based Computation: A Theoretical
Framework. Education and Information Technologies, 18(2), 351-380 (2013)

17. Shen, J., Lei, J., Chang, H. Y., Namdar, B.: Technology-enhanced, modeling-based instruc-
tion (TMBI) in science education. In: J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop
(Eds.), Handbook of research on educational communications and technology, pp. 529-540.
Springer, New York, NY (2014)

6

18. Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., Wilensky, U.: De-
fining Computational Thinking for Mathematics and Science Classrooms. Journal of Sci-
ence Education and Technology, 25(1), 127-147 (2016)

19. Werner, L., McDowell, C., and Denner, J.: A first step in learning analytics: Pre-processing
low-level Alice logging data of middle school students. Journal of Educational Data Mining
5(2) 11–37 (2013)

