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Crises: Equilibrium Shifts and Large Shocks†

By Stephen Morris and Muhamet Yildiz*

We study the informational events that trigger equilibrium shifts in 
coordination games with incomplete information. Assuming that the 
distribution of the changes in fundamentals has fat tails, we show that 
majority play shifts either if fundamentals reach a critical threshold 
or if there are large common shocks, even before the threshold is 
reached. The fat-tail assumption matters because it implies that large 
shocks make players more unsure about whether their payoffs are 
higher than others. This feature is crucial for large shocks to matter. 
(JEL C72, C73, D83)

On July 26th, 2012, Mario Draghi gave a speech in which he promised “… to 
do whatever it takes to preserve the euro. And believe me, it will be enough  ….”1 
Many commentators have credited the “whatever it takes  …” speech with shifting 
the Eurozone economy from a self-fulfilling “bad equilibrium”—with high sover-
eign debt spreads and growing fiscal deficits mutually reinforcing each other, to a 
self-fulfilling “good equilibrium”—with low spreads and sustainable fiscal policy.2 
There are many other economic and social contexts in which strategic complemen-
tarities are thought to give rise to the possibility of self-fulfilling equilibria in the 
form of currency crises, economic booms, financial panics, and revolutions.

In this paper we ask which informational events trigger a shift in self-fulfill-
ing equilibria, such as a crisis and a recovery? We identify two distinct kinds of 
informational events that can trigger a crisis (or, symmetrically, a recovery). First, 
fundamentals fall below some critical threshold. Second, fundamentals deteriorate 
sharply to a level where they are somewhat weak, but still better than the critical 
threshold guaranteeing a crisis. The first trigger is a level effect: independent of 

1 See https://www.ecb.europa.eu/press/key/date/2012/html/sp120726.en.html for a transcript of the full speech.
2 See Brunnermeier, James, and Landau (2016) for one discussion.
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whether fundamentals are worse than expected, or by how much, sufficiently bad 
fundamentals trigger a crisis. The second trigger is a change effect and corresponds 
to the main large shock result of the paper. Over a wide range of levels of funda-
mentals, it is the size of the negative shocks that moved the economy to that level of 
fundamental that determines whether a crisis is triggered.

We consider a canonical coordination game with a continuum of players mak-
ing a binary choice between a “good” action, namely “invest,” and a “bad” action, 
namely “not invest.” The payoff from not investing is normalized to zero. Each 
player’s payoff from investing is increasing in the proportion of others investing 
and also increasing in a fundamental state, which we call “return.” There is incom-
plete information about returns. Each player’s return from investing is the sum of 
two components, a common component that affects every player’s return, and an 
idiosyncratic noise term. Each player observes his own return but cannot identify 
the common component of fundamentals. Our key assumption is that the common 
component of fundamentals has fat tails (the density of the tails exceeds a power law 
distribution), while the idiosyncratic noise has thinner tails.

This assumption has a key statistical implication: a player who observes a large 
shock will be convinced that the shock is mainly due to the common component 
of fundamentals. In particular, the level of his shock will tell a player little about 
the size of the idiosyncratic component of his return. Thus a player who observes a 
large shock will not know whether his return is higher than other players’ returns. 
He will have nearly “uniform rank beliefs”: if asked what his rank, or percentile, in 
the population is with respect to his return, any percentile between ​0​ and ​1​ will be 
(nearly) equally likely. Thus large shocks create diffuse beliefs about what other 
players’ information is, our key statistical observation.

Uniform rank beliefs pin down strategic behavior. For a player who has not 
observed a large shock and whose rank belief is not nearly uniform, invest can be 
rationalized for a wide range of returns by the belief that others’ returns are higher 
than his. But consider a player who has experienced a large negative shock, and thus 
has nearly uniform rank beliefs and believes that other players are investing if and 
only if they have a higher return than him. This player would have a nearly uniform 
belief on the proportion of other players who are investing. He would invest only 
if invest is “risk dominant,” in that it is a best response to a uniform belief over 
the proportion of his opponents choosing each action. This implies that invest can 
be rationalizable after the player observes a large negative shock only if it is risk 
dominant. Thus if invest is not risk dominant and there is a large negative shock, not 
invest is uniquely rationalizable. This is the large shock result.

Our large shock result uses the key argument from the “global games” litera-
ture (Carlsson and Van  Damme 1993) but in a novel context, and it is useful to 
contrast the results. A classic benchmark result in the global game literature is the 
following. Suppose that players observe the payoffs of a game drawn according to 
a smooth prior, with a small amount of idiosyncratic noise. Look at the equilibria of 
the sequence of games as the amount of noise goes to zero. In the limit as the noise 
goes to zero, there is “global uniqueness”: each player has a unique rationalizable 
action whatever signal she observes. In a binary action symmetric payoff game, the 
unique rationalizable action is the risk dominant action. The global uniqueness and 
the selection of the risk dominant action are consequences of the fact that, as the 
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noise goes to zero, rank beliefs always become uniform and thus there is common 
certainty of uniform rank beliefs.3

In this paper, we do not study the case where idiosyncratic noise goes to zero, and 
we therefore do not have common certainty of uniform rank beliefs and we do not 
have global uniqueness. We instead identify some situations where there is a unique 
rationalizable behavior but in other cases there are multiple rationalizable actions. 
Thus, we identify a novel set of conditions under which uniform rank beliefs arise: 
after a large shock when the common component of fundamentals has fat tails. 
A player who observes a large shock has uniform rank beliefs and knows that all 
players observing larger shocks also have uniform rank beliefs. This allows us to 
establish a “local uniqueness” result: after observing a large shock, it is uniquely 
rationalizable to play the risk dominant action. We believe that this more selective 
use of the global game reasoning is best able to generate insights about which infor-
mational events trigger equilibrium shifts.

Our main results described above concern when we can identify the unique ratio-
nalizable behavior for a player in a static game as a function of the level of funda-
mentals and the size of his individual shock. This is the analytic contribution of 
the paper. In order to relate our results more closely to our broader motivation, we 
also discuss the implications of this analysis for aggregate behavior in a dynamic 
model where the static game is played repeatedly with evolving fundamentals. In 
this dynamic setup large shocks lead to equilibrium shifts. When the fundamentals 
exceed a critical threshold or invest is risk dominant and there was a large shock to 
the fundamentals, a majority of players invest. Thus, the above events trigger a shift 
to majority investing if they were not doing so in the previous period. Likewise, if 
the fundamentals go below a critical threshold or not invest is risk dominant and 
there was a large negative shock to the fundamentals, a majority of players stop 
investing, triggering a “crisis.”

Our results rely on the following key feature of our model: after a large shock 
the players become highly uncertain about the environment, resulting in a uniform 
distribution on their own ranking among other players. Such increased uncertainty 
after large shocks has been well-documented empirically (see for example Bloom 
2009). We use fat-tailed common shocks and thinner tailed idiosyncratic shocks as 
a practical way of modeling such beliefs. We discuss evidence that key economic 
variables have fat tailed distributions as well as the interpretation of idiosyncratic 
shocks in Section V.

Our mechanism is relevant especially when there is model uncertainty. For exam-
ple, when players do not know the economic impact of a new policy (such as a new 
tax cut), they may attribute large shocks to their private returns to a large impact of 
the policy even though they know that aggregate variations under a fixed policy are 
very small. Fat-tailed distributions often arise when there is uncertainty about the 
data-generating process (aka model uncertainty). For example, if the common shock 
is normally distributed but its variance is unknown and distributed with an inverse ​​

3 Carlsson and Van Damme (1993) showed limit global uniqueness and risk dominant selection in two player 
two action games. Frankel, Morris, and Pauzner (2003) show limit global uniqueness in a class of supermodular 
global games and risk dominant selection in binary action symmetric payoffs games (see also Morris and Shin 
2003). Morris, Shin, and Yildiz (2016) formalize the idea that global uniqueness and risk dominant selection follow 
from common certainty of uniform rank beliefs.
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χ​​ 2​​-distribution, then the common shock has a ​t​-distribution, which has fat tails. 
More generally, when a player has a scale-invariant prior about a multiplicative dis-
tribution parameter, his posteriors will always have fat tails regardless of how many 
observations he makes from that distribution (Schwarz 1999).4

In the next section, we introduce our model. In Section II, we define and char-
acterize the rank belief functions that will drive our results, and give our basic 
characterization of equilibria and rationalizable behavior. In that section, we also 
illustrate our key results graphically assuming the shocks are normally distributed 
and the variance of common shock may not be known. Our main results are reported 
in Section III. We present a dynamic application of the model in Section IV. In 
Section V, we review what happens if we relax the assumption that common shocks 
have a fat-tailed distribution, motivate our assumptions further, and present the liter-
ature on fat tails and model uncertainty. We discuss our broader contribution to the 
global games literature in Section VI. Some proofs are relegated to the Appendix.

I.  Model

We study the following Bayesian game, parametrized by real numbers ​y​ and ​
σ  >  0​. There is a continuum of players ​i  ∈  N  = ​ [0, 1]​​. Simultaneously, each 
player ​i​ chooses between actions invest and not invest: the chosen action is denoted 
by ​​a​i​​​. The payoff from not invest is normalized to zero. The payoff from invest 
depends on a type ​​z​i​​  ∈  ℝ​ and the fraction ​A​ of individuals who invest,

(1)	​ u​(A, ​z​i​​)​  =  y + σ​z​i​​ + A − 1.​

The type ​​z​i​​​ has two components,

(2)	​ ​z​i​​  =  η + ​ε​i​​,​

a common shock ​η​ that affects all players’ payoffs, and an idiosyncratic shock ​​ε​i​​​ that 
affects only the payoff of player ​i​. Player ​i​ (privately) knows the sum ​​z​i​​​, but not its 
components. We also refer to ​​z​i​​​ as player ​i​’s (overall) shock.

We write

(3)	​ ​x​i​​  =  y + σ​z​i​​​

for the private return from investment for type ​​z​i​​​. The shock ​​z​i​​​ will have zero mean. 
Hence, the ex ante expectation of the return is ​y​, which we call the prior mean. 
The sensitivity of the return to shock ​​z​i​​​ is ​σ​, which we call shock sensitivity. Note 
that the coordination motives are inversely proportional to the shock sensitivity 
(i.e., ​​ ∂ u _ ∂ A ​ /​ ∂ u _ ∂ ​z​i​​

 ​  =  1/σ​). We will pay a special attention to the case of small ​σ​, when 

the coordination motives are large.

4 Assuming that such a multiplicative parameter evolves so that the players remain uncertain, this can explain 
many well-known puzzles in finance (Weitzman 2007).



2827MORRIS AND YILDIZ: CRISES: EQUILIBRIUM SHIFTS AND LARGE SHOCKSVOL. 109 NO. 8

REMARK 1: Throughout the paper, we will vary the prior mean ​y​ while we fix the 
shock sensitivity ​σ​ and the distributions ​F​ and ​G​. In particular, for a given return ​​
x​i​​​, we will vary the associated shock ​​z​i​​  = ​ (​x​i​​ − y)​/σ​ by varying the prior mean ​y​.

We assume that ​​ε​i​​​ and ​η​ are independently drawn—across the players—from 
distributions ​F​ and ​G​, respectively, with positive continuous densities ​f​ and ​g​ 
everywhere on the real line. We will assume that these distributions are symmetric 
around zero, i.e., ​f  ​(ε)​  =  f  ​(− ε)​​ and ​g​(η)​  =  g​(− η)​​, and that ​f​ and ​g​ are weakly 
decreasing on ​(0, ∞)​. By symmetry, the idiosyncratic shock ​​ε​i​​​ has zero mean and  
​F​(ε)​  =  1 − F​(− ε)​​. Likewise, the common shock ​η​ has zero mean and  
​G​(η)​  =  1 − G​(− η)​​.

Our key distributional assumptions are

	 (i)	 the distribution of idiosyncratic shocks is log-concave (i.e., ​log   f​ is concave), 
and

	 (ii)	 the distribution of common shocks has regularly-varying tails, that is,

(4)	​ ​ lim​ 
λ→∞

​​ ​ 
g​(λη)​
 _____ 

g​(λη′)​
 ​  ∈ ​ (0, ∞)​  for all η, η′  ∈ ​ (0, ∞)​.​

The log-concavity of ​f​ implies that the idiosyncratic shocks have light tails (thin-
ner than the tail of an exponential distribution, i.e., ​∫ ​e​​ c​|ε|​​ f  ​(ε)​ dε​ is finite for some  
​c  >  0​). Common distributions with light tails, such as normal and exponen-
tial distributions, are log-concave. In contrast, the second part states that ​g​ has 
regularly-varying (i.e., fat) tails, as in Pareto and ​t​-distributions. In that case, ​g​(η)​​ 
is approximately proportional to ​​η​​ −α​​ for some ​α  >  1​ when ​η​ is large, and the tails 
are thicker than the exponential function. Taken together, we assume that the com-
mon shock has thicker tails than the idiosyncratic shocks, reflecting our assump-
tion that there is more tail uncertainty about the common shock. The log-concavity 
of ​f​ also ensures that each player’s belief about other players’ types is increasing 
in his own type in the sense of the first-order stochastic dominance, making our 
game monotone supermodular. While such monotonicity and the tail properties are 
important in our analysis, log-concavity is assumed for exposition. (See the intro-
duction and Section V for a motivation and a review of the empirical evidence for 
these assumptions.)

We now introduce some useful terminology. Each player ​i​ has a strictly dominant 
strategy to invest if ​​x​i​​​ is strictly more than one, has a strictly dominant strategy to 
not invest if ​​x​i​​  <  0​ and otherwise no action is strictly dominated. We will therefore 
refer to ​​[0, 1]​​ as the undominated region and ​0​ and ​1​ as the dominance triggers. 
When the returns are publicly observable and remain in the region ​​[0, 1]​​, there are 
multiple equilibria: all invest and all not invest. Game theoretic analysis suggests 
refinements to select among equilibria. An action is said to be risk dominant if it 
is a best response when each action is equally likely to be played by other players. 
Invest is the risk-dominant action when ​​x​i​​  >  1/2​: and not invest is the risk-domi-
nant action when ​​x​i​​  <  1/2​. More generally, we say that an action is ​p​-dominant if it 
is a best response when a player’s expectation of the proportion of others taking the 
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same action is at least ​p​. An action is strictly dominant if it is zero-​​dominant, and it 
is risk dominant if it is ​1/2​-dominant.

We make a host of simplifying assumptions, such as a continuum of players and 
independence of idiosyncratic shocks. We do not have a theoretical foundation for 
these assumptions. Our motivation is rather pragmatic. For example, the indepen-
dence assumption ensures that the common shock is the only source of correlation 
among returns. Likewise, the continuum and independence assumptions together 
allow us to obtain a deterministic aggregate behavior as a function of the average 
returns.

II.  Rank Beliefs and Equilibrium Structure

In this section, we present the main ingredients of our analysis. We formally 
introduce the rank beliefs and identify their important properties for our analysis. 
Rank beliefs are key to our analysis as they determine how a player thinks his return 
relates to others’ returns. We then describe the structure of equilibria and rational-
izable strategies: rationalizable strategies are bounded by symmetric equilibria in 
cutoff strategies, and the return is equal to the rank belief at the equilibrium cutoffs. 
Finally, we illustrate these results on a canonical example in which common and 
idiosyncratic shocks have ​t​ and normal distributions, respectively.

A. Rank Beliefs

We define the rank belief of player ​i​ as the probability he assigns to the event that 
another player’s type ​​z​j​​​ is lower than his own,

(5)	​ R​(z)​  =  Pr​(​z​j​​  ≤ ​ z​i​​ | ​z​i​​  =  z)​  = ​ 
​∫  ​ 

 
​​F​(ε)​ f  ​(ε)​g​(z − ε)​ dε

  _______________  
​∫  ​ 

 
​​ f  ​(ε)​g​(z − ε)​ dε

 ​ .​

We refer to the function ​R​ as the rank-belief function. While we define the rank 
belief to be the probability that a player assigns to one other player having a lower 
type, it is also equal to his expectation of the proportion of players with a lower type.

Note that the rank belief function depends only on the distributions ​F​ and ​G​ of 
idiosyncratic and common shocks, and it is independent of the prior mean ​y​ and 
shock sensitivity ​σ​. The following properties of rank belief functions will be import-
ant for us.

Symmetry: A rank belief function is said to be symmetric if

	​ R​(− z)​  =  1 − R​(z)​.​

That is, ​R​ is symmetric around ​1/2​ for positive and negative values. In that case, we 
have ​R​(0)​  =  1/2​.

Single-Crossing Property: A rank belief function is said to satisfy the 
single-crossing property if ​R​(z)​  >  1/2  >  R​(− z)​​ whenever ​z  >  0​. That is, ​R​ 
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takes the value of ​1/2​ at ​z  =  0​ and remains above ​1/2​ for positive ​z​, and symmet-
rically remains below ​1/2​ for negative ​z​.

Uniform Limit Rank Beliefs: A rank belief function is said to have uniform limit 
rank beliefs if

	​ R​(z)​  → ​  1 _ 
2
 ​  as z  →  ∞.​

That is, as ​z  →  ∞​, the rank belief converges back to ​1/2​. Uniformity of limit rank 
beliefs implies immediately some further properties. The rank belief ​R​ is bounded 
away from ​0​ and ​1​. We write ​​R 

–
 ​  <  1​ for the upper bound. And the rank belief is 

decreasing over some interval.
Rank beliefs exhibit these properties in our model.

LEMMA 1: The function ​R​ is differentiable, symmetric, and satisfies single-crossing 
and uniform limit rank belief properties.

Here, differentiability follows from having a density that is decreasing on positive 
reals; rank belief function is continuous as long as the densities are continuous. (We 
only use continuity.) Symmetry and single crossing properties follow from the sym-
metry of the densities. Uniformity of limit rank beliefs is special and is the key prop-
erty. We explained in the introduction how it follows from our assumption that the 
common shock has fat tails, and the idiosyncratic shocks have thinner tails. We plot 
a typical rank belief function ​R​ in Figure 1 as a function of shock ​z​. At ​z  =  0​, by 
symmetry, the rank belief is 1/2. As ​z​ increases, ​R​ first gets larger by single-cross-
ing property, and finally it goes back to 1/2 by uniformity of limit rank beliefs. By 
symmetry, ​R​ behaves symmetrically for negative shocks.

B. Structure of Equilibria and Rationalizable Behavior

A (Bayesian Nash) equilibrium is defined as usual by requiring each type to play 
a best response. We first characterize a class of symmetric “threshold” equilibria. 
Suppose that each player would invest only if his type ​​z​i​​​ were greater than a critical 
threshold ​​z ˆ ​​. Consider a player whose type was that critical threshold ​​z ˆ ​​. His payoff 
to investing would be

	​​ ​  
⏞

 y + σ​z ˆ ​ ​​​ 
own return

​ +​ ​
⏞

 1 − R​(​z ˆ ​)​​​​  
expected proportion of others investing

​− 1.​

The threshold type ​​z ˆ ​​ will be indifferent only if this payoff is equal to ​0​, i.e.,

(6)	​ R​(​z ˆ ​)​  =  y + σ​z ˆ ​.​

This is thus a necessary condition for there to be a ​​z ˆ ​​-threshold equilibrium. But this 
is also sufficient for equilibrium. Suppose that a player anticipated that all other 
players were going to play a ​​z ˆ ​​-threshold strategy, and was therefore indifferent 
between investing and not investing when his type was ​​z ˆ ​​. If his type were ​​z​i​​  > ​ z ˆ ​​, he 
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would have higher incentive to invest since both his return from investment would 
be higher and his expectation of the proportion of the others who invest would be 
higher (by log-concavity of ​f​ ).

The largest and smallest threshold strategy equilibria will play a key role in our 
analysis. Write ​​z​​ ∗​​ and ​​z​​ ∗∗​​ for the smallest and the largest solutions to (6), respec-
tively; see Figure 2 for an illustration. We write ​​x​​ ∗​  =  σ​z​​ ∗​ + y​ and ​​x​​ ∗∗​  =  σ​z​​ ∗∗​ + y​ 
for the corresponding returns. Define symmetric strategies ​​s​​ ∗​​ and ​​s​​ ∗∗​​ associated with 
these cutoffs by

	​ ​s​ i​ ∗​​(​z​i​​)​  = ​ {​Invest​  if  ​z​i​​  ≥ ​ z​​ ∗​​  
Not Invest

​ 
otherwise

 ​​​,

	​ ​s​ i​ ∗∗​​(​z​i​​)​  = ​ {​​Invest​  if  ​z​i​​  ≥ ​ z​​ ∗∗​​   
Not Invest

​ 
otherwise

 ​​​ .​

Our next result establishes that ​​s​​ ∗​​ and ​​s​​ ∗∗​​ are Bayesian Nash equilibria and they 
bound all rationalizable (and hence equilibrium) strategies. In particular, ​​s​​ ∗​​ is the 
equilibrium with the most investment, while ​​s​​ ∗∗​​ is the equilibrium with the least 
investment.

LEMMA 2: ​​s​​ ∗​​ and ​​s​​ ∗∗​​ are Bayesian Nash equilibria. Moreover, invest is uniquely 
rationalizable whenever ​​z​i​​  > ​ z​​ ∗∗​​, and not invest is uniquely rationalizable when-
ever ​​z​i​​  < ​ z​​ ∗​​.

Thus the set of rationalizable actions is as follows. When ​​z​​ ∗​  ≤ ​ z​i​​  ≤ ​ z​​ ∗∗​​, both 
actions are rationalizable, and there is a unique rationalizable action otherwise. The 
unique rationalizable action is invest when ​​z​i​​  > ​ z​​ ∗∗​​, and it is not invest when ​​z​i​​  < ​
z​​ ∗​​. In the Appendix, we prove this result by checking that our game is monotone 

Figure 1. A Typical Rank Belief Function 

Note: Horizontal axis: shock ​z​; vertical axis: rank belief ​R(z​).
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supermodular (Milgrom and Roberts 1990, Van Zandt and Vives 2007), and thus the 
Bayesian Nash equilibria and the rationalizable strategies are bounded by monotone 
Bayesian Nash equilibria. The key step in the proof is to show that, under log-con-
cave ​f​, the beliefs about the common shock are increasing in ​​z​i​​​ (i.e., ​Pr​(η  ≤ ​ η – ​ | ​z​i​​)​​ 
is decreasing in ​​z​i​​​ for any ​​η – ​​).

C. Example: ​t​-distribution

We now graphically illustrate the key properties of rank beliefs and the equilib-
rium structure with an example which also motivates our fat tail assumption with 
model uncertainty (model uncertainty as a foundation for fat tails is further dis-
cussed in Section V).

We assume that the idiosyncratic shocks have the standard normal distribution. 
We assume that the common shock is also normally distributed but its variance is 
not known: the reciprocal of its variance has a ​​χ​​ 2​​-distribution. Such variance uncer-
tainty leads to a ​t​-distribution, and this distribution satisfies all of our distributional 
assumptions. We can interpret this as model uncertainty: the player does not know 
what is the true data generating function for a parameter that affects everybody.

There will be two effects of an increase in a player’s shock on this rank belief. 
First, there will be the reversion to mean effect: a player will attribute some of the 
shock to his return to the common shock and some of it to his own idiosyncratic 
shock. Because of the last attribution, a player’s expectation of the common shock 
will be further from his own shock as his own shock increases. This effect increases 
the rank belief as a player’s shock increases. But second, there will be a learning 
effect. When the variance of the common shock is unknown, a large shock will 
lead a player to conclude that the variance of the common shock is higher, and he 

Figure 2. Extremal Cutoffs when the Variance of the Common Shock Is Unknown

Note: Horizontal axis: shock ​z​; vertical axis: rank belief ​R​(z)​​, non-linear function, and return ​x  =  y + σz​, linear 
function.
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will attribute an increasing portion of his payoff shock to the common shock. This 
effect will tend to decrease rank beliefs. The shape of the rank belief function will 
then depend on which of these two effects predominates. Figure 1 plotted the rank 
belief function for this example: when a player’s shock becomes large, he attributes 
it almost entirely to the common shock; the learning effect will predominate and the 
rank belief will approach ​1/2​.

The extremal cutoffs are plotted on the same rank belief function in Figure 2. 
They correspond to the extremal intersections of non-monotone rank belief function ​
R​ and the line that represents the private return ​y + σz​ as a function of shock ​z​. For 
any given ​y​, invest is uniquely rationalizable when the shock is larger than ​​z​​ ∗∗​​ or 
equivalently when the return is above ​​x​​ ∗∗​​. Similarly, not invest is uniquely rational-
izable when there is a large negative shock so that the return is below ​​x​​ ∗​​. There will 
be multiplicity otherwise.

In our paper, we will study the rationalizable behavior as a function of shock ​​z​i​​​ 
and return ​​x​i​​​ by adjusting the prior mean ​y​ accordingly. In the above example, the 
rationalizable behavior is as plotted in Figure 3 as a function of the shock and the 
return. Invest is uniquely rationalizable in the shaded region on the upper part of 
the figure, while not invest is uniquely rationalizable in the shaded region on the 
lower part of the figure. There is multiplicity in the unshaded area. First observe 
that invest is uniquely rationalizable for every shock when the return is more than ​​
R 
–
 ​​, where ​​R 

–
 ​​ is the maximum possible rank belief; this is marked on Figure 2 and 

is approximately 0.738. This is the level effect we discussed in the introduction. 
This is simply because the returns ​​x​​ ∗​​ and ​​x​​ ∗∗​​ at the extremal cutoffs are always in 
between ​1 − ​R 

–
 ​​ and ​​R 

–
 ​​. Second, for any given return ​​x​i​​  >  1/2​ at which invest is risk 

dominant, invest is uniquely rationalizable (i.e., ​​x​i​​  > ​ x​​ ∗∗​​) whenever there was a 
sufficiently large positive shock. This is the change effect we discussed in the intro-
duction. This is simply because the rank belief approaches 1/2 as the shock goes 
to ​∞​, and thus as we decrease ​y​, the return ​​x​​ ∗∗​​ at the upper cutoff approaches 1/2. 
Finally, invest is uniquely rationalizable when the prior mean is very high, so that 

Figure 3. Rationalizable Behavior as a Function of Shock ​​z​i​​​ and Return ​​x​i​​​.
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the return is above the line that is tangent to the rank belief function. The last effect 
is less relevant when the coordination motives are strong (i.e., when ​σ​ is small). We 
will next establish these generally, as our main results.

III.  Rationalizable Behavior and the Role of Shocks

Suppose that a player has a private return ​x​, having received a shock ​z​ and thus 
having a prior mean ​y  =  x − σz​. Which actions are rationalizable? In particular, 
are both actions rationalizable or is invest or not invest the uniquely rationalizable 
action? We will show that the answers to these questions are as in Figure 3. Invest 
is uniquely rationalizable when the return is above the maximum rank belief, or 
invest is risk dominant and either there was a large shock or the prior mean was very 
high. Since the model is entirely symmetric between the two actions, we report for-
mal necessary and sufficient conditions for invest to be the uniquely rationalizable 
action and the rest of the characterization will follow by symmetry. These charac-
terizations will follow easily from our characterization of the rank belief function in 
Lemma 1 and rationalizable behavior in Lemma 2. In particular, we will be able to 
explain the results by appeal to the simple geometry of Figure 2.5

A. Large Shocks: Sufficient Conditions

We first observe that when a player’s private return exceeds the maximum rank 
belief ​​R 

–
 ​​, or equivalently when invest is ​​(1 − ​R 

–
 ​)​​-dominant, invest will be uniquely 

rationalizable independent of what his shock was. The critical level ​​R 
–
 ​​ depends only 

on the distributions ​F​ and ​G​ of the shocks and does not depend on the prior mean ​y​ 
and the shock sensitivity ​σ​.

PROPOSITION 1 (Level Trigger): Invest is uniquely rationalizable if it is minimum 
rank belief dominant (i.e., ​​x​i​​  > ​ R 

–
 ​​).

PROOF:
Observe that, for any ​σ​ and ​y​,

	​ ​x​​ ∗∗​  =  R​(​z​​ ∗∗​)​  ≤ ​ R 
–
 ​,​

where the equality is by definition of ​​x​​ ∗∗​​ and the inequality is by definition 
of ​​R 

–
 ​​. Therefore, whenever ​​x​i​​  > ​ R 

–
 ​​, we have ​​x​i​​  > ​ x​​ ∗∗​​ and invest is uniquely 

rationalizable. ∎

But we also see from Figure 3 that even if a player’s return is less than ​​R 
–
 ​​, invest 

will be uniquely rationalizable when there is a large shock. In particular, invest is 
uniquely rationalizable whenever ​​x​i​​  >  1/2​ and ​​z​i​​​ exceeds some threshold ​​z –​​ where ​​
z –​​ is a function of ​​x​i​​​.

5 Figure 2 has further properties that are not established in Lemma 1, such as single peakedness on the positive 
orthant. These properties will not be used, unless they are explicitly assumed.
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For each ​​x​i​​  >  1/2​, at which invest is risk dominant, define the cutoff

(7)	​​ z –​​(​x​i​​)​  =  max ​R​​ −1​​(​x​i​​)​,​

where ​​R​​ −1​​(​x​i​​)​  = ​ {z | R​(z)​  = ​ x​i​​}​​ is the pre-image of ​R​ at ​​x​i​​​. The cutoff ​​z –​​(​x​i​​)​​ is 
illustrated in Figure 4, where we only show the part of Figure 2 where invest is risk 
dominant and ​​z​i​​  ≥  0​. As seen in the figure, for ​​x​i​​  ≤ ​ R 

–
 ​​, ​​z –​​(​x​i​​)​​ is the maximum level 

of shock under which a player’s rank belief is ​​x​i​​​. (For ​​x​i​​  > ​ R 
–
 ​​, ​​z –​​(​x​i​​)​  =  − ∞​ by the 

convention that maximum of the empty set is ​− ∞​.) Once again the critical level  
​​z –​​(​x​i​​)​​ depends only on the distributions ​F​ and ​G​ of shocks and is independent of the 
prior mean ​y​ and the shock sensitivity ​σ​.

It turns out that the cutoff ​​z –​​(​x​i​​)​​ is the critical threshold for a shock to be effective 
in making the risk-dominant action uniquely rationalizable. This is formally estab-
lished in our next result, the main result of our paper.

PROPOSITION 2 (Large Shocks): Invest is uniquely rationalizable if it is risk dom-
inant (i.e., ​​x​i​​  >  1/2​) and the shock is sufficiently large, i.e.,

(8)	​ ​z​i​​  > ​ z –​​(​x​i​​)​.​

PROOF:
The special case of ​​x​i​​  > ​ R 

–
 ​​ is covered in Proposition 1. Hence, assume that  

​​R 
–
 ​  ≥ ​ x​i​​  >  1/2​ and ​​z​i​​  > ​ z –​​(​x​i​​)​​—as in panel A of Figure 4. Then, for all ​z  ≥ ​ z​i​​​ we 

have

	​ R​(z)​  < ​ x​i​​  =  y + σ​z​i​​  ≤  y + σz,​

where the strict inequality is by definition of ​​z –​​(​x​i​​)​​ and ​z  > ​ z –​​(​x​i​​)​​. Hence, ​​z​​ ∗∗​  < ​ z​i​​​. 
Therefore, invest is uniquely rationalizable at ​​z​i​​​. ∎

Figure 4. Effect of Shocks

Notes: Shock size is above the critical value on panel A and below the critical value on panel B. Horizontal axis: 
shock ​​z​i​​​; vertical axis: rank belief ​R​(​z​i​​)​​ and return ​​x​i​​  =  y + σ​z​i​​​.
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Proposition 2 provides sufficient conditions for invest to be uniquely rationaliz-
able: it is risk dominant (i.e., ​​x​i​​  >  1 / 2​) and there was a large positive shock with 
size more than critical level ​​z –​​(​x​i​​)​​. By symmetry, this also establishes that not invest 
is uniquely rationalizable if it is risk dominant (i.e., ​​x​i​​  <  1/2​) and there was a large 
negative shock, with size more than ​​z –​​(1 − ​x​i​​)​​. We will refer to ​​z –​​(​x​i​​)​​ as the critical 
shock size. As in the case of critical level trigger ​​R 

–
 ​​, the critical shock size depends 

only on the distributions ​F​ and ​G​ of the shock, through the rank belief function. It 
is independent of the prior mean ​y​ and the shock sensitivity ​σ​. This renders the crit-
ical shock size on returns, ​σ​z –​​(​x​i​​)​​, proportional to ​σ​. Hence, the latter threshold can 
be arbitrarily small for small ​σ​ and arbitrarily large for large ​σ​. For example, when 
coordination motives are strong, a very small positive jump in his return will lead 
a player to invest if investing is risk dominant. Likewise, a very small drop in his 
return will lead a player not to invest if not investing is risk dominant. Such behavior 
also arises in highly stable environments where one does not expect large shifts in 
returns. In the remainder of the paper, by a “large shock,” we mean a shock of size 
that exceeds a critical shock size.

The proof of Proposition 2 is as illustrated on panel A of Figure 4. Here,  
​​x​i​​  =  0.63​ and hence invest is risk dominant. Moreover, the shock ​​z​i​​​ exceeds the 
critical shock size ​​z –​​(​x​i​​)​​. Now, for any shock level ​z  ≥ ​ z​i​​​, since ​z​ is strictly greater 
than ​​z –​​(​x​i​​)​​, the rank belief ​R​(z)​​ is strictly below ​​x​i​​​ (by definition of ​​z –​​(​x​i​​)​​). But clearly 
for any such ​z​, the return ​y + σz​ is above ​​x​i​​​. Hence, the returns remain strictly above 
the rank beliefs for all ​z  ≥ ​ z​i​​​. Thus, the maximal equilibrium cutoff ​​z​​ ∗∗​​ is strictly 
smaller than ​​z​i​​​. Therefore, invest is uniquely rationalizable at ​​z​i​​​. In contrast, the case 
on panel B illustrates that invest may not be uniquely rationalizable without a large 
shock. Here, the return is still as in the left panel (​​x​i​​  =  0.63​), but the shock ​​z​i​​​ is now 
smaller than the critical level ​​z –​​(​x​i​​)​​. In that case, the equilibrium cutoff ​​z​​ ∗∗​​ is above  
​​z​i​​​, and thus the cutoff ​​x​​ ∗∗​​ is above ​​x​i​​​, leading to multiplicity at ​​x​i​​​.

In Figure 2, the rank belief function ​R​( · )​​ crossed the return ​y + σz​ in the positive 
orthant. But if the prior mean ​y​ was high enough, the return would exceed the rank 
belief function for all positive shocks. This is illustrated in Figure 5. We can define 
cutoff ​​y –​​ as the largest ​y​ for which there exists ​z  >  0​ such that

(9)	​ R​(z)​  ≥  σz + y.​

We will refer to ​​y –​​ as the prior investment threshold.6 Define also cutoff ​​ y 
¯
 ​  =  1 − ​y ¯ ​​.  

These cutoffs play a prominent role in the remainder of the paper. When the prior 
mean is above the cutoff ​​y –​​, the return remains strictly above the rank belief for 
non-negative shocks and hence the cutoff ​​z​​ ∗∗​​ is negative and ​​x​​ ∗∗​  <  1/2​. Therefore, 
invest is uniquely rationalizable whenever it is risk dominant, regardless of the size 
of the shock, and it can be uniquely rationalizable even when it is not risk dominant 
and there is a negative shock.

6 The cutoff ​​y –​​ lies between ​1/2​ and ​​R 
–
 ​​. It is ​​R 

–
 ​​ in the limit ​σ  →  0​, and it decreases towards ​1/2​ as ​σ​ increases. 

When ​σ  <  ​sup​z​​ ​(R​(z)​ − 1/2)​/z​, the cutoff ​​y –​​ is determined by the tangency of the line ​σz + y​ to ​R​ and is strictly 
above 1/2—as in Figure 5. In contrast, ​​y –​  =  1/2​ when ​σ  >  ​sup​z​​ R′​(z)​​.
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PROPOSITION 3 (Ex Ante Level): Invest is uniquely rationalizable if it is risk dom-
inant (i.e., ​​x​i​​  >  1/2​) and the prior mean exceeds the prior investment threshold 
(i.e., ​y  > ​ y –​​).

PROOF: 
For any ​y  > ​ y –​​, by definition of ​​y –​​, the return exceeds the rank beliefs for all posi-

tive shocks: ​σz + y  >  R​(z)​​ for all ​z  >  0​. Hence, ​​z​​ ∗∗​  <  0​ as it is the largest ​z​ with ​
R​(z)​  =  σz + y​. Thus,

	​ ​x​​ ∗∗​  =  R​(​z​​ ∗∗​)​  <  1/2,​

where the equality is by definition of ​​x​​ ∗∗​​ and the inequality is by the single-crossing 
property of rank beliefs in Lemma 1. Therefore, invest is uniquely rationalizable at 
each ​​x​i​​  >  1/2​. ∎

We have thus shown three sufficient conditions for invest to be uniquely ratio-
nalizable: (i) it is minimum rank belief dominant; (ii) it is risk dominant and there 
was a large shock; and (iii) it is risk dominant and the prior mean was above ​​y ¯ ​​. 
Symmetrically, not invest is uniquely rationalizable when (i) it is minimum rank 
belief dominant (​​x​i​​  <  1 − ​R 

–
 ​​); (ii) it is risk dominant (​​x​i​​  <  1/2​) and there was a 

large negative shock; and (iii) it is risk dominant and the prior mean was below ​​ y _ ​​.
We next consider a stark parametric example in which the cutoffs above have 

simple explicit form. This example does not satisfy our continuity assumptions but 
has an intuitive motivation.

EXAMPLE 1: Idiosyncratic shocks are drawn from the uniform distribution on ​​
[−1/2, 1/2]​​. There is uncertainty about the distribution of the common shock: with 

Figure 5. Equilibrium Cutoffs when Prior Mean Is Above ​​y –​​

Note: Horizontal axis: shock ​z​; vertical axis: rank belief ​R​(z)​​ and return ​x  =  y + σz​.
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probability ​π​, there is no common shock (i.e., ​η  =  0​), but with complementary prob-
ability ​1 − π​, the common shock takes any value on the real line with an improper 
uniform distribution. The rank belief function is given by7

	​ R​(​z​i​​)​  = ​​
⎧
 

⎪

 ⎨ 
⎪
 

⎩
​​​
​ 1 _ 
2
 ​ + π​z​i​​

​ 
if ​z​i​​  ∈ ​ [−1/2, 1/2]​

​   
​ 1 _ 
2
 ​
​ 

otherwise
 ​​ ​.

It is non-monotone: it starts at ​1/2​ for ​​z​i​​  <  −1/2​, drops to ​​(1 − π)​/2​ at  
​​z​i​​  =  −1/2​, increases to ​​(1 + π)​/2​ until ​​z​i​​  =  1/2​ after which it drops back to 1/2. 
The return level that triggers investment as a unique rationalizable action is

	​​ R 
–
 ​  = ​  1 _ 

2
 ​ + ​ π _ 

2
 ​.​

The critical shock size that triggers a unique rationalizable action is

	​​ z –​  =  1/2​

for each return ​​x​i​​  ∈ ​ (1/2, ​R 
–
 ​)​​. When the shock sensitivity, ​σ​, is below ​π​, the prior 

investment threshold is

	​​ y –​  = ​  1 _ 
2
 ​ + ​ π − σ _ 

2
  ​.​

When ​σ  <  π/2​, the sufficient conditions (i)–(iii) above characterize the rational-
izable behavior. In all the remaining cases, both actions are rationalizable, and we 
have multiple equilibrium behavior. In particular, for any prior mean ​y​ between ​
1 − ​y –​​ and ​​y –​​, both actions are rationalizable whenever the shock size falls below the 
critical level.

The rationalizable behavior is similar if ​σ​ is in between ​π/2​ and π. When ​σ  >  π​,  
the rationalizable behavior is quite different: the game is dominance solvable, and 
the unique rationalizable action is invest when the return is above a cutoff ​​x​​ ∗​​ and 
not invest when the return is below the cutoff ​​x​​ ∗​​. Depending on ​y​, the cutoff ​​x​​ ∗​​ can 
take any value between ​1 − ​R 

–
 ​​ and ​​R 

–
 ​​. Thus, the unique rationalizable action is not 

determined by risk dominance or shock size.

B. Small Shocks: A Characterization

The example illustrates the fact that when the shock sensitivity is small, the three 
sufficient conditions characterize unique rationalizability. In general, however, we 

7 Intuitively, when ​​z​i​​  ∉  ​[−1/2, 1/2]​​, player ​i​ learns that there is a common component and thus ​η​ is uniformly 
distributed on the real line. Then, the rank belief is ​1/2​ as in standard global games. When ​​z​i​​  ∈  ​[−1/2, 1/2]​​, a 
player does not learn anything about whether there is a common component. With probability ​1 − π​, there is a 
common component and rank beliefs are 1/2. With probability ​π​, there is no common component (i.e., ​η  =  0​), 
and ​​z​j​​​ is uniformly distributed on ​​[−1/2, 1/2]​​ independent of ​​z​i​​​, yielding the rank belief ​​z​i​​ + 1/2​. His rank belief, ​
1/2 + π ​z​i​​​, is the weighted average of ​​z​i​​ + 1/2​ and ​1/2​. This updating conditional on an improper common prior 
follows Taraldsen and Lindqvist (2016).
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see that there is a gap. As in this example, in general, when shock sensitivity is high, 
invest can be uniquely rationalizable without being risk dominant. In particular, 
when ​σ  > ​ sup​z​​  R′​(z)​​, the rationalizable action is unique, and it depends only on 
whether the return is above or below the rank belief, independent of the size of the 
shock and the risk dominant action. We next rule out such scenarios (by requiring 
that ​σ  ≤ ​ (​R 

–
 ​ − y)​ / ​z –​​(​R ¯ ​)​​), and obtain the following characterization.

PROPOSITION 4 (Characterization): Assume ​R​ is single peaked on ​​핉​+​​​ and ​y  ≤ ​
R 
–
 ​ − σ​z –​​(​R 

–
 ​)​​. Then, invest is uniquely rationalizable if and only if it is risk dominant 

and ​​z​i​​  > ​ z –​​(​x​i​​)​​.

That is, invest is uniquely rationalizable if and only if it is risk dominant and 
there was a large positive shock, as in Proposition 2. This also includes the case in 
Proposition 1 because when the return is above the maximum rank belief ​​R 

–
 ​​, the crit-

ical shock size is ​− ∞​, and all shocks are considered large. In Proposition 3, invest 
was uniquely rationalizable whenever it was risk dominant and the prior mean was 
above the cutoff ​​y –​​, even if there was a negative shock and the return was below the 
maximum rank belief. This case is ruled out by the condition that ​y  ≤ ​ R 

–
 ​ − σ​z –​​(​R 

–
 ​)​​ in 

the hypothesis. Once that case is ruled out, for any given return level ​​x​i​​  >  1/2​, the 
rationalizable behavior is a monotone function of shock ​​z​i​​​: both actions are rational-
izable when ​​z​i​​  ≤ ​ z –​​(​x​i​​)​​ and invest is uniquely rationalizable when ​​z​i​​  > ​ z –​​(​x​i​​)​​.

We must note that the condition ​y  ≤ ​ R 
–
 ​ − σ​z –​​(​R 

–
 ​)​​ is crucial for this characteriza-

tion. In general, rationalizable behavior is non-monotone in shock ​​z​i​​​ for any fixed 
return level ​​x​i​​  >  1/2​. For example, in Figure 3, for any fixed ​​x​i​​  ∈ ​ (0.6, ​y –​)​​, invest 
is uniquely rationalizable when ​​z​i​​  <  − ​(​y –​ − ​x​i​​)​/σ​; both actions are rationalizable 
when ​− ​(​y –​ − ​x​i​​)​ / σ  ≤ ​ z​i​​  ≤ ​ z –​​(​x​i​​)​​, and invest is uniquely rationalizable once again 
when ​​z​i​​  > ​ z –​​(​x​i​​)​​. As the shock sensitivity gets smaller, the lower cutoff gets smaller, 
making our characterization more relevant. In the limit ​σ  →  0​, the lower cutoff 
approaches −​ ∞​, and the rationalizable behavior is as in our characterization.

This characterization is obtained by establishing a converse to our main result 
under the additional conditions in the hypothesis. The proof of the converse is 
depicted in the right panel of Figure 4. In this figure, invest is risk dominant, but 
the shock ​​z​i​​​ is smaller than the critical level ​​z –​​(​x​i​​)​​. The additional conditions for the 
converse are also met in this example: ​R​ is single-peaked, and ​y  ≤ ​ R 

–
 ​ − σ​z –​​(​R 

–
 ​)​​, so 

that ​R​ is decreasing at the cutoff ​​z​​ ∗∗​​, where the line ​y + σz​ cuts ​R​. Then, as in the 
figure, the equilibrium cutoff ​​z​​ ∗∗​​ must be at least as large as ​​z​i​​​, and thus ​​x​​ ∗∗​​ must be 
above ​​x​i​​​.8 Therefore, not invest is rationalizable.

We next focus on the case of small shocks to the returns. In that case, rational-
izable actions depend only on the position of the prior mean relative to the cutoffs ​​
y –​​ and ​​ y 

¯
 ​​.

PROPOSITION 5 (Small Shocks): For any ​σ  < ​ sup​z​​​(R​(z)​ − 1/2)​/z​, there exists ​
Δ  >  0​ such that whenever ​​|​x​i​​ − y|​  ≤  Δ​, invest is uniquely rationalizable if and 
only if ​y  > ​ y –​​ and not invest is uniquely rationalizable if and only if ​y  < ​  y 

¯
 ​​.

8 Indeed, suppose ​​z​​ ∗∗​  <  ​z​i​​​. Then, since the straight line has positive slope, ​​x​​ ∗∗​​ would have been strictly below ​​x​i​​​, 
and this would be a contradiction: ​R​ would be decreasing from ​​x​​ ∗∗​​ at ​​z​​ ∗∗​​ to the larger value ​​x​i​​​ at ​​z –​​(​x​i​​)​​.
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For sufficiently small shock sensitivity ​σ​, Proposition 5 establishes that, with-
out a large shock, invest is uniquely rationalizable when ​y  > ​ y –​​ and not invest is 
uniquely rationalizable when ​y  < ​  y 

¯
 ​​. But equilibrium play will depend on equi-

librium selection when ​y​ is in the intermediate range ​​[​ y 
¯
 ​, ​y –​]​​, as the action choice 

depends on which equilibrium is played. When the prior mean is within this range, 
by definition, ​​z​​ ∗​  <  0  < ​ z​​ ∗∗​​ and hence both actions are rationalizable when the 
shock is sufficiently small. The proposition provides a uniform bound that guaran-
ties multiplicity: the bound ​Δ​ is independent of ​y​ although it may depend on ​σ​ and 
the rank belief function.

Figure 6 illustrates the qualitative properties we have established so far as a func-
tion of prior mean ​y​ and return ​​x​i​​​. In this figure, we plot equilibrium cutoffs and 
regions in which invest and not invest are uniquely rationalizable for the ​t​-distribution  
example, assuming ​σ  < ​ sup​z​​ ​(R​(z)​ − 1/2)​/z​. When ​y  ∈ ​ [​ y 

¯
 ​, ​y –​]​​, the upper equi-

librium cutoff ​​x​​ ∗∗​​ is above ​max​{y, 1/2}​​ and approaches ​max​{y, 1/2}​​ as ​σ  →  0​ by 
Proposition 2. Hence, when ​y  >  1/2​, a large shock makes invest uniquely rational-
izable. Since ​​x​​ ∗∗​  >  y​, if the positive shock is sufficiently small, then both actions 
are rationalizable and can be played in equilibrium. Likewise, the lower cutoff ​​x​​ ∗​​ is 
below ​min​{y, 1/2}​​ and approaches ​min​{y, 1/2}​​ as ​σ  →  0​. Once again, large neg-
ative shocks make not invest uniquely rationalizable when ​y  <  1/2​, while both 
actions are rationalizable under smaller shocks. Note that when ​y  ∈ ​ [​ y 

¯
 ​, ​y –​]​​, the 

regions with uniquely rationalizable actions are confined to different sides of cutoff ​​
x​i​​  =  1/2​, and only a risk dominant action can be uniquely rationalizable. Outside 
of ​​[​ y 

¯
 ​, ​y –​]​​, a non-risk-dominant action can be uniquely rationalizable. For example, 

when ​y  > ​ y –​​, the cutoff ​​x​​ ∗∗​​(y)​​ is slightly below 1/2. Whenever ​​x​i​​  ∈ ​ (​x​​ ∗∗​​(y)​, 1/2)​​, 
invest is uniquely rationalizable although not invest is risk dominant.

C. Aggregate Implications

We now focus on the implications of our result on aggregate behavior, showing 
that there will be a shift in aggregate investment when the size of the common shock 
exceeds the critical level. We define the fundamental state (or fundamentals) as

	​ θ  =  y + ση,​

which is the average return, as a function of the common shock. Since we assume 
a continuum of players with independently distributed idiosyncratic shocks, there 
is no aggregate uncertainty conditional on the fundamental state. In particular, con-
ditional on common shock ​η​, the fraction of players with shocks below a given 
threshold ​z​ is ​F​(z − η)​​. Thus, the effect of a shock on individuals’ behavior directly 
translates as an effect of a common shock on majority behavior:9

COROLLARY 1: Invest is uniquely rationalizable for a majority if it is  
risk dominant for the median player (i.e., ​θ  >  1/2​) and, in addition, one of the 
following is true: (i) invest is minimum rank belief dominant for the median player 

9 By a majority we mean a set of players whose Lebesgue measure is more than 1/2.
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(i.e., ​θ  > ​ R 
–
 ​​); (ii) there is a large common shock (i.e., ​η  > ​ z –​​(θ)​​); or (3) the prior 

mean exceeds the prior investment threshold (​y  > ​ y –​​).

PROOF:
Clearly, invest is uniquely rationalizable for a majority if and only if it is uniquely 

rationalizable for the player with the median return, for which ​​x​i​​  =  θ​ and ​​z​i​​  =  η​.  
We obtain our corollary by substituting these equalities in Propositions 1, 2, and 3. ∎

That is, under rationalizability a majority must invest if doing so is risk dominant 
for that fundamental state and there was a large positive common shock. When the 
shock sensitivity ​σ​ is small and the common shock is away from the critical level, 
nearly all players take the same action. In that case, the aggregate investment is near 
1 when investing is risk dominant and there was a large common shock.

It is straightforward to extend this result to an arbitrary percentile of players. For 
any ​p  ∈ ​ (0, 1)​​ and for any ​θ  ∈ ​ (1/2 + σ ​F​​ −1​​( p)​, ​R 

–
 ​]​​, invest is uniquely rationaliz-

able for a fraction ​p​ of the players if the common shock ​η​ exceeds a critical shock 
size

	​​​ z –​​p,σ​​​(θ)​  = ​ z –​​(θ − σ ​F​​ −1​​(  p)​)​ + ​F​​ −1​​(  p)​.​

As ​σ  →  0​, the critical shock size, ​​​z –​​p,σ​​​(θ)​​, decreases to

	​​​ z –​​p,0​​​(θ)​  = ​ z –​​(θ)​ + ​F​​ −1​​(  p)​,​

a translation of the critical shock size for the majority.

Figure 6. Equilibrium Cutoffs and Rationalizability as a Function of Prior Mean ​y​ in the ​t​-distribution 
Example (​σ =  0.01​)

Note: Horizontal axis: prior mean ​y​; vertical axis: return ​x  =  y + σz​.
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IV.  Dynamic Application

Our motivation for studying this problem comes from thinking about a dynamic 
model. In this section, we describe a dynamic model that is simply a sequence of 
plays of the static model. This analysis provides an interpretation of and a motiva-
tion for our earlier results.

For a fixed ​σ​, the static game that we have analyzed can be parameterized by the 
prior mean ​y​, and we will denote that game by ​Γ​(y)​​. We will now consider the fol-
lowing dynamic game. At the beginning of each period ​t  ≥  0​, there is an expected 
return ​​y​t​​​. In each period ​t​, the static game ​Γ​(​y​t​​)​​ is played by a continuum of players. 
That is, a common shock ​​η​t​​​ and idiosyncratic shocks ​​ε​it​​​ are independently drawn 
across players, and players with types ​​z​it​​  = ​ η​t​​ + ​ε​it​​​ make investment choices as in 
the game ​Γ​(​y​t​​)​​. The expected return ​​y​t+1​​​ at period ​t + 1​ is a function of the funda-
mental state ​​θ​t​​  = ​ y​t​​ + ​ση​t​​​ at ​t​,

	​ ​y​t+1​​  =  Y​(​θ​t​​)​​,

for some known function ​Y  :  ℝ  →  ℝ​. At the beginning of ​t​, the current expected 
return ​​y​t​​​ and previous aggregate investment ​​A​t−1​​​ (the fraction of players who 
invested in the previous period) are publicly observable. Our interpretation is that ​​
y​t​​​ is the expected productivity in the economy. In each period, there is a common 
shock to productivity. The shock is persistent, but there may be a reversion to a mean 
productivity, as in the example below.

We now identify equilibrium shifts (when does equilibrium play switch from 
investment to non-investment and back?) and the role the shocks play in such shifts. 
We will focus on the hysteresis equilibrium: each player ​i​ invests at any period ​t​ if 
and only if ​​z​it​​  > ​​ z ˆ ​​t​​​ where ​​​z ˆ ​​t​​  = ​ z​​ ∗​​(​y​t​​)​​ if ​t  =  0​ or ​​A​t−1​​  ≥  1/2​ and ​​​z ˆ ​​t​​  = ​ z​​ ∗∗​​(​y​t​​)​​  
otherwise. The cutoff ​​​z ˆ ​​t​​​ is a function of the current expected return and the previ-
ous aggregate investment. If a majority invested in the previous period, each player 
invests as long as investing is rationalizable for him, using the lowest equilibrium 
cutoff ​​z​​ ∗​​(​y​t​​)​​ in the static game. Likewise, if majority did not invest in the previous 
period, he does not invest unless investing is the only rationalizable option for him. 
This leads to inertia in majority behavior: majority behavior changes if and only if 
the action taken by a majority in the previous period is no longer rationalizable for 
a majority. Combined with this simple characterization, our previous results lead to 
the following description of equilibrium shifts under hysteresis. (We say that there 
is majority investment at ​t − 1​ if ​​A​t−1​​  >  1/2​ and there is minority investment if ​​
A​t−1​​  <  1/2​.)

COROLLARY 2: Under the hysteresis equilibrium, at any ​t  >  0​, if there was 
minority investment in the previous period, equilibrium shifts to majority invest-
ment whenever invest is risk dominant for the median player and, in addition, one 
of the following conditions hold: (i) invest is minimum rank belief dominant (i.e., ​​θ​t​​  
> ​ R 

–
 ​​); (ii) there is a large common shock (i.e., ​​η​t​​  > ​ z –​​(​θ​t​​)​​); or (iii) the prior mean 

exceeds the prior investment threshold (​​y​t​​  > ​ y –​​). If ​R​ is single peaked on ​​핉​+​​​, then 
equilibrium shifts to majority investment can occur only if (i) invest is minimum rank 
belief dominant (i.e., ​​θ​t​​  > ​ R 

–
 ​​); (ii) invest is risk dominant for the median player and 
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there is a large common shock (i.e., ​​η​t​​  > ​ z –​​(​θ​t​​)​​); or (iii) the prior mean exceeds ​​
R 
–
 ​ − σ​z –​​(​R 

–
 ​)​​.

PROOF:
Equilibrium shifts to majority investment if and only if invest is uniquely ratio-

nalizable for the median type ​​z​it​​  = ​ η​t​​​, i.e., ​​η​t​​  > ​ z​​ ∗∗​​(​y​t​​)​​. Then, the corollary imme-
diately follows from Propositions 1–5. ∎

Under hysteresis, Corollary 2 provides nearly a characterization of when equilib-
rium shifts to majority investment occur: invest is risk dominant under the median 
return and either the expected return is above ​​y –​​ or there was a large positive shock 
at ​t​. The converse rules out an equilibrium shift for all but a few remaining cases 
discussed in Section III.

The dynamics under the hysteresis equilibrium is illustrated in Figure 7.10 Time 
is on the horizontal axis. A sample path of fundamentals and aggregate investment 
are plotted on the vertical axis. Because shock sensitivity is small, aggregate invest-
ment is always close to one or close to zero, so majority investment and minority 
investment correspond to almost all investing and almost all not investing, respec-
tively. There are two periods of majority investment (the shaded areas) interspersed 
with minority investment. At the beginning, there is majority investment with aggre-
gate investment nearly ​1​. The majority keeps investing due to hysteresis, although 

10 In this example, we take ​​y​t+1​​  =  1/2 + κ​(​θ​t​​ − 1/2)​​ with parameter ​κ  =  0.99​, so that fundamentals fol-
low an AR(1) process around 1/2: ​​θ​t+1​​ − 1/2  =  κ​(​θ​t​​ − 1/2)​ + ​ση​t+1​​​. The distributions of shocks are as in the  
​t​-distribution example. We also take σ​  =  0.01​.

Figure 7. Equilibrium Shifts on a Typical Sample Path
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the fundamental drifts downward and investing is not risk dominant. The equilib-
rium shifts when the prior mean of the fundamental drifts below ​​ y 

¯
 ​​:11 the majority 

stop investing and aggregate investment drops near zero. This shift illustrates level 
condition 3 in Corollary 2. This is the end of the first period of majority investment. 
After that the fundamental fluctuates, but aggregate investment remains near zero. 
In particular, in this no investment period, a large positive shock has no discern-
ible impact on aggregate investment as not invest remains risk dominant under the 
median return. Later, the arrival of a major large positive shock makes investing risk 
dominant for the median player and shifts equilibrium back to majority investment. 
Since investment also becomes minimum rank belief dominant, both level condition 
1 and shock condition 2 in Corollary 2 make the shift necessary. Thereafter, funda-
mentals drift down with occasional negative shocks, and a large negative shock ends 
the second investment period as it arrives when not invest is risk dominant for the 
median player. This shift illustrates shock condition 2 in Corollary 2.

Our result implies that it is preferable to avoid large negative shocks in good 
times in order to avoid crises, and preferable to have large positive shocks in the 
aftermath of a crisis especially after a substantial improvement of fundamentals in 
order to hasten the economic recovery. This is illustrated in Figure 8, where we com-
pare two alternative hypothetical paths in our ​t​-distribution example for ​σ  =  0.01​ 
and ​​y​t​​  = ​ θ​t−1​​​. On both paths, the fundamental state starts at 0.5 and drops to 0.35. 
The paths differ in terms of how that change happens. On one path (in solid lines), 
fundamentals drop smoothly, as in the soft landing of a bubble. In that case, the 
aggregate investment remains nearly one throughout (marked with ​♢​). On the other 
path (dashed lines), fundamentals drop suddenly after remaining high for a long 
while. In that case, the negative shock triggers a long-lasting crisis, dropping aggre-
gate investment near zero (marked with *).

11 This happens when ​Y​(​θ​t−1​​)​  <  ​ y 
¯
 ​​—when ​​θ​t−1​​  <  1/2 + ​(​ y 

¯
 ​ − 1/2)​/κ  ≅  ​ y 

¯
 ​​ in this particular example.

Figure 8. Aggregate Investment under Soft-Landing (Solid, ​♢​) and Sudden Drop (Dashed, *)
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It is useful to compare the dynamics here to two usual solution concepts. First, 
consider the hysteresis equilibrium where the returns are publicly observable and 
identical to each other (as in Cooper 1994) where (all) players switch their action 
only when the previous action becomes inconsistent with equilibrium, switching to 
all investing when θ goes above ​1​ and switching to nobody investing when θ goes 
below ​0​. Under this equilibrium, in Figure 7, the players keep investing throughout 
because the fundamental never drops below ​0​. There are more equilibrium shifts 
in our model in general because equilibrium shifts even before the fundamental 
reaches the cutoffs ​0​ and ​1​. Second, suppose players always play the risk dominant 
action, as they do in the noise free limit in the classic global games analysis. The 
equilibrium shifts as the fundamental crosses ​1/2​, resulting in frequent equilibrium 
shifts when the fundamental is near ​1/2​ and no shift away from the cutoff. Our equi-
librium is not sensitive to the cutoff ​1/2​ per se, but the outcomes correlate because 
shocks revert to the solution under risk dominance if they happen to be in the right 
direction.12

Hysteresis as a selection device is often assumed as a modeling device, see 
Krugman (1991) and Cooper (1994) among others. Romero (2015) has tested 
hysteresis in the laboratory, confirming its existence in a setting with evolving 
complete information payoffs. The switches occur before dominance regions are 
reached, consistent with our results. Chamley (1999) develops a dynamic model of 
global games in which hysteresis arises as a unique equilibrium. In his model, play-
ers can learn about the previous fundamentals when the fundamentals reach near 
dominance regions, when the equilibrium shifts occur. In another dynamic model 
with small amount of hysteresis in players’ actions, Burdzy, Frankel, and Pauzner 
(2001) obtain risk dominant selection as the unique equilibrium. Finally, Angeletos, 
Hellwig, and Pavan (2007) study a dynamic model of global games with regime 
change. In their model, fundamentals do not change over time, but players learn 
about them as they observe the outcomes of the past play; learning leads to multiple 
equilibria and interesting dynamics.

V.  Rank Beliefs, Fat Tails, and Model Uncertainty

We made primitive assumptions on ​f​ and ​g​ that implied properties of rank beliefs 
(in Lemma 1) which then had implications for rationalizable behavior. In this sec-
tion, we want to assess the role that our assumptions play in our argument, present 
the empirical evidence for them, and discuss informally what results hold under 
alternative assumptions and how they relate to the literature.

The structure of rationalizable strategies is determined by the shape of rank 
beliefs and does not depend on the specific assumptions one makes to derive them. 
As long as the properties in Lemma 1 hold, the results in this paper are valid. More 
generally, in a follow-up paper (Morris and Yildiz 2019), we show that if a limit  
​​R​∞​​  ≡ ​ lim​z→∞​​ R​(z)​​ exists, then invest is uniquely rationalizable if the return is above 

12 In our model, by Proposition 2, when ​y  >  1/2​, equilibrium shifts to majority investing whenever ​η  >  ​z –​​(y)​​.  
Hence, in the limit ​σ  →  0​, equilibrium shifts occur near the cutoff 1/2 almost surely. However, as in Figure 7, even 
for ​σ  =  0.01​, equilibrium shifts typically occur away from the cutoff 1/2 (because the odds of getting large shocks ​
η  >  ​z –​​(1/2 + ε)​​ are also very small for small ​ε​).
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the limit rank belief ​​R​∞​​​ and there was a large positive shock. Under the limit unifor-
mity of rank beliefs, ​​R​∞​​​ coincides with the risk-dominance threshold 1/2, yielding 
our large shock result. Our large shock result does rely on non-monotonicity of 
rank beliefs however. Under a monotone rank belief function, shocks per se do not 
lead to equilibrium shifts: if invest is uniquely rationalizable for some return ​​x​i​​​ and 
shock ​​z​i​​​, it would have been uniquely rationalizable for return ​​x​i​​​ and a smaller shock  
​​z​ i​ ′ ​  < ​ z​i​​​.13

It is instructive to compare our results to the case in which both common and 
idiosyncratic shocks are normally distributed. This case has been studied extensively 
in the global games literature but does not satisfy our fat-tail assumption. The litera-
ture focuses on the case of large shock sensitivity (​σ >  R′​(0)​​), where coordination 
motives are weak. In that case, the game is dominance solvable. Here, we focus on 
the case of small shock sensitivity (​σ <  R′​(0)​​), where the coordination motives are 
strong. For this case, we plot the rank belief function and the rationalizable solution 
in Figure 9. The rank-belief function is monotone and traces the entire undominated 
region ​​(0, 1)​​ as the shock level varies. As a result, our large-shock result disappears, 
and the return levels that trigger a unique rationalizable action coincide with the 
dominance triggers. Our result about the ex ante level (Proposition 3) remains to 
hold, so that invest is uniquely rationalizable when the prior mean exceeds the ex ante 
investment threshold. In this case, risk dominance does not play a role, and the ratio-
nalizable behavior is monotone with respect to shocks. In particular, for any return 
level ​​x​i​​  ∈ ​ (0, 1)​​, invest is uniquely rationalizable if there was a very large negative 
shock; not invest is uniquely rationalizable if there was a very large positive shock, 
and both actions are rationalizable in between. As ​σ​ gets small, multiplicity becomes 
prevalent. In contrast, as shown in Figure 3, when the common shock has ​t​-distribu-
tion, risk dominance plays a central role: the risk-dominant action is uniquely ratio-
nalizable when there is a large shock, and there is multiplicity otherwise.

This paper illustrates a mechanism in which large shocks lead to increased uncer-
tainty about the relative ranking of players, leading them to play according to risk 
dominance. As we have mentioned above, it is sufficient that the rank beliefs are 
uniform at the limit ​z  →  ∞​. In our model, we used fat-tailed common shocks and 
thinner tailed idiosyncratic shocks to model such beliefs—and we motivate fat tails 
by model uncertainty. We next briefly present empirical evidence for fat tails and 
other studies that address model uncertainty in related contexts.

There is a long-standing empirical literature that establishes that changes in key 
economic variables have fat tailed distributions, going back to Pareto’s observation 
about income distribution (see surveys by Benhabib and Bisin 2018, Gabaix 2009 
and Ibragimov and Prokhorov 2017). For example, changes in GDP, prices, asset 
returns, and foreign exchange rates all have fat-tailed distributions (see pioneering 
works of Mandelbrot 1963 and Fama 1963; as well as contemporary studies such as 
Cont 2001; Gabaix et al. 2006; and Acemoglu, Ozdaglar, and Tahbaz-Salehi 2017). 
Moreover, many commonly used theoretical models, such as GARCH models and 

13 Monotonicity of beliefs play a central role in a number of economic models. For example, in observational 
learning, non-monotonicity of posterior beliefs (as a function of prior beliefs) is what gives informational cascades. 
In a model with two states, when the density of the log-ratio of the beliefs is log-concave, the posterior beliefs are 
monotone, and informational cascades do not arise (see Smith and Sørensen 2000 and Smith and Sørensen 2011).
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models with stochastic volatility, naturally lead to fat tailed changes in the funda-
mental, as in the example of ​t​-distribution above.

We also assume that the idiosyncratic components of the shocks have thinner tails 
than the common component, so that the tails of the changes in returns are as thick as 
the tails of common shocks. This is similar to the fact that the empirical tail indices of 
stock and market returns are both approximately 3 (Gabaix 2009). This assumption 
is plausible especially when the players learn the distribution of the shocks from the 
past realizations; the individual shocks generate a rich cross-sectional data while there 
is only a single time series about the common shocks. However, one must be cautious 
about mapping our highly stylized model to macroeconomic data. Macroeconomic 
aggregate productivity shocks tend to be much smaller than idiosyncratic shocks.14 
If one were to take our model literally (by identifying aggregate and idiosyncratic 
shocks with common and idiosyncratic shocks in our model, respectively), then our 
mechanism would be relevant only for extremely large aggregate shocks. But idio-
syncratic variation can arise from many sources. It is enough for players to observe 
noisy signals of the fundamental; under this interpretation, thinner idiosyncratic tails 
correspond to a well understood (if noisy) observation technology.

Our focus on fat tails is motivated by model uncertainty. Model uncertainty 
also plays an important role in some other models. Chen and Suen (2016) study 
a coordinated attack problem in which players are uncertain about how easy it 
is to change a regime. An unexpectedly successful attack by the previous cohort 
dramatically increases the probability that changing the regime is easy, enticing 
players to attack. Hence, successful attacks lead to further attacks by other players. 
Acemoglu, Chernozhukov, and Yildiz (2016) study learning and asymptotic 

14 For example, the standard deviation of the changes in GDP is only about 0.02 while the standard deviation 
of firm-level productivity shocks is estimated to be 0.45 (Cooper and Haltiwanger 2006; see also Pischke 1995 and 
Bloom, Sadun, and Van Reenen 2017).

Figure 9. Rationalizable Actions when Both Common and Idiosyncratic Shocks Are Normally 
Distributed

Note: Both actions are rationalizable in the unshaded area.
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agreement when players do not know the conditional distribution of signals. Such 
model uncertainty leads to asymptotic belief disagreement and possibly non-mono-
tone beliefs (as in our paper). Such model uncertainty is also central to Liang (2016), 
who studies robustness of solution concepts to uncertainty about the statistical rules 
players use to learn the fundamentals. Kozlowski, Veldkamp, and Venkateswaran 
(2017) study a macroeconomic model in which the players do not know the dis-
tribution of shocks and update their beliefs by using a normal kernel estimation 
method. When they observe large unexpected shocks, they update their beliefs about 
tail probability drastically. Large shocks have large and long-lasting impact on the 
economy as a result.

VI.  Discussion

In an economic environment with multiple equilibria, what explains which equi-
librium is played? There are two versions of this question. In a static setting, how 
can we explain which equilibrium is played? In a dynamic setting, how can we 
explain switches among equilibria?

One response to the static question is to observe that the multiplicity may be 
an artifact of the assumption of complete information, or common certainty of the 
game’s payoffs. A first generation of global game models (Carlsson and Van Damme 
1993, Morris and Shin 1998 and Morris and Shin 2003) argued that if the common 
certainty assumption is relaxed in a natural way, there is a unique equilibrium selec-
tion—the risk dominant one in two player two action games. The natural relaxation 
is to allow players to observe very accurate noisy signals of the state of the world.15 
Morris, Shin, and Yildiz (2016) formalize the idea that this information structure 
gives rise to (common certainty of) uniform rank beliefs, and this is what drives 
the results. Note that in this literature, the focus is on global uniqueness: there is a 
unique prediction of play for any signal that a player might observe.

Two basic criticisms of this first generation of global models are the following. 
First, with respect to assumptions, common knowledge of uniform rank beliefs will 
not hold even approximately in many environments (for example, when there are very 
accurate public signals).16 Second, with respect to predictions, as long as rank beliefs 
are approximately uniform throughout a model, outcomes will be largely determined 
by fundamentals. Thus in a dynamic model, the prediction would be that equilibrium 
play would always be switching when fundamentals crossed a threshold (which we 
call the risk-dominance threshold). Both predictions seem counter-factual.

In this paper, we made an intermediate set of assumptions, relative to complete 
information and first generation global games. Like the first generation global games 
literature, we relax complete information and use the vital insight that properties of 
rank beliefs sometimes lead to unique predictions.17 Like the complete information 

15 Weinstein and Yildiz (2007) pointed out that it mattered exactly how common certainty assumptions were 
relaxed: any rationalizable action in the underlying complete information game is a uniquely rationalizable action 
for a type of a player that is “close” to the complete information type, where closeness is in the product topology in 
the universal belief space of Mertens and Zamir (1985).

16 Angeletos and Werning (2006) give a price revelation foundation for the assumption that idiosyncratic shocks 
should have no less variation than common shocks.

17 We allow for a qualitatively richer class of rank beliefs than the first generation literature. The existing lit-
erature exclusively focuses on two cases (see Morris and Shin 2003 for a discussion of both cases). First, the case 
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literature, we allowed for the possibility that information alone does not determine 
behavior and that some other factor or factors determine equilibrium choice; our 
focus was on hysteresis as that factor.

This approach generated three novel and intuitive predictions. First, if we look 
at the relationship between fundamentals and outcomes, play must shift once fun-
damentals cross a fundamental threshold that arises before an action becomes 
dominant. Second, large shocks can trigger a shift before that threshold is reached. 
And third, those shifts can only occur once an action is risk dominant; i.e., the best 
response to uniform rank beliefs and thus the first generation global game prediction.

We conclude by contrasting our explanation and modeling with the conventional 
account that equilibrium shifts are triggered by the arrival of public signals: even 
though the financial system has been coming under continuing pressure, a public 
event (such as the collapse of Lehman) triggers the shift to a bad equilibrium (a 
financial crisis); even though European fiscal and sovereign debt positions had been 
improving for some years, it was a public event (Draghi’s speech) that triggered 
the shift to the good equilibrium. Such explanations are common in a wide variety 
of settings; see Chwe (2001) for many examples across the social sciences. Such 
explanations are based on the idea that public signals restore sufficient approximate 
common knowledge in the sense of high common ​p​-belief, leading to multiple equi-
libria.18 But is it really the case that there is more common knowledge after such 
large shocks? Surely people are more uncertain what other people are thinking after 
a large shock. We offer the alternative explanation that a large shock gives rise to 
less common knowledge in the sense of uncertainty about others’ relative optimism, 
i.e., more uniform rank beliefs, and it is this that triggers a shift to a new equilib-
rium. While both explanations appeal to large shocks, the mechanisms are opposite 
in terms of the properties of rank beliefs generating the results. Moreover, while the 
conventional account shows public signals may lead to an equilibrium shift as one of 
many equilibrium outcomes, we show that the large shocks will lead to equilibrium 
shift as the only rationalizable outcome.

Appendix A: Omitted Proofs

A. Properties of Beliefs and Equilibria

In this section, we present a couple of basic properties of beliefs and prove Lemma 
2, showing that the extremal equilibria ​​s​​ ∗​​ and ​​s​​ ∗∗​​ bound all rationalizable strategies. 
We write ​F​(η, ​z​−i​​ | ​z​i​​)​​ for the cumulative distribution function of ​​(η, ​z​−i​​)​​ conditional 
on ​​z​i​​​, which represents the interim beliefs of type ​​z​i​​​ about the common shock and 
the other players’ types.

where we fix the distribution of common shocks/public signals and let the noise in idiosyncratic shocks/private 
signals go to zero; in this case there is common certainty of uniform rank beliefs in the limit. Second, the case where 
both common shocks/public signals and idiosyncratic shocks/private signals are normally distributed. As we noted 
in Section V, rank beliefs are monotonic in this case and our large shock results cannot arise.

18 There can be a unique equilibrium when public signals are sufficiently accurate to break uniform rank 
beliefs—and thus global selection of the risk dominant equilibrium—but not sufficiently accurate to break globally 
unique equilibrium. In such models, large shocks/public signals will play a disproportionate role in selecting the 
unique equilibrium (see Morris and Shin 2003, Morris and Shin 2004). Such existing models have monotone rank 
beliefs, under which large shocks do not lead to equilibrium shifts per se (see Section V).
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LEMMA 3: The interim beliefs are increasing in types in the sense of first-order 
stochastic dominance. Moreover, ​f​ has thinner tails than ​g​:

(A1)	​ ​ lim​ 
λ→∞

​​ ​ 
f  ​(λz)​
 ____ 

g​(λz′)​
 ​  =  0 ​ (∀  z, z′  ∈  ℝ\​{0}​)​.​

PROOF:
(Part 1) Since ​​z​j​​  =  η + ​σε​j​​​ where ​​ε​j​​​ is independent of ​​ε​i​​​ and ​η​ for each ​j  ≠  i​,  

it suffices to show that ​F​(η | ​z​i​​)​​ is decreasing in ​​z​i​​​, where ​F​(η | ​z​i​​)​​ is the conditional 
distribution of the common shock. To do this, it suffices to show that ​η​ and ​​z​i​​​ are 
affiliated, i.e., the joint density ​h​ of ​​(η, ​z​i​​)​​ is log-supermodular. But since ​h​(η, ​z​i​​)​  
=  g​(η)​  f  ​(​z​i​​ − η)​​, ​log h​ is supermodular,

	​ log h​(η, ​z​i​​)​  =  log g​(η)​ + log  f  ​(​z​i​​ − η)​.​

Here, ​log g​(η)​​ is trivially supermodular, and ​log  f  ​(​z​i​​ − η)​​ is supermodular because ​
log  f​ is concave.

(Part 2) Since ​f​ is log-concave, it is well known that ​f​ has light tails, i.e.,

	​ ​ lim​ z→∞​​ ​ 
f  ​(z)​
 _ 

exp​(− cz)​ ​  =  0​

for some ​c  >  0​. Thus, for any non-zero ​z​ and ​z′​,

	​ ​ lim​ 
λ→∞

​​ ​ 
f  ​(λz)​
 ____ 

g​(λz′)​
 ​  = ​  lim​ 

λ→∞
​​ ​ 

f  ​(λz)​
 _ 

exp​(−cλz)​ ​  ​ 
exp​(−cλz)​
 _ 

g​(λz)​ ​  ​ 
g​(λz)​
 ____ 

g​(λz′)​
 ​  =  0.​

(The limits of ​exp​(−cz)​/g​(λz)​​ and ​g​(λz)​/g​(λz′)​​ are finite because ​g​ has regularly 
varying tails.) ∎

The first part of the lemma is the main step in the proof of Lemma 2.

PROOF OF LEMMA 2: 
It suffices to verify that our game is monotone supermodular, as in Van Zandt and 

Vives (2007) (who also assume that the set of players is finite but their proof also 
applies to our game). It is straightforward to verify the continuity and compactness 
assumptions as well as supermodularity of the payoff functions. Lemma 3 further 
establishes that the beliefs are monotone, and this fact immediately implies that ​​s​​ ∗​​ 
and ​​s​​ ∗∗​​ are Bayesian Nash equilibria. Since the game is monotone supermodular, all 
rationalizable strategies are bounded by ​​s​ i​ ∗​​ and ​​s​ i​ ∗∗​​. In particular, all rationalizable 
strategies coincide whenever ​​s​ i​ ∗​​(​z​i​​)​  = ​ s​ i​ ∗∗​​(​z​i​​)​​. ∎

B. Properties of Rank Beliefs

In this section, we prove Lemma 1. We start with some useful notation. For any two 
functions ​​h​1​​​ and ​​h​2​​​ from reals to reals, we define convolution ​​h​1​​ ∗ ​h​2​​​ of ​​h​1​​​ and ​​h​2​​​ by

(A2)	​ ​h​1​​ ∗ ​h​2​​​(z)​  = ​ ∫ 
 
​ 
 
​​​h​1​​​(ε)​ ​h​2​​​(z − ε)​ dε.​
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Observe that

(A3)	​ R​(z)​  = ​ 
Ff ∗ g​(z)​
 _ 

f ∗ g​(z)​ ​.​

Since ​F​(− ε)​  =  1 − F​(ε)​​ and ​f​ and ​g​ are even functions, we have the following 
useful properties:

(A4)	​ f ∗ g​(z)​  =  f ∗ g​(−z)​;​

(A5)	​ R​(− z)​  = ​ 
​(1 − F)​ f ∗ g​(z)​

  ___________ 
f ∗ g​(z)​ ​ ,​

where ​1 − F​ is the complementary cdf. The first property states that ​f ∗ g​ is even, 
and the second property states that ​R​(−z)​​ is simply computed by using the comple-
mentary cdf. Hence,

(A6)      ​R​(z)​ − R​(− z)​  = ​ 
​(2F − 1)​ f ∗ g​(z)​

  ___________  
f ∗ g​(z)​ ​

	 = ​ 
​∫ 0​ 

∞​​​(2F​(ε)​  −  1)​ f ​(ε)​​(g​(z  −  ε)​  −  g​(z  +  ε)​)​ dε
    ______________________________   

f ∗ g​(z)​ ​ ​,

where the first equality is by (A3), (A4), and (A5), and the last equality is by the fact 
that ​2F − 1​ is an odd function while ​f​ is even.

PROOF OF LEMMA 1:
Differentiability: By monotonicity property of ​g​, ​g​ is differentiable almost 

everywhere. In the computation of convolutions, one can exclude the zero probabil-
ity event on which ​g′​ is not defined. With that exclusion, the function ​g′​ is integrable: ​
∫ ​| g′​(z)​ |​ 𝑑z  =  2g​(0)​​. Thus, both ​Ff ∗ g​ and ​f ∗ g​ are differentiable, showing that ​R​ 
is differentiable.

Symmetry: By (A5),

	​ R​(− z)​  = ​ 
​(1 − F)​ f ∗ g​(z)​

  ___________ 
f ∗ g​(z)​ ​   = ​ 

f ∗ g​(z)​ − Ff ∗ g​(z)​
  _____________  

f ∗ g​(z)​ ​   =  1 − R​(z)​.​

Single Crossing: For any ​z  >  0​, observe that ​g​(z − ε)​ − g​(z + ε)​  ≥  0​ and the 
inequality is strict with positive probability; equality holds only if ​g​ is constant over 
the relevant range. Hence, by (A6), ​R​(z)​ − R​(−z)​  >  0​. Since ​R​(−z)​  =  1 − R​(z)​​, 
this also implies that ​R​(z)​  >  1/2  >  R​(−z)​​.

Uniform Limit Rank Beliefs: Fix any ​ϵ  ∈ ​ (0, 1)​​. Since ​g​ has regularly varying 
tails (4), there exist ​β  >  0​ and ​​η​0​​​ such that for all ​η′  >  η  ≥ ​ η​0​​​,

(A7)	​​ 
g​(η)​
 ____ 

g​(η′)​
 ​  ≤ ​ (1 + ϵ/2)​​​(η/η′)​​​ −β​.​
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Fix also ​γ  ∈ ​ (0, 1)​​ such that

(A8)	​ ​(1 + ϵ/2)​​​(​ 1 − γ _ 1 + γ ​)​​​ 
−β

​  <  1 + ϵ.​

Now, by definition, for any ​z  >  0​,

	​ R​(z)​  ≤ ​ (​I​1​​ + ​I​2​​)​/​I​3​​​

where

	​ ​I​1​​  = ​ ∫ −γz​ 
γz

 ​​   f ​(ε)​F​(ε)​g​(z − ε)​ dε,​

	​ ​I​2​​  = ​ ∫ ε∉​(−γz,γz)​​ 
 
 ​​   f ​(ε)​F​(ε)​g​(z − ε)​ dε,​

	​ ​I​3​​  = ​ ∫ −γz​ 
γz

 ​​  f ​(ε)​g​(z − ε)​ dε.​

To find an upper bound on ​R​(z)​​, we next find bounds for these integrals. First, 
observe that

	​ g​(z − γz)​  ≥  g​(z − ε)​  ≥  g​(z + γz)​  ​(∀ ε  ∈ ​ [− γz, γz]​)​,​

as ​z + γz  ≥  z − ε  ≥  z − γz  >  0​ and ​g​ is decreasing on positive reals. The 
inequality ​g​(z − γz)​  ≥  g​(z − ε)​​ yields an upper bound for ​​I​1​​​:

	​ ​I​1​​  ≤  g​(z − γz)​​∫ −γz​ 
γz

 ​​    f ​(ε)​F​(ε)​ dε  = ​  1 _ 
2
 ​g​(z − γz)​​(F ​​(γz)​​​ 2​ − F ​​(−γz)​​​ 2​)​ 

	 = ​  1 _ 
2
 ​g​(z − γz)​​(F​(γz)​ − F​(−γz)​)​,​

where the integral is computed by change of variable ​u  =  F​(ε)​​, and the last equal-
ity is by symmetry of ​F​, ​F​(γz)​ + F​(−γz)​  =  1​. Likewise, the inequality ​g​(z − ε)​  ≥  
g​(z + γz)​​ yields a lower bound for ​​I​3​​​:

	​ ​I​3​​  ≥ ​ ∫ −γz​ 
γz

 ​​  f ​(ε)​g​(z + γz)​ dε  = ​ (F​(γz)​ − F​(−γz)​)​g​(z + γz)​.​

Finally, since ​f​ is decreasing in the absolute value of ​ε​, for all ​ε  ∉ ​ (−γz, γz)​​, we 
have ​f  ​(ε)​  ≤  f  ​(γz)​​, yielding ​f  ​(ε)​F​(ε)​g​(z − ε)​  ≤  f  ​(γz)​g​(z − ε)​​. Hence,

	​ ​I​2​​  ≤  f  ​(γz)​​∫ ε∉​(−γz,γz)​​ 
 
 ​​  g​(z − ε)​ dε  ≤  f  ​(γz)​​∫ 

−∞
​ 

∞
 ​​ g​(z − ε)​ dε  =  f  ​(γz)​.​

Combining the bounds for the integrals, we conclude that

(A9)	​ R​(z)​  ≤ ​  1 _ 
2
 ​ ​ 
g​(z − γz)​
 _ 

g​(z + γz)​ ​ + ​ 
f  ​(γz)​
  __________________   

​(F​(γz)​ − F​(−γz)​)​g​(z + γz)​
 ​.​
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Now, by (A7) and (A8),

	​ ​ 1 _ 
2
 ​ ​ 
g​(z − γz)​
 _ 

g​(z + γz)​ ​  ≤ ​  1 _ 
2
 ​​(1 + ϵ/2)​ ​​(​ 1 − γ _ 1 + γ ​)​​​ 

−β
​  <  1/2 + ϵ/2​

for any ​z  > ​ η​0​​/​(1 − γ)​​. Moreover, by (A1), there exists ​​z ˆ ​ > ​ η​0​​/​(1 − γ)​​ such that 
for all ​z  > ​ z ˆ ​​,

	​ ​ 
f  ​(γz)​
  __________________   

​(F​(γz)​ − F​(−γz)​)​g​(z + γz)​
 ​  <  ϵ/2.​

Substituting the two displayed inequalities in (A9), we obtain ​R​(z)​  <  1/2 + ϵ​ for 
all ​z  > ​ z ˆ ​​, as desired. ∎

C. Omitted Proofs of Main Results

We next prove Propositions 4 and 5.

PROOF OF PROPOSITION 4:
By Proposition 2, it suffices to prove the necessity. Take any ​y  ≤ ​ R 

–
 ​ − σ​z ¯ ​​(​R 

–
 ​)​​. 

Since ​y  ≤ ​ R 
–
 ​ − σ​z –​​(​R 

–
 ​)​​,

	​ R​(​z –​​(​R 
–
 ​)​)​  = ​ R 

–
 ​  ≥  y + σ​z –​​(​R 

–
 ​)​.​

Since ​R​(z)​  <  y + σz​ for large values of ​z​, by the intermediate-value theorem, this 
implies that ​​z​​ ∗∗​  ≥ ​ z –​​(​R 

–
 ​)​  >  0​. Thus,

	​ ​x​​ ∗∗​  >  max​{y, 1/2}​.​

(Clearly, ​​x​​ ∗∗​  =  y + σ​z​​ ∗∗​  >  y​ and ​​x​​ ∗∗​  =  R​(​z​​ ∗∗​)​  >  1/2​.) Hence, if invest is not 
risk dominant (i.e., ​​x​i​​  ≤  1/2​), then ​​x​​ ∗∗​  > ​ x​i​​​, and therefore invest is not uniquely 
rationalizable. Now, assume that invest is risk dominant (i.e., ​​x​i​​  >  1/2​) but inequal-
ity (8) does not hold, as in panel B of Figure 4,

(A10)	​ ​z​i​​  ≤ ​ z –​​(​x​i​​)​.​

We claim that, if in addition ​R​ is single peaked, then (A10) implies that ​​x​​ ∗∗​  ≥ ​ x​i​​​, 
and therefore invest is not uniquely rationalizable. To prove the claim that ​​x​​ ∗∗​  ≥ ​ x​i​​​,  
suppose ​​x​​ ∗∗​  < ​ x​i​​​ and equivalently

(A11)	​ ​z​​ ∗∗​  < ​ z​i​​.​

Now, since ​​z​​ ∗∗​  ≥ ​ z –​​(​R 
–
 ​)​​, by (A10) and (A11), we have

	​​ z –​​(​R 
–
 ​)​  ≤ ​ z​​ ∗∗​  < ​ z​i​​  ≤ ​ z –​​(​x​i​​)​.​
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However, since ​R​ is single-peaked with a peak at ​​z –​​(​R 
–
 ​)​​, this implies that

	​ ​x​​ ∗∗​  =  R​(​z​​ ∗∗​)​  ≥  R​(​z –​​(​x​i​​)​)​  = ​ x​i​​,​

contradicting that ​​x​​ ∗∗​  < ​ x​i​​​. ∎

We will below vary ​y​ and write the cutoffs ​​x​​ ∗​​ and ​​x​​ ∗∗​​ as functions of ​y​.

PROOF OF PROPOSITION 5:
Set ​Δ  =  min​{​x​​ ∗∗​​(​y –​)​ − ​y –​, ​y –​ − 1/2}​.​ Observe that

(A12) ​ ​min​ 
y≥​ y 

¯
 ​
​ ​​(y − ​x​​ ∗​​(y)​)​  = ​  y 

¯
 ​ − ​x​​ ∗​​(​ y 

¯
 ​)​  = ​ x​​ ∗∗​​(​y –​)​ − ​y –​  = ​ min​ 

y≤​y ¯ ​
​ ​​(​x​​ ∗∗​​(y)​ − y)​  >  0,​

where the first and the last equalities are by the fact that ​y − ​x​​ ∗​​(y)​  =  −σ​z​​ ∗​​(y)​​ is 
increasing while ​​x​​ ∗∗​​(y)​ − y  =  σ​z​​ ∗∗​​(y)​​ is decreasing, and the middle equality is by 
symmetry. To see the last inequality, observe that, since ​σ  < ​ sup​z​​​(R​(z)​ − 1/2)​ / z​, 
we have ​​y –​  >  0​, and by definition of ​​y ¯ ​​, there exists ​z  >  0​ such that ​R​(z)​  ≥ ​ y –​ + σz​,  
showing that ​​z​​ ∗∗​​(​y –​)​  >  0.​ Therefore, ​​x​​ ∗∗​​(​y –​)​ − ​y –​  =  σ​z​​ ∗∗​​(​y –​)​  >  0.​

Consider any ​y  > ​ y –​​. Since ​Δ  ≤ ​ y –​ − 1/2​, for any ​​x​i​​​ with ​​|​x​i​​ − y|​  ≤  Δ​, we have ​​
x​i​​  ≥  y − Δ  >  1/2.​ Then, by Proposition 3, invest is uniquely rationalizable at ​​x​i​​​ 
under ​y​. Now consider any ​y  ≤ ​ y –​​. By (A12),

	​ ​x​​ ∗∗​​(y)​ − y  ≥ ​ x​​ ∗∗​​(​y –​)​ − ​y –​  ≥  Δ.​

Hence, for any ​​x​i​​​ with ​​|​x​i​​ − y|​  ≤  Δ​, we have

	​ ​x​i​​  ≤  y + Δ  ≤ ​ x​​ ∗∗​​(y)​,​

showing that invest is not uniquely rationalizable at ​​x​i​​​ under ​y​. ∎
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