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Abstract

We present the first algorithm that samples max,>o{S» — n®}, where S,
is a mean zero random walk, and n® with a € (1/2,1) defines a nonlinear
boundary. We show that our algorithm has finite expected running time. We
also apply this algorithm to construct the first exact simulation method for the
steady-state departure process of a GI/GI/oo queue where the service time

distribution has infinite mean.
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1. Introduction

Consider a random walk S, = > | X; for n > 1 and Sy = 0, where {X; : ¢ > 1} is a sequence of
independent and identically distributed random variables with F[X;] = 0 and Var(X;) < oo. Without
loss of generality, we shall also assume that Var(X;) = 1. Moreover, we shall impose the following

light-tail assumption on the distribution of X;’s.
Assumption 1. There ezists 6 > 0, such that E[exp(6X1)] < oo for V0 € (—9,9).

In this paper, we develop the first algorithm that generates perfect samples (i.e. samples without any
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bias) from the random variable

M, = rrrllgé({sn —n“},

where a € (1/2,1). Moreover, we will show that our algorithm has finite expected running time.

There has been substantial amount of work on exact sampling (i.e. sampling without any bias) from
the distribution of the maximum of a negative drifted random walk, e.g. M; in our setting. Ensor
and Glynn [6] propose an algorithm to sample the maximum when the increments of the random walk
are light-tailed (i.e Assumption 1 holds). In [2], Blanchet et al. propose an algorithm to simulate
a multidimensional version of M; driven by Markov random walks. In [5], Blanchet and Wallwater

2+€] < o0

develop an algorithm to sample M; for the heavy-tailed case, which requires only that E[| X |
for some £ > 0 to guarantee finite expected termination time.

Some of this work is motivated by the fact that M7 plays an important role in ruin theory and queueing
models. For example, the steady state waiting time of GI/GI/1 queue has the same distribution as M,
where X; corresponds to the (centered) difference between the i-th service time and the i-th interarrival
time, (see [1]). Moreover, applying Coupling From The Past (CFTP), see for example [9] and [8], the
techniques to sample M; jointly with the random walk {S,, : n > 0} have been used to obtain perfect
sampling algorithms for more general queueing systems, including multi-server queues [4], infinite server
queues and loss networks [3], and multidimensional reflected Brownian motion with oblique reflection
[2].

The fact that M, stochastically dominates M; makes the development of a perfect sampler for M,
more difficult. For example, the direct use of exponential tilting techniques as in [6] is not applicable.
However, similar to some of the previous work, the algorithmic development uses the idea of record-
breakers (see e.g. [3]) and randomization procedures similar to the heavy-tailed context studied in [5].

The techniques that we study here can be easily extended, using the techniques studied in [2], to
obtain exact samplers of a multidimensional analogue of M, driven by Markov random walks (as done
in [2] for the case a = 1). Moreover, using the domination technique introduced in Section 5 of [4], the
algorithms that we present here can be applied to the case in which the term n® is replaced by g(n) as
long as there exists ng > 0 such that g(n) > n® for all n > ny.

We mentioned earlier that algorithms which simulate M jointly with {S,, : n > 0} have been used in
applications of CFTP. Since the random variable M, dominates M;, and we also simulate M, jointly
with {S, : m > 0}, we expect our results here to be applicable to perfect sampling (using CETP) for
a wide range of processes. In this paper, we will show how to use the ability to simulate M, jointly

with {S,, : n > 0} to obtain the first algorithm which samples from the steady-state departure process
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of an infinite server queue in which the job requirements have infinite mean; the case of finite mean
service/job requirements is treated in [3].

The rest of the paper is organized as follows. In Section 2 we discuss our sampling strategy. Then
we provide a detailed running time analysis in Section 3. Finally, the application to exact simulation of
the steady-state departure process of an infinite server queue with infinite mean service time is given in

Section 4.

2. Sampling strategy and main algorithmic development

Our goal is to simulate M, using a finite but random number of X;’s. To achieve this goal, we
introduce the idea of record-breakers.

Let 1(0) := log E[exp(0X;)]. As () = £6% + 0(6?) by Taylor expansion, there exists §' < §, such
that 1 (0) < 02, for 0 € (—¢',8"). Let

a € (O,min {45/, ;}) , and b= %k)g <4 (Z on exp(_a222na—n—4>> ) (1)
n=0

These choices of @ and b will become clear in the proof of Lemma 1. We define a sequence of record-

breaking times as Ty :=0. For k =1,2...,if Tj_1 < o0,
Ty :=inf {n > Tj_1: S8, > S1,_, +a(n — T—1)* + b(n — Ty—1) "}
otherwise if T, _1 = oo, then T} = co. We also define
k:=inf{k > 0: T} = co}.

Because the random walk has independent increments, P(7T; = oo|T;—1 < 00) = P(T} = 00). Thus, & is

a geometric random variable with probability of success
We first show that x is well defined.

Lemma 1. For a and b satisfying (1),

o)
G
I
g
\%
A~

Proof. We first notice that

P(T} < 00) = i P(T € [2",2"))

n=0

< i > P(Sk > ak™ +bk' ).

n=0 ke[zn’zn,+l)
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For any k € [27,2"T1),

P(Sk, > ak® + bkl_a) < exp (kw(@) _ e(aka =+ bkl—(y))

< exp (2”“1&(9) — 6a2°" — 0b2(1_a)”) ,
for any 6 € (—4,5). We define 6,, = a2(*~D"=2, Since a < 40, we have 6,, < §’. Then

P (Sk > ak® +bk' %) < exp (277167 — 002" — 0,020~

= exp (—a®2?"*7 "% —ab/4).

Therefore,
> ab 1
n 202na—n—3
P(T) < ox0) < (7;)2 exp (—a 2 )> exp (—4) < 7
where the last inequality follows from our choice of b. |
Let

1
— e l—-ay _ ~, «
5.—%1%5({(@71 +bn %) 5" } (2)
As a < 1/2, £ < co. Conditional on the value of x and the values of {X; :1 <i<T,_1}, we define
L(k) = | @81, +20)"]. (3)
The choice of £ will become clear in the proof of Lemma 2. We will next establish that

M, = max {S, —n“}.
0<n< Ty 1+T ()

Lemma 2. Forn >T,_1+T'(k),

S, < n“.

Proof. For £ defined in (2), we have for any n > 0,
[eY l—a 1 [eY
an® + bn < Pl +£.
Since T, = oo, for n > T'(k),

ST _14n < an® + bt~ 4+ St,._,

1 1
< ina +&+ 51"(;@)“ —¢
<n® < (Th—1 +n)°
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Figure 1 demonstrates the basic idea of our algorithmic development. (Note that the figure is rescaled
for illustrative purposes. In actual simulation, the record breaking events happen with a very small
probability.) The solid line is n®. The first dotted line from the left (lowest dashed curve) is the record-
breaking boundary that we start with, an® + bn'=%. Ty is the first record-breaking time. Based on the
value of St,, we construct a new record-breaking boundary, St, +a(n —T1)* +b(n —T1)'~* (the second
dashed line from the left). At time T5, we have another record-breaker. Based on the value of St,, we
construct again a new record-breaking boundary, Sz, +a(n —T5)* +b(n —T5)*~* (the third dashed line
from the left). If from T5 on, we will never break the record again (T3 = o0), then we know that for
n large enough (say, n > 100 in the figure), S,, will never pass the solid boundary again. Notice that
here we will need a < 1, which is guaranteed by (1), but a tighter constraint is imposed on @ in (1) for

algorithmic development and technical reasons related to Lemma 1 and 2.

FIGURE 1: Bounds for record-breakers
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The actual simulation strategy goes as follows.

Algorithm 1. Sampling I'(x) together with (X;:1 <i <T,_; +T'(k)).
i) Initialize Ty = 0, k = 1.
ii) For Tj_; < oo, sample J ~Bernoulli(P(T, = co|Tk_1)).

iii) If J =0, sample (X; : ¢ =Tk—1 +1,...,Tk) conditional on T} < co. Set k =k + 1 and go back to
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step ii); otherwise (J = 1), set K = k and go to step iv).

iv) Calculate I'(x), sample (X; : ¢ = Tp—1 +1,...,Tx—1 + I'(x)) conditional on T} = co.

Remark 1. In general, any a < min{46’,1/2}, and b > 2log (4 (3o, 2" exp(—a?22"*~"=4)) would
work. However, there is a trade-off. The larger the value of a and b, the smaller the value of k, but
the value of I'(k) would be larger. We conduct a numerical study on the choice of these parameters in

Section 3.1.

In what follows, we shall elaborate on how to carry out step ii), iii) and iv) in Algorithm 1. In

particular, step ii) and iii) are outlined in Procedure A. Step iv) is outlined in Procedure B.

2.1. Step ii) and iii) in Algorithm 1

It turns out step ii) and iii) can be carried out simultaneously using exponential tilting based on the
results and proof of Lemma 1.

We start by explaining how to sample the first record-breaking time 77. We introduce an auxiliary
random variable N with probability mass function (pmf)

_ 2"exp(—a?2?"7?)
Eyono:() 2m exp (—a222ma_m_3) 5

forn>1 (4)

We can then apply exponential tilting to sample the path (X1, X5 ..., X7,) conditional on T} < co.
When sampling the random walk, we use P(-) to represent the measure induced by the original

distribution of the random walk, which we refer to as the nominal distribution. We also denote Py(-) as

the measure induced by the exponential tilting with tilting parameter 6. The actual sampling algorithm

goes as follows.

Procedure A. Sampling a Bernoulli J with probability of success P(J = 1) = P(Ty; = o0); if J =0,
output (X1,...,Xn).

i) Sample a random time N with pmf (4).

ii) Let Oy = a2N(@=1D=2" CGenerate X1, Xs,..., Xon+1_; under exponential tilting with tilting
parameter 0, i.e.

dPy,

dP

1{Xz S A} = eXp(GNXi — ’(/)(HN))l{Xz S A}

Let Ty = inf{n >1: 5, > an® + bnl_o‘} A 2N+
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iii) Sample U ~Uniform|0, 1]. If

exp(—OnSt, + T19(0N))
p(N)

then set J = 0 and output (X1, Xo,..., X1 ); else, set J = 1.

U< I{Ty € [2V 2Nt}

We next show that Procedure A works.

Theorem 1. In Procedure A, J is a Bernoulli random variable with probability of success P(Ty = 00).
If J = 0, the output (X1, Xoa,...,Xp) follows the distribution of (X1,Xs,...,Xr,) conditional on

T < o0.

Proof. We first show that the likelihood ratio in step iii) is less than 1 almost surely. Based on this,
we will then prove that P(J = 0) = P(T; < 00).

exp(_enSTl + le(an))I{Tl c [2n 2n+1)}

P(N =n)
< exp(—0,,(a2°™ + b2(1—)n) 4 9nt1g2))
- P(N =n)
_exp (—a?22nan=3 — gp/4)
P(N =n)

=2""exp(—ab/4) Z 2™ exp(—a?22mOT M3 <

m=0

~1 =

where the last inequality follows from our choice of b as in the proof of Lemma 1.
We next prove that P(J =0) = P(Ty < o0).
—0,51, +T1(0

E[I{J = 0}|N =n] = Ey, [I {U < el n)) } I{Ty € 2", 2"1)}]

p(n)
. eXp(*anSTl + Tll/}(en)) n on+l
B, { o KTy € 27,2 )}]
P(Ty € [27,2"1))

p(n)
where the second equation uses the result that the likelihood ratio is less than 1; the last equation

follows from the observation that

dP

Py, ——(I{Ty € 2",2"")}) = exp(—0,S7, + Th(0,)I{T; € [2",2" 1)}

Then we have

E[I{J =0} = Z [I{J = 0}|N = n]p(n)

oo

Z € [2",2"Y) = P(Ty < o).
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Let P*(-) denote the measure induced by Procedure A. We next show that P*(X; € Aj,...,X; €
A|lJ =0)=P(X; € Ay,..., X; € A|Th < 0), where t is a positive integer, and A; C R, i =1,2,...,1,
is a sequence of Borel measurable sets satisfying 4; C {z € R : o < ai® + bi' =} for i < t and

Ay Cc{z eR:x > at™ +bt'=*}. Let ny := |logy t].

P*(Xl € A,..., X, GAt|J:0)
P*(Xl EAl,...,XtEAt7J:0)

P(J =0)
:Ilj((ZTV:Z))EG” [I{Xl €A, Xe € AT {U < eXp(_e"ﬁ;J; £ (6n,)) H
_ p(nt) eXp(_eﬂtSt +t¢(9nt))
_mEGM {I {X1€4,..., X, € Ay} pr }
_E[I{Xl S Al,...,Xt GAt}]
o P(Tl < OO)

=P(X; € Ay,..., X; € A|T1 < 0).

O

The extension from 77 to T} is straightforward: because for Ty_1 < o0, given the value of Ty _1
and St,_,, we essentially start the random walk afresh from S, , for each Tj_;. Thus, to execute
step ii) and iii) in Algorithm 1, given T;_1 < oo, we can apply Procedure A. If J = 0, we denote
(X'l,f(g, e JZT) as the output from Procedure A, and set (X7, ,+1,-.., X1 _147) = (X'l, ce X'T)
and Ty = Tx_1 + T'; otherwise, set kK = k.

2.2. Step iv) in Algorithm 1

Sampling (X1,..., X7, _,) is realized by iteratively applying Procedure A until it outputs J = 1.
Once we found &, we achieve sampling (X7, _,y1,..., X7, _,+1r(x)) by developing a procedure that could
sample (X1, _,11,...,X71._,+n) with any given n > 0, conditioning on that the trajectory of the random
walk never passes the non-linear upper bound, St,_, +a(n—T,_1)*+b(n—Tx_1)*~*. To be more precise,
given k = k, for any n > 0 (including n = I'(x)), we would like to sample (X7, ,41,..., X7, _,+n) from
P(|Fi=1,Ti = 00), where {Fj : k > 0} denote the filtration generated by the random walk. We can
achieve this conditional sampling using the acceptance-rejection technique.

We first introduce a method to simulate a Bernoulli random variable with probability of success
P(Ty = oo|Ty > t,S;), which follows a similar exponential tilting idea as that used in Section 2.1.
Analog to Section 2.1, we introduce a record breaking time with a temporal-spatial shift, and an auxiliary

random variable leading to the definition of the tilting parameter.



Simulation for the mazimum of Random Walk 9

Let
T, := inf {(n>0:s+S,>an+t)*+bn+t)"*}.

Given t, we introduce an auxiliary random variable N (¢) with pmf

for n > 1. (5)

(=) = 2rep (Z27 e (2" + 1))
pi() =P (V) =) = s i aom 1 g5y

Given N(t) = n, we apply exponential tilting to sample (X1, Xs, ..., Xont1_1), with tilting parameter

On(t) = 27" 2a(2" +1)°,

i.e.

dPén(t) B _ _
7P HX; € A} = exp(0, () X; —¥(0,(1))1{X; € A}.
We also define Sk = )N(l + .- +Xk for £ > 1, and
T = inf {n >0:54 S, >a(n+1)* —|—b(n—|—t)1*a} A2

Let

T exp(_éﬂg~ +T¢(§n)) ' n on+1
J:1—I{U§ ptT(n) I{Te[2,2+)}}, (6)

where U ~Uniform[0, 1].
Lemma 3. For J defined in (6), when s < gt, we have
P(j:1> :P(Tm:oo).
Proof. We first notice that

exp(—énST~ + Tw(én))
pe(n)

{7 e 2r,241)}

1 ~ a ~
< _9n n $)e b(2" t l—-a e 2n+192
~ pe(n) exp( (a( T+ +1) 4 ) * ")
< 1 exp (_2n3a2(2n + t)Za + 27n74a2(2n + t)2a _ (lb)
= pe(n) 4

1 ab
= exp [ =27 4a2(2" + t)%* — >

< (i 2™ exp (—2*’”*40,2(2"7 + t)2“)> x exp(—ab/4)
m=0

< (Z 2™ exp (a222mam4)> x exp(—ab/4) < i,
m=0

where the last inequality follows from our choice of @ and b. The rest of the proof follows exact the same

steps as the proof of Theorem 1. We shall omit it here. O
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Let
: « l1-a aa
L(n):mf{an:Sk>ak + bk orSk<Zk}.

The sampling algorithm goes as follows.

Procedure B. Sampling (X7, ..., X,,) conditional on T7 = co.
i) Sample (X1,...,X,) under the nominal distribution P(-).
it) If maxj<g<n{Sk — ak® — bk'=*} > 0, go back to step i); else, go to step iii).

iii) Sample L(n) and (X,y1,Xnt2,...,X1()) under the nominal distribution P(-). If Sy >
aL(n)® + bL(n)'=2, go back to step i); else, go to step iv).

iv) Sample N with probability mass function Pr(n) defined in (5). Generate (5(175(2, e ,X2N+1_1)
~ ~ ~ (03
under exponential tilting with tilting parameter 65 = 2V "2q <2N + L(n)) . Let

T =inf{k > 1: S50 + Sk > alk + L(n))* + b(k + L(n)) =} A2V,

v) Sample U ~Uniform|0, 1]. If

exp —éNST—&-TWéN) ~ N oN+1
( pe(N) )I{Te [2 )2 +>}

set J = 0 and go back to Step i); else, set J =1 and output (X1,...,Xn).

U <

We next show that Procedure B works.
Theorem 2. The output of Procedure B follows the distribution of (X1, ..., X,) conditional on T} = co.

Proof. Let P'(-) = P(:|T1 = c0). We first notice that

dP’ I{Tl > n}P(Tl = OO|Sn,T1 > n) 1
Xi,...,.X,) = < .
ap Koo %) P(T} = 0) = P(Ty = x)

Let P”(-) denote the measure induced by Procedure B. Then we have, for any sequence of Borel

measurable sets 4; CR,i=1,2,...,n,
P'(X1€Ay,....X, €A
—p (X1 € Ai,..., X, € ATy > L(n), J = 1)
_p (X1 € ALy, X € Au|Tt > L(n), Trny 5,00, = oo)

:P(Xl € Al,...7Xn € An|T1 = OO),
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where the second equality follows from Lemma 3, and the third equality follows from the fact that

P(T) = o0|Si, Ty > t) = P (T},St - oo) .

To execute Step iv) in Algorithm 1, we apply Procedure B with n = I'(k).

3. Running time analysis
In this section, we provide a detailed running time analysis of Algorithm 1.
Theorem 3. Algorithm 1 has finite expected running time.

We divide the analysis into the following steps.

1. From Lemma 1, the number of iterations between step ii) and iii) follows a geometric distribution

with probability of success P(T; = oo) > 3/4.

2. In each iteration (when applying Procedure A), we will show that the length of the path needed

to sample J has finite moments of all orders (Lemma 4).
3. For step iv), we will show that I'(x) has finite moments of all orders (Lemma 5).

4. When applying Procedure B for step iv), we will show that the total length of the paths needed

in Procedure B has finite moments of every order (Lemma 6).

Lemma 4. The length of the path needed to sample the Bernoulli J in Procedure A has finite moments

of every order.

Proof. The length of the path generated in Procedure A is bounded by 2V+! where the distribution
of N is defined in (4). Therefore, Vr > 0,

%0, 20 rgm expy (—q292ma—m=3)
S T oxp (_aPEa )
Yoo gexp (—a?22mem M3 4 (mr 4 r + m) log 2)
- Yo 2™ exp (—a?22ma—m=3) '

E [2(N+1)r} _

Since for m sufficiently large,

exp (—a’2*™* "3 + (mr +r +m)log2) < exp (—a?22mem=4y
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for fixed r > 0, 3C > 0, such that

S _gexp (—a?22mem M3 4 (mr 4+ r + m) log 2)
ZOO 0 om exp (_a222ma—m—3)
m=

Z;.;:O exp (_a222ma7m74)
Z‘X’ 0 om exp (_a222ma—m—3)
m=

<C < 0.

Note that this also implies that

BIITI(Ty < o)) < E [Q(N“)TI(J - 0)] <E [Q(N“)*] < o0.

Lemma 5. I'(k) and L(T'(k)) have finite moments of any order.

Proof. We start with I'(k). Let R, := S,, — an® — bn'=%. For T; < oo, we also denote
Ri = Sr, —Sr,_, —a(T; — Ti—1)* = b(T; — Ti—1)' @
Then we have

[(k) = [(QSTH n 25)1/"‘]

1/«
— (22 St — St +2§>

1/«
- (227& +2Z (T — Ti1)® +0(T; — Ti—1)*~ “)+2§>

IA

Kk—1 Kk—1 /e
(22721- + 266+ ) (Ti - TH)“>
=1 =1

where the last inequality follows from the definition of £ in (2).
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In what follows, we first prove that conditioning on 77 < oo, Rz, has finite moments of every order.
E [ I(Ty < o0)]
(o)
=Y E[e"I(Ty = n)]
n=0

= 5" s gy )
n=0

< i E [ I(T) =n)]
n=0

> 11
< Z E [emx”} Yr g [I(T), = n)]l/q for p,q > 1, — + — = 1 by Holder’s inequality
P q

n=0
=F [ele]l/p i P(Ty, =n)'/4.
n=0
Because X; has moment generating function within a neighborhood of 0, we can choose p > 0 and v > 0
such that E[eP?X1]Y/P < co. In the proof of Lemma 4 we showed that Vr > 0, E [T]I(T} < o0)] < o0,
which implies that P(T; =n) = O(-%). As r can be any positive value, Yo~ P(T} = n)'/4 < co.

We next show that I'(x) has finite moments of all orders. By Jensen’s inequality, for any fixed r» > 1,

i=1 i=1

o1 1\ "o
EN(R)]<E (Z(Tz = Ti-1)" + 26§ + 2 ZRZ>

r/a

k—1 /o k—1
<3-7'p <Z(Tl - Ti_l)a> + (ZHE)T/Q + <2 ZR7> . (7)

i=1
We shall analyze each of the three parts on the right hand side of (7). As « is a geometric random

variable, E[(2r£)"*] < oo.

r—1 T/ i k—1 r/a
E (Z(Ti Ti_l)a) —FE|E (Z(nTi_l)a> K

ofginnr]

< E H7‘/0¢—1E1

< E[w/°E[TT|Ty < oo}]

K—1

ST - Tia)

i=1

= _KJT/Q} E[T{|T1 < x] < 0.

Similarly, we have

o— r/a
E (2 ZIR> <E [(%)T/a} E [R’"T{ﬂTl < oo} < .
=1
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Therefore, we have
E(k)"] < oo.
As for L(T'(k)), we first notice that
. a (03
L(I(k)) — (k) < inf {n >0 S < 7 +T()) } .

Given I'(k) = n, and Sp(,) = s, since s, < ang + bnl-o

* )

PAL(E(R)) — () > #lT8) = 10, Sy = 5.)
<P (Sn > %(n +n,)* — 5*)

<P (Sn > %(n +ny)* —ang — bn}f”‘)

<P <Sn > %(n+n*)°‘ - %na — 5)

1
<exp <n92—9<2(n+n*)a— 2nf—§>) for 0 < 6 <o

Let w,, =

4(n+n.)* — $n2 — & If we pick § = ¢, |2

2 2
n

n

where €, is chosen such that 6 < §’, then

We notice that for n large enough,

Thus, there exists C' > 0, such that

100 n

a2
< Cexp (—100712“_1> .

This implies that, given I'(x) and Sp(.), L(I'(x)) — I'(x) has finite moments of all orders.

P(L(I(x)) — T'(k) > n|T(k) = N, Sr(x) = $x) < Cexp (_ a (n+n)a)

O

Lemma 6. The total length of the paths needed to sample the Bernoulli J in Procedure B has finite

moments of every order.

Proof. To sample the trajectory, using the notations defined in Procedure B, the length of each path

generated, step i) - iv), either accepted or rejected, satisfies:

n+ (L(n) — n)I{S, < ak® + bk 1 < k <n} + 2V {8, < ak® + bk, 1 < k < L(n)}
<L(n) + oN+1
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where N is sampled in step iv) according to (5).

We start by establishing a bound for F {2”\7 } for any fixed 7 > 0. We’ve proved in Lemma 5 that
for Vn, L(n) has finite moments of all orders. Moreover, for any r > 0, t > 0, N(t) generated from p(-)
(defined in (5)) satisfies

(8)

B [2¥0r] = Yoo 20 M exp (—27 a2 (27 + 1))
Do 2™ exp (—27m—4a2(2m 4 t)29)

We next prove that £ [QN(”T} = O (t"), which leads to the desired bound for F [2”\7} . This is achieved
in two steps. In step 1, we show that for m large enough, the summand in the numerator of (8) decays
exponentially fast.

92a_g
2

Let ny := . For m large enough, we have

) 1/(20) _
om > (24m) 1t
2= (24 m) /0

(2 — (24 m)C) > (24 m) 2t

2Lt > (27 4 )(2 4 )/ )

111

@™+ > (24 m) (@™ +1)*

Then we have
2(1+r)(m+1) exp (_2—(m+1)—4a2(2m+1 + t)2o¢)
2(1+r)m exp (_2—m—4a2(2m + t)2a)
exp (—2-(m+1D—4 a®(2mT 4 1)% 4272 (2™ 4 )2 (1 4 1) log 2)

=exp (—27" %a? ( (27T )% = 2(2™ 4+ ¢)**) + (1 + 1) log2)

il

(-
(-

exp (=27 a®m (2™ +4)** + (14 1) log2)
o (-2

a2n 2™ 4 (14 7)log 2) . (10)

Notice that (10) can be made arbitrarily small by having m sufficiently large. Thus, there exists m(r)

large enough such that for m > m(r),
2(1+r)(m+1) exp (_2—(m+1)—4a2(2m+1 + t)2a) < 12(1+r)m(7’) exp (_Q—m—4a2(2m + t)Qa) ]
-2

(2+171)1/(201) 1

5@t E Then for ¢ large enough,

We now carry out the second step. Based on (9), let 1y :=
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we have
Z 2(1+r)m exp (727m74a2(2m + t)2o¢)
m=[log(nz2t)]+1
=1
<91+ [og(12)] gy ( 9~ Mog(n:t)1-4,2 (9log(nat)] 4 4 ) 3 =
k=1
<9(+) [og(12)] gy <f27[log(mtﬂ*4a2(2f10g(nztﬂ 1) a) ,
Thus,

lo rm m— m fey r)m —m-— m @
_Zin:g(()nztﬂ 204)m exp (—27m 42 (2m 4 1)20) 4 300 [og(nat)]+1 2 2047)m exp (—27 M~ 42 (2m + 1)29)
- Zm:O om eXp( 92-m—4q (2m +t)20¢)
< Zr(rl:fénztﬂ 20147)m oxp (=272 (2 4 1)2) 4 204 Mo(m0)] expy (2~ Nos(n20)1—442(2Mos(mt)] 4y 4)20)
- oo 2™exp (=27 4a? (2™ + £)2)
<2r[10g(n2tﬂ ZLlfzg((]nztﬂ 2™ exp (_Q_m_4 2(2m 4 t)Qa) + 2(4) Nog(n2t)] gxpy (_2—flog(nztﬂ—4a2(2ﬂog(nztﬂ + t)2a)
= Eﬂog(nztﬂ 2m exp (=2~ 4q2(2m + t)2)

<orflog(mt)]+1 < 35"
We are now ready to establish the bound for E [(L(n) + 2]\7‘“)7} for any fixed r > 1.
E [(L(n) I 2N+1>T} <E |:27‘71(L(n)r I 2(]\~/+1)r):|
<2"E[L(n)"] + 2R {QNT} by Jensen’s inequality
< 2"E[L(n)"] 4+ 27 305K [L(n)"]
< 00.

We have thus shown that each path has finite moments of all orders.
As for the acceptance probability in step ii), iii) and v), we notice that
P({si<ak*+ok 1<k <Lm}n{J=1})
= P (Tl > L(n),TL(n))SLW = oo)
= P(Ty=00) as P(Ty =00|S;, Ty >t)=P (ﬂ,St = oo)
3

1 by Lemma 1.

v

Then the number of times a path is rejected is stochastically bounded by a geometric random variable
with probability of success 3/4. Therefore, the total length of paths generated in Procedure B has finite

moments of all orders.

O
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3.1. Numerical experiments

In this section, we conduct numerical experiments to analyze the performance of Algorithm 1 for
different values of the parameter a. In Remark 1, we briefly discussed how the parameters a and b
would affect the performance of Algorithm 1. We shall fix the value of b upon our choice of a as in (1),
as we want to guarantee that the probability of record-breaking is small enough, while keeping I'(k) as

small as possible.

For the computational cost, we first notice that the choice of a and b will affect the distribution of N,
which is the length of trajectory generated in Procedure A. In Procedure B, the values of T'(k), L(T'(k))

and the distribution of N also depends on the value of a and b.

Let X; x - 1, where X is a unit rate exponential random variable. Then ¥ () = —6 — log(1 — 6),
for 0 < 1. Let g(0) :=¥(0) — 6. As ¢’(0) =0, ¢"(0) = ﬁ — 2, we have
2
g(6) <0 Voe(~1,1— g).
Therefore, we can set 6’ = l—g, and when 6 € (—¢',6"), ¢() < 62. According to (1), a < min(3,46") =
%. We ran Algorithm 1 with different values of a and «. Table 1 summarizes the running time of the

algorithm in different settings.

TABLE 1: Running time of Algorithm 1 (in seconds)

a a=08 | a=08 | a=09 | a=0.95
0.1 287.58 | 39.62 10.20 4.99
0.2 36.24 8.11 4.19 3.15
0.3 13.38 5.03 2.94 2.56
0.4 7.90 3.53 241 2.25
0.45 | 7.06 3.31 2.43 2.15
049 | 7.25 3.06 2.19 2.11
0.499 | 12.81 3.79 3.49 3.12

We observe that when a is relatively far away from the upper bound % (e.g. a < 0.45), the running
time decreases as a increases. However, as a approaches %, the running time is increasing in a. This is
because £ — 00 as a — 3 (see (2)). We also observe that the changing rate of running time regarding a

is larger for smaller values of «a, which in general implies greater curvature of the nonlinear boundary.
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4. Departure process of an infinite server queue

We finish the paper with an application of the algorithm developed in Section 2 to sample the
steady-state departure process of an infinite server queue with general interarrival time and service time
distributions. We assume the interarrival times are i.i.d.. Independent of the arrival process, the service

times are also i.i.d. and may have infinite mean.

Suppose the system starts operating from the infinite past, then it would be at stationarity at time

0. We want to sample all the departures in the interval [0, h].

We start by introducing a point process representation of infinite server queue to facilitate the
explanation of the simulation strategy. We mark each arriving customer as a point in a 2-dimensional
space, where the z-coordinate records its arrival time and the y-coordinate records its service time
(service requirement). Figure 2 provides an illustration with two points representing two arriving
customers. Customer 1 arrives at —A; and has a service requirement of V. Notice that as there
are infinitely many servers, this customer will enter service immediately upon arrival and will leave the
system at time —A; + V. If we draw a minus 45-degree line from (—Ajp, V1), the intersection of this line
with the z-axis represents Customer 1’s departure time. Likewise, we can also denote the departure time
of Customer 2 by the intersect of the minus 45-degree line staring from (—Asg, V5) with the x-axis. We
observe that in this particular example, Customer 1 would leave the system in the interval [0, h], while
Customer 2 would leave the system before time 0. Based on this observation, we can draw a shaded
region in Figure 2, which has the property that all the points (customers) that fall into this region will
leave the system during [0, h]. Therefore, to sample the departure process on [0, h], we essentially would

like to sample all the points (customers) that fall into the shaded area.

We further divide the shaded area into two part, namely H and G. Points in shaded area G are
customers that arrive after time 0 and depart before time h, while points in area H are customers who
arrive before time 0 and depart between time 0 and h. Sampling the points that fall into G is easy. As
G is a bounded area, we can simply sample all the arrivals between 0 and h, and decide, using their
service time information, whether they fall into region G or not. The challenge lies in sampling the

points in H, as it is an unbounded region.

For the rest of this section, we explain how to sample all the points (customers) that fall into region
H. We mark the points sequentially (according to their arrival times) backwards in time from time 0
as (—A1,V1), (—A2,V3), ..., where —A,, is the arrival time of the n-th arrival counting backwards in
time and V,, is its service time. Let Ag := 0. We then denote X,, := A,, — A,,_1, as the interarrival time

between the n-th arrival and the (n — 1)-th arrival. Let p := E[X] denote the mean interarrival time
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FI1GURE 2: Point process representation of infinite server queue

and o2 := Var(X) denote its variance. For simplicity of notation, we write
H={(-A4,, Vo) A, <V, < A, +h}.

It is the collection of points that fall into region H.
The following observation builds the foundation of our simulation strategy. Suppose we can find a
random number 2 such that

Vi< AporV,>A,+h

forn > Z, then we can sample the point process up to E, i.e. {(—A;,V;),1 <i<E}, and find H. Built
on this observation, we further introduce an idea to separate the simulation of the arrival process and
the service time process. It requires us to find a sequence of {e, : n > 1}, satisfying the following two

properties:

1. There exists a well-defined random number =1, such that

np— e, < Ap <np+ e, for alln > =;.

2. There exists a well-defined random number =5, such that

[1]
N

Vo <np—e, or Vi, >nu+ e, + h forall n>

Now, set = = max{=Z1,Z2}. Then we have V,, < A, or V;, > A,, + h for n > Z. Notice that based on
the introduction of €,’s we can find Z; and Z5 separately.
To guarantee that =Z; and =5 are well-defined, i.e. finite, we need to choose €,’s that satisfy the

following two conditions:
Cl) > P |4y — nu| > €,) < 0,

02) ZOO P(‘/n € (Tl,u - 67“77,/114—6” + h)) < 00.

n=1
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Under C1) and C2), Borel-Cantelli Lemma guarantees that Z; and Z3 are finite almost surely.
We next introduce a specific choice of ¢, when the service times follow a Pareto distribution with

shape parameter 5 € (1/2,1). We denote the pdf of V; as f(-), which takes the form
fw) = o= v > 1}, (11)

We also write F(-) as the tail distribution of V;. We assume the interarrival time has a finite moment
generating function in a neighborhood of the origin. This is without loss of generality. Because if
the interarrival time is heavy-tailed, we can simulate a coupled infinite server queue with truncated
interarrival times, X = min{X;, C’}. This coupled infinite server queue would serve as an upper bound
(in terms of the number of departures) of the original infinite server queue in a path-by-path sense.
Set €, = n® for 1/2 < a < . In what follows, we shall show that our choice of ¢, satisfies C1) and

C2) respectively. We shall also explain how to find (simulate) E; and Z,.

4.1. Sampling of the arrival process and =

The following Lemma verifies C1).

Lemma 7. If e, =n® fora>1/2,
ZP(|An —np| > €,) < o0.
n=1

Proof. We notice that 4, = Y | X; is a random walk with X; being i.i.d. interarrival times with
mean p, except the first one. X; follows the backward recurrent time distribution of the interarrival

time distribution. By moderate deviation principle [7], we have

1 ) .
—5amt 108 P(| 45 = npl > n%) = — .
As20—1>0, %, P(|A, —nu| > n®) < oc. ]

Let S, = A,, — nu. We notice that both S,, and —S,, are mean zero random walks.
P(|S,| > n®) < P(S,, > n%) + P(=S, >n%).

Thus, we can apply a modified version of Algorithm 1 to find =;. In particular, we define a modified

sequence of record-breaking times as follows. Let T := 0. For k > 1, if T} | < oo,

T} :=inf {n >Tj_y: 8>S +aln—T,_ )" +bn—Tj_,)"*

or §, < S1;_, —aln —T{_)" ~bln — T{_,)' "}
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else, T] = co. Then the modified version of Algorithm 1 goes as follows.

(1]

Algorithm 1’. Sampling = together with (X; : 1 <i < =).
i) Initialize T, =0, k = 1.
ii) For T},_, < oo, sample J' ~Bernoulli(P(T}, = oo|T},_,)).

iii) If J* = 0, sample (X; : ¢ = T}_, +1,...,T}) conditional on T} < oo (see Procedure A’). Set

k =k + 1 and go back to step ii); otherwise (J' = 1), set Z; = Tj,_, and go to step iv).
iv) Apply Procedure C' (detailed in Section 4.2) iteratively to sample =Zs.

v) Set E = max{Zy,E2}. If = > Ey, sample (X; : i =1} _, +1,...,E) conditional on T} = oo (see

Procedure B’).

We also modify Procedure A and Procedure B as follows.

Procedure A’'. Sampling J' with P(J" = 1) = P(T] = o0). If J' = 0, output (Xy,..., X77).

i) Sample a random time N with pmf (4). Let Oy = a2V(@~V=2 Sample U; ~Uniform[0,1]. If

U; <1/2, go to step ii a), else go to step ii b).
ii a) Generate Xi,..., Xon+1_; under exponential tilting with tilting parameter 0. Let
T) =inf{n > 1:|S,| > an® +bn'~*} A2V,
ii b) Generate X, ..., Xonv+1_; under exponential tilting with tilting parameter —6y. Let
T) =inf{n > 1:|S,| > an® +bn' =} A2V,
iii) Generate Us ~Uniform|0, 1]. If

(L exp(On- Sty — Y(ON)T]) + L exp(—0n Sty — (—=0n)T])) ™
p(N)

then set J' = 0 and output (Xy, Xa,..., Xq/); else, set J' = 1.

Uy < x T{T] € [2V,2N+1)} |

Proposition 1. In Procedure A’, J' is a Bernoulli random variable with probability of success P(T] =
o0). If J =0, the output (X1, Xa, ..., X1;) follows the distribution of (X1, Xz, ..., Xry) conditional on

T] < 0.
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The proof of Proposition 1 follows exactly the same line of analysis as the proof of Theorem 1. We

shall omit it here.

Let

. aaa’a « —Q [e% —
L’(n):mf{k>n:5k€(—zk ,Zk ) or S, > ak® + bk'~ or Sy < —ak® — bk* }

Procedure B’'. Sampling (X1, ..., X,,) conditional on 7] = oco.
i) Sample (X1,...,X,) under the nominal distribution P(-).

it) If maxi<gp<n{Sk — ak® — bk} > 0 or minj <<, {Sk +ak® +bk'=>} < 0, go back to step i); else,
go to step iii).

iii) Sample L'(n) and (X,41,..., X/ (n)) under the nominal distribution P(-). If [S7/ ()| > aL'(n)* +
bL'(n)'=%, go back to step i); else, go to step iv).

iv) Sample N with probability mass function Pr(n) defined in (5). Set 51\7 = oN-2, <2N + L(n)) )
Sample U; ~Uniform|0,1]. If U; < 1/2, go to step v a); else, go to step v b).

v a) Generate X1, Xo, ... ,X2N+1_1 under exponential tilting with tilting parameter éN- Let
T =inf{n>1: ‘smn) + Sk‘ > ak+ L))" + bk + L'(m)) '~} A2V,

v b) Generate X1, Xo, ... ,X2N+1_1 under exponential tilting with tilting parameter fHNN. Let
T =inf{n>1: ‘sL,(n) + Sk‘ > ak+ L'(n)* + bk + L'(m)) '~} A 2V,

vi) Sample Uz ~Uniform|[0, 1]. If
N i ) R G R) O Sy

pt(N)

set J' = 0 and go back to Step i); else, set J' = 1 and output (Xi,...,X,).

Proposition 2. The output of Procedure B’ follows the distribution of (Xi,...,X,) conditional on

[—
T] = oo.

The proof of Proposition 2 follows exactly the same line of analysis as the proof of Theorem 2. We

shall omit it here.
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4.2. Sampling of the service time process and E,
We start by verifying C2).

Lemma 8. Ife, =n® for1/2 < a < g,

ZP(Vn € (np — €n,npp + €, + h)) < 0.

n=1

Proof.

PV, € (npt— €n,npi+ €, + h)) = F(np — €,) — F(nu+ €, + h)

B a
= (nu — ne) B+ (2n® + h)
B2+ )

nﬁ‘i‘l_a(u — n_(ﬁ_a))ﬁ+1 ’

AsB+1—a>1,

> B2+ hn™¢
>y ( )

n5+1*a(u — na*ﬂ)ﬁ*i’l < 0.

n=1

To find =5, we use a similar record-breaker idea. In particular, we say V,, is a record-breaker if
Vi € (np— €n,npu + €, + h).

The idea is to find the record-breakers sequentially until there are no more record-breakers. Specifically,

let Kg:=0. If K;_1 < o0,
K;=inf{n > K;,_1:V, € (nu— €n,nu+ €, + h)};

if ;1 =00, K; =00. Let 7 =min{i > 0: K; = oo}. Then we can set Zo = K,_;.
The task now is to find K;’s one by one. We achieve this by finding a proper sequence of upper and
lower bounds for P(K; = 0o). We start with K. Notice that

P(K; =00) = H (1=P(Vy, € (npp— €n,npi+ €, +h))).

n=1

Let

k
u(k) = H (1—=P(V, € (npp — €n,npu+ €, + h))).

n=1
Then we have P(K; = 00) < u(k + 1) < u(k) for any k > 1, and limy_, o u(k) = P(K; = 00). We also
notice that u(k) —u(k — 1) = P(K; = k).
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From the proof of Lemma 8, we have for n > (2/u)"/(#=)

_224mB 1

P(Vn S (TL,Uz — €p,NU +e, + h)) L nﬁ+1—()¢ :

Then for k* large enough such that k* > (2/u)Y (¥~ and wk*ﬁil,a < 1, we have for k > k*.

oo

[I =PV, e (p—en,np+ e, + 1))
n=k+1

S 1°—°[ (1_2(2+h)ﬂ le_a)

n=k+1 H

2+ h)B 1
Zexp<_<> 5 3)

K n=k+1
> exp (—(“Mh)ﬂ(k + 1)<Ba>> .

Let I(k) = 0 for k < k*, and
l(k) = U(k) exp (—W(k + 1)(5(1))

for k > k*. Then we have (k) <Il(k+1) < P(K; = 00) and limj_, I(k) = P(K; = 00).
Similarly, given K; 1 = m < oo, we can construct the sequences of upper and lower bounds for

P(K; = |K;—1 =m) as

k
um (k) = H (1= P(Va € (np = €n,npu + €5+ )))

n=m-+1
for £ > m, and
L (k) = um (k) exp <—(2+h>5(k + 1)—<ﬂ—a>> .
I

Based on the sequence of lower and upper bounds, given K;_1 = m, we can sample K; using the

following iterative procedure.

Procedure C. Sample K; conditional on K;_1 = m.
i) Generate U ~Uniform|[0, 1]. Set k = m + 1. Calculate u,, (k) and I,,(k).

i) While l,,,(k) < U < up, (k)
Set k =k + 1. Update un, (k) and I, (k).
end While.

iii) If U < I, (k), output K; = oo; else, output K; = k.
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Once we find the values of K;’s, sampling V,,’s conditional on the information of K;’s is straightfor-

ward. We summarize the simulation of the service time process together with Z in Algorithm 2.

(1]

Algorithm 2. Sampling = together with (V;:1 <i <

).
i) Initialize Koy =0, ¢ = 1.
ii) Given the value of K;_1 < oo, sample K; using Procedure C.
iil) If K; < oo, set i =i+ 1 and go back to Step ii); otherwise, set 2, = K;_1 and go to Step iv)
iv) Apply Algorithm 1’ to find =.

v) Sample (V; :i=1,2,...,Z) conditional on (K7, K, ..., K;_1) using acceptance-rejection method

with the nominal distribution of the service times as the proposal distribution.

We next provide some comments about the running time of Procedure C. Let ®; denote the number
of iterations in Procedure C to generate K;. We shall show that while P(®; < o0) = 1, E[®;] = cc.

Take ®; as an example:

P(®; >n)=P(K; >n)

= P(li(n) < U < ui(n))
> wy (n) (1 _exp <2<2 Z B + 1)<B“>)> :

with

I —exp (—W(n + 1)<5Q)> = O(n~ (A=),

+

7
and ui(n) > P(K; = oo) for any n > 1. As 1 < 8 —a < 1, we have P(K; < o0) = 1, but
Yoo P(K1 > n) = oo. Thus, P(®1 < o0) = 1, but E[®q] = c0.

The fact that the Procedure C has infinite expected termination time may be unavoidable in the
following sense. In the absence of additional assumptions on the traffic feeding into the infinite server
queue, any algorithm which simulates stationary departures during, say, time interval [0, 1], must be
able to directly simulate the earliest arrival, from the infinite past, which departs in [0, 1]. If the arrivals
are simulated sequentially backwards in time, we now argue that the expected time to detect such an

arrival must be infinite. Assuming, for simplicity, deterministic inter-arrival times equal to 1, and letting
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—T < 0 be the time at which such earliest arrival occurs, then we have that

P(T >n) > P(RZ, 1 {Vi € [k, k+1]})
> (1—P(V >n)) i P(Vy € [k, k+1])
k=n-+1

=(1—P(V>n)P(V >n+1).

As > o P(V > n) = oo, we must have that E[T] = oco.

Remark 2. Based on our analysis above, in general, the choice of €, imposes a trade-off between =

and Zy. The smaller €, is, the larger the value of Z; and the smaller the value of =s.

4.3. Numerical experiment on the departure process of an M/G /oo queue

In this section, we apply the Algorithm 1’ and 2 to simulate the steady state departure process of an
infinite server queue whose service times have infinite mean.
We consider an infinite server queue having Poisson arrival process with rate 1, and Pareto service

time distributions with probability density function (pdf)
flw)=pv= P 1{y > 1},

for 8 € (1/2,1). Notice that we already know that the departure process of this M/G /oo queue should
also be Poisson process with rate 1. Therefore, this numerical experiment would help us verify the
correctness of our algorithm.

We truncate the length of path at 10° steps. We tried different pairs of parameters o and 3, and
executed 1000 trials for each pair of @ and 8. We count the number of departures between time 0 to 1
for each run and construct the corresponding relative frequency bar plot in Figure 3. We observe that
the distribution of simulated departures between time 0 and 1 indeed follows a Poisson distribution with
rate 1. In particular, the distribution is independent of the values of o and 3, which is consistent with
what we expected. We also conduct the x? test as a goodness of fit tests with the four groups of sampled
data against the Poisson distributon. The corresponding p-values are 0.2404, 0.2589, 0.4835, and 0.1137

respectively. Therefore the tests fail to reject that the generated samples are Poisson distributed.
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