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Abstract

We present the first algorithm that samples maxn≥0{Sn − nα}, where Sn

is a mean zero random walk, and nα with α ∈ (1/2, 1) defines a nonlinear

boundary. We show that our algorithm has finite expected running time. We

also apply this algorithm to construct the first exact simulation method for the

steady-state departure process of a GI/GI/∞ queue where the service time

distribution has infinite mean.
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1. Introduction

Consider a random walk Sn =
∑n
i=1Xi for n ≥ 1 and S0 = 0, where {Xi : i ≥ 1} is a sequence of

independent and identically distributed random variables with E[X1] = 0 and V ar(X1) <∞. Without

loss of generality, we shall also assume that V ar(X1) = 1. Moreover, we shall impose the following

light-tail assumption on the distribution of Xi’s.

Assumption 1. There exists δ > 0, such that E[exp(θX1)] <∞ for ∀θ ∈ (−δ, δ).

In this paper, we develop the first algorithm that generates perfect samples (i.e. samples without any
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bias) from the random variable

Mα = max
n≥0
{Sn − nα},

where α ∈ (1/2, 1). Moreover, we will show that our algorithm has finite expected running time.

There has been substantial amount of work on exact sampling (i.e. sampling without any bias) from

the distribution of the maximum of a negative drifted random walk, e.g. M1 in our setting. Ensor

and Glynn [6] propose an algorithm to sample the maximum when the increments of the random walk

are light-tailed (i.e Assumption 1 holds). In [2], Blanchet et al. propose an algorithm to simulate

a multidimensional version of M1 driven by Markov random walks. In [5], Blanchet and Wallwater

develop an algorithm to sample M1 for the heavy-tailed case, which requires only that E[|X1|2+ε
] <∞

for some ε > 0 to guarantee finite expected termination time.

Some of this work is motivated by the fact thatM1 plays an important role in ruin theory and queueing

models. For example, the steady state waiting time of GI/GI/1 queue has the same distribution as M1,

where Xi corresponds to the (centered) difference between the i-th service time and the i-th interarrival

time, (see [1]). Moreover, applying Coupling From The Past (CFTP), see for example [9] and [8], the

techniques to sample M1 jointly with the random walk {Sn : n ≥ 0} have been used to obtain perfect

sampling algorithms for more general queueing systems, including multi-server queues [4], infinite server

queues and loss networks [3], and multidimensional reflected Brownian motion with oblique reflection

[2].

The fact that Mα stochastically dominates M1 makes the development of a perfect sampler for Mα

more difficult. For example, the direct use of exponential tilting techniques as in [6] is not applicable.

However, similar to some of the previous work, the algorithmic development uses the idea of record-

breakers (see e.g. [3]) and randomization procedures similar to the heavy-tailed context studied in [5].

The techniques that we study here can be easily extended, using the techniques studied in [2], to

obtain exact samplers of a multidimensional analogue of Mα driven by Markov random walks (as done

in [2] for the case α = 1). Moreover, using the domination technique introduced in Section 5 of [4], the

algorithms that we present here can be applied to the case in which the term nα is replaced by g(n) as

long as there exists n0 > 0 such that g(n) ≥ nα for all n ≥ n0.

We mentioned earlier that algorithms which simulate M1 jointly with {Sn : n ≥ 0} have been used in

applications of CFTP. Since the random variable Mα dominates M1, and we also simulate Mα jointly

with {Sn : n ≥ 0}, we expect our results here to be applicable to perfect sampling (using CFTP) for

a wide range of processes. In this paper, we will show how to use the ability to simulate Mα jointly

with {Sn : n ≥ 0} to obtain the first algorithm which samples from the steady-state departure process
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of an infinite server queue in which the job requirements have infinite mean; the case of finite mean

service/job requirements is treated in [3].

The rest of the paper is organized as follows. In Section 2 we discuss our sampling strategy. Then

we provide a detailed running time analysis in Section 3. Finally, the application to exact simulation of

the steady-state departure process of an infinite server queue with infinite mean service time is given in

Section 4.

2. Sampling strategy and main algorithmic development

Our goal is to simulate Mα using a finite but random number of Xi’s. To achieve this goal, we

introduce the idea of record-breakers.

Let ψ(θ) := logE[exp(θXi)]. As ψ(θ) = 1
2θ

2 + o(θ2) by Taylor expansion, there exists δ′ < δ, such

that ψ(θ) ≤ θ2, for θ ∈ (−δ′, δ′). Let

a ∈
(

0 ,min

{
4δ′,

1

2

})
, and b =

4

a
log

(
4

( ∞∑
n=0

2n exp(−a222nα−n−4

))
. (1)

These choices of a and b will become clear in the proof of Lemma 1. We define a sequence of record-

breaking times as T0 := 0. For k = 1, 2 . . . , if Tk−1 <∞,

Tk := inf
{
n > Tk−1 : Sn > STk−1

+ a(n− Tk−1)α + b(n− Tk−1)1−α} ;

otherwise if Tk−1 =∞, then Tk =∞. We also define

κ := inf{k > 0 : Tk =∞}.

Because the random walk has independent increments, P (Ti =∞|Ti−1 <∞) = P (T1 =∞). Thus, κ is

a geometric random variable with probability of success

P (T1 =∞).

We first show that κ is well defined.

Lemma 1. For a and b satisfying (1),

P (T1 =∞) ≥ 3

4
.

Proof. We first notice that

P (T1 <∞) =
∞∑
n=0

P (T ∈ [2n, 2n+1))

≤
∞∑
n=0

∑
k∈[2n,2n+1)

P (Sk > akα + bk1−α).
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For any k ∈ [2n, 2n+1),

P (Sk > akα + bk1−α) ≤ exp
(
kψ(θ)− θ(akα + bk1−α)

)
≤ exp

(
2n+1ψ(θ)− θa2αn − θb2(1−α)n

)
,

for any θ ∈ (−δ, δ). We define θn = a2(α−1)n−2. Since a < 4δ′, we have θn < δ′. Then

P
(
Sk > akα + bk1−α) ≤ exp

(
2n+1θ2

n − θna2αn − θnb2(1−α)n
)

= exp
(
−a222nα−n−3 − ab/4

)
.

Therefore,

P (T1 <∞) ≤

( ∞∑
n=0

2n exp
(
−a222nα−n−3

))
exp

(
−ab

4

)
≤ 1

4
,

where the last inequality follows from our choice of b. �

Let

ξ := max
n≥0

{
(anα + bn1−α)− 1

2
nα
}
. (2)

As a < 1/2, ξ <∞. Conditional on the value of κ and the values of {Xi : 1 ≤ i ≤ Tκ−1}, we define

Γ(κ) :=
⌈
(2STκ−1

+ 2ξ)1/α
⌉
. (3)

The choice of ξ will become clear in the proof of Lemma 2. We will next establish that

Mα = max
0≤n≤Tκ−1+Γ(κ)

{Sn − nα}.

Lemma 2. For n ≥ Tκ−1 + Γ(κ),

Sn ≤ nα.

Proof. For ξ defined in (2), we have for any n ≥ 0,

anα + bn1−α ≤ 1

2
nα + ξ.

Since Tκ =∞, for n ≥ Γ(κ),

STκ−1+n ≤ anα + bn1−α + STκ−1

≤ 1

2
nα + ξ +

1

2
Γ(κ)α − ξ

≤ nα ≤ (Tκ−1 + n)α.

�
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Figure 1 demonstrates the basic idea of our algorithmic development. (Note that the figure is rescaled

for illustrative purposes. In actual simulation, the record breaking events happen with a very small

probability.) The solid line is nα. The first dotted line from the left (lowest dashed curve) is the record-

breaking boundary that we start with, anα + bn1−α. T1 is the first record-breaking time. Based on the

value of ST1 , we construct a new record-breaking boundary, ST1 +a(n−T1)α+ b(n−T1)1−α (the second

dashed line from the left). At time T2, we have another record-breaker. Based on the value of ST2
, we

construct again a new record-breaking boundary, ST2
+a(n−T2)α+ b(n−T2)1−α (the third dashed line

from the left). If from T2 on, we will never break the record again (T3 = ∞), then we know that for

n large enough (say, n > 100 in the figure), Sn will never pass the solid boundary again. Notice that

here we will need a < 1, which is guaranteed by (1), but a tighter constraint is imposed on a in (1) for

algorithmic development and technical reasons related to Lemma 1 and 2.

Figure 1: Bounds for record-breakers
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The actual simulation strategy goes as follows.

Algorithm 1. Sampling Γ(κ) together with (Xi : 1 ≤ i ≤ Tκ−1 + Γ(κ)).

i) Initialize T0 = 0, k = 1.

ii) For Tk−1 <∞, sample J ∼Bernoulli(P (Tk =∞|Tk−1)).

iii) If J = 0, sample (Xi : i = Tk−1 + 1, . . . , Tk) conditional on Tk <∞. Set k = k+ 1 and go back to
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step ii); otherwise (J = 1), set κ = k and go to step iv).

iv) Calculate Γ(κ), sample (Xi : i = Tk−1 + 1, . . . , Tk−1 + Γ(κ)) conditional on Tk =∞.

Remark 1. In general, any a < min {4δ′, 1/2}, and b ≥ 4
a log

(
4
(∑∞

n=0 2n exp(−a222nα−n−4
))

would

work. However, there is a trade-off. The larger the value of a and b, the smaller the value of κ, but

the value of Γ(κ) would be larger. We conduct a numerical study on the choice of these parameters in

Section 3.1.

In what follows, we shall elaborate on how to carry out step ii), iii) and iv) in Algorithm 1. In

particular, step ii) and iii) are outlined in Procedure A. Step iv) is outlined in Procedure B.

2.1. Step ii) and iii) in Algorithm 1

It turns out step ii) and iii) can be carried out simultaneously using exponential tilting based on the

results and proof of Lemma 1.

We start by explaining how to sample the first record-breaking time T1. We introduce an auxiliary

random variable N with probability mass function (pmf)

p(n) = P (N = n) =
2n exp

(
−a222nα−n−3

)∑∞
m=0 2m exp (−a222mα−m−3)

, for n ≥ 1 (4)

We can then apply exponential tilting to sample the path (X1, X2 . . . , XT1) conditional on T1 <∞.

When sampling the random walk, we use P (·) to represent the measure induced by the original

distribution of the random walk, which we refer to as the nominal distribution. We also denote Pθ(·) as

the measure induced by the exponential tilting with tilting parameter θ. The actual sampling algorithm

goes as follows.

Procedure A. Sampling a Bernoulli J with probability of success P (J = 1) = P (T1 = ∞); if J = 0,

output (X1, . . . , XT1
).

i) Sample a random time N with pmf (4).

ii) Let θN = a2N(α−1)−2. Generate X1, X2, . . . , X2N+1−1 under exponential tilting with tilting

parameter θN , i.e.

dPθN
dP

1{Xi ∈ A} = exp(θNXi − ψ(θN ))1{Xi ∈ A}.

Let T1 = inf{n ≥ 1 : Sn > anα + bn1−α} ∧ 2N+1.
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iii) Sample U ∼Uniform[0, 1]. If

U ≤ exp(−θNST1
+ T1ψ(θN ))

p(N)
I
{
T1 ∈

[
2N , 2N+1

)}
,

then set J = 0 and output (X1, X2, . . . , XT1); else, set J = 1.

We next show that Procedure A works.

Theorem 1. In Procedure A, J is a Bernoulli random variable with probability of success P (T1 =∞).

If J = 0, the output (X1, X2, . . . , XT1) follows the distribution of (X1, X2, . . . , XT1) conditional on

T1 <∞.

Proof. We first show that the likelihood ratio in step iii) is less than 1 almost surely. Based on this,

we will then prove that P (J = 0) = P (T1 <∞).

exp(−θnST1
+ T1ψ(θn))

P (N = n)
I{T1 ∈ [2n, 2n+1)}

≤exp(−θn(a2αn + b2(1−α)n) + 2n+1θ2
n))

P (N = n)

=
exp

(
−a222nα−n−3 − ab/4

)
P (N = n)

=2−n exp(−ab/4)
∞∑
m=0

2m exp(−a222mα−m−3) ≤ 1

4
,

where the last inequality follows from our choice of b as in the proof of Lemma 1.

We next prove that P (J = 0) = P (T1 <∞).

E[I{J = 0}|N = n] = Eθn

[
I

{
U ≤ exp(−θnST1 + T1ψ(θn))

p(n)

}
I{T1 ∈ [2n, 2n−1)}

]
= Eθn

[
exp(−θnST1

+ T1ψ(θn))

p(n)
I{T1 ∈ [2n, 2n+1)}

]
=
P (T1 ∈ [2n, 2n+1))

p(n)
,

where the second equation uses the result that the likelihood ratio is less than 1; the last equation

follows from the observation that

dP

dPθn
(I{T1 ∈ [2n, 2n+1)}) = exp(−θnST1

+ T1ψ(θn))I{T1 ∈ [2n, 2n+1)}.

Then we have

E[I{J = 0}] =
∞∑
n=0

E[I{J = 0}|N = n]p(n)

=
∞∑
n=0

P (T1 ∈ [2n, 2n+1)) = P (T1 <∞).
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Let P ∗(·) denote the measure induced by Procedure A. We next show that P ∗(X1 ∈ A1, . . . , Xt ∈

At|J = 0) = P (X1 ∈ A1, . . . , Xt ∈ At|T1 <∞), where t is a positive integer, and Ai ⊂ R, i = 1, 2, . . . , t,

is a sequence of Borel measurable sets satisfying Ai ⊂ {x ∈ R : x ≤ aiα + bi1−α} for i < t and

At ⊂ {x ∈ R : x > atα + bt1−α}. Let nt := blog2 tc.

P ∗(X1 ∈ A1, . . . , Xt ∈ At|J = 0)

=
P ∗(X1 ∈ A1, . . . , Xt ∈ At, J = 0)

P (J = 0)

=
P (N = nt)

P (T1 <∞)
Eθnt

[
I {X1 ∈ A1, . . . , Xt ∈ At} I

{
U ≤ exp(−θntSt + tψ(θnt))

p(nt)

}]
=

p(nt)

P (T1 <∞)
Eθnt

[
I {X1 ∈ A1, . . . , Xt ∈ At}

exp(−θntSt + tψ(θnt))

p(nt)

]
=
E [I {X1 ∈ A1, . . . , Xt ∈ At}]

P (T1 <∞)

=P (X1 ∈ A1, . . . , Xt ∈ At|T1 <∞).

�

The extension from T1 to Tk is straightforward: because for Tk−1 < ∞, given the value of Tk−1

and STk−1
, we essentially start the random walk afresh from STk−1

for each Tk−1. Thus, to execute

step ii) and iii) in Algorithm 1, given Tk−1 < ∞, we can apply Procedure A. If J = 0, we denote

(X̃1, X̃2, . . . , X̃T ) as the output from Procedure A, and set (XTk−1+1, . . . , XTk−1+T ) = (X̃1, . . . , X̃T )

and Tk = Tk−1 + T ; otherwise, set κ = k.

2.2. Step iv) in Algorithm 1

Sampling (X1, . . . , XTκ−1
) is realized by iteratively applying Procedure A until it outputs J = 1.

Once we found κ, we achieve sampling (XTκ−1+1, . . . , XTκ−1+Γ(κ)) by developing a procedure that could

sample (XTκ−1+1, . . . , XTκ−1+n) with any given n > 0, conditioning on that the trajectory of the random

walk never passes the non-linear upper bound, STκ−1 +a(n−Tκ−1)α+b(n−Tκ−1)1−α. To be more precise,

given κ = k, for any n > 0 (including n = Γ(κ)), we would like to sample (XTκ−1+1, . . . , XTκ−1+n) from

P (·|Fk−1, Tk = ∞), where {Fk : k ≥ 0} denote the filtration generated by the random walk. We can

achieve this conditional sampling using the acceptance-rejection technique.

We first introduce a method to simulate a Bernoulli random variable with probability of success

P (T1 = ∞|T1 > t, St), which follows a similar exponential tilting idea as that used in Section 2.1.

Analog to Section 2.1, we introduce a record breaking time with a temporal-spatial shift, and an auxiliary

random variable leading to the definition of the tilting parameter.
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Let

T̃t,s := inf
{
n ≥ 0 : s+ Sn > a(n+ t)α + b(n+ t)1−α} .

Given t, we introduce an auxiliary random variable Ñ(t) with pmf

pt(n) = P
(
Ñ(t) = n

)
=

2n exp
(
−2−n−4a2(2n + t)2α

)∑∞
m=0 2m exp (−2−m−4a2(2m + t)2α)

, for n ≥ 1. (5)

Given Ñ(t) = n, we apply exponential tilting to sample (X̃1, X̃2, . . . , X̃2n+1−1), with tilting parameter

θ̃n(t) = 2−n−2a(2n + t)α,

i.e.
dPθ̃n(t)

dP
1{Xi ∈ A} = exp(θ̃n(t)Xi − ψ(θ̃n(t)))1{Xi ∈ A}.

We also define S̃k := X̃1 + · · ·+ X̃k for k ≥ 1, and

T̃ = inf
{
n ≥ 0 : s+ S̃n > a(n+ t)α + b(n+ t)1−α

}
∧ 2n+1.

Let

J̃ = 1− I

{
U ≤

exp(−θ̃nS̃T̃ + T̃ψ(θ̃n))

pt(n)
I
{
T̃ ∈

[
2n, 2n+1

)}}
, (6)

where U ∼Uniform[0, 1].

Lemma 3. For J̃ defined in (6), when s < a
4 t
α, we have

P
(
J̃ = 1

)
= P

(
T̃t,s =∞

)
.

Proof. We first notice that

exp(−θ̃nST̃ + T̃ψ(θ̃n))

pt(n)
I
{
T̃ ∈

[
2n, 2n+1

)}
≤ 1

pt(n)
exp

(
−θ̃n

(
a(2n + t)α + b(2n + t)1−α − a

4
tα
)

+ 2n+1θ̃2
n

)
≤ 1

pt(n)
exp

(
−2−n−3a2(2n + t)2α + 2−n−4a2(2n + t)2α − ab

4

)
=

1

pt(n)
exp

(
−2−n−4a2(2n + t)2α − ab

4

)
≤

( ∞∑
m=0

2m exp
(
−2−m−4a2(2m + t)2α

))
× exp(−ab/4)

≤

( ∞∑
m=0

2m exp
(
−a222mα−m−4

))
× exp(−ab/4) ≤ 1

4
,

where the last inequality follows from our choice of a and b. The rest of the proof follows exact the same

steps as the proof of Theorem 1. We shall omit it here. �
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Let

L(n) = inf
{
k ≥ n : Sk > akα + bk1−α or Sk <

a

4
kα
}
.

The sampling algorithm goes as follows.

Procedure B. Sampling (X1, . . . , Xn) conditional on T1 =∞.

i) Sample (X1, . . . , Xn) under the nominal distribution P (·).

ii) If max1≤k≤n{Sk − akα − bk1−α} > 0, go back to step i); else, go to step iii).

iii) Sample L(n) and (Xn+1, Xn+2, . . . , XL(n)) under the nominal distribution P (·). If SL(n) >

aL(n)α + bL(n)1−α, go back to step i); else, go to step iv).

iv) Sample Ñ with probability mass function pL(n) defined in (5). Generate (X̃1, X̃2, . . . , X̃2Ñ+1−1)

under exponential tilting with tilting parameter θ̃Ñ = 2Ñ−2a
(

2Ñ + L(n)
)α

. Let

T̃ = inf{k ≥ 1 : SL(n) + S̃k > a(k + L(n))α + b(k + L(n))1−α} ∧ 2Ñ+1.

v) Sample U ∼Uniform[0, 1]. If

U ≤
exp

(
−θ̃ÑST̃ + T̃ψ(θ̃Ñ )

)
pt(Ñ)

I
{
T̃ ∈

[
2Ñ , 2Ñ+1

)}
,

set J̃ = 0 and go back to Step i); else, set J̃ = 1 and output (X1, . . . , Xn).

We next show that Procedure B works.

Theorem 2. The output of Procedure B follows the distribution of (X1, . . . , Xn) conditional on T1 =∞.

Proof. Let P ′(·) = P (·|T1 =∞). We first notice that

dP ′

dP
(X1, . . . , Xn) =

I{T1 > n}P (T1 =∞|Sn, T1 > n)

P (T1 =∞)
≤ 1

P (T1 =∞)
.

Let P ′′(·) denote the measure induced by Procedure B. Then we have, for any sequence of Borel

measurable sets Ai ⊂ R, i = 1, 2, . . . , n,

P ′′ (X1 ∈ A1, . . . , Xn ∈ An)

=P
(
X1 ∈ A1, . . . , Xn ∈ An|T1 > L(n), J̃ = 1

)
=P

(
X1 ∈ A1, . . . , Xn ∈ An|T1 > L(n), T̃L(n),SL(n)

=∞
)

=P (X1 ∈ A1, . . . , Xn ∈ An|T1 =∞),
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where the second equality follows from Lemma 3, and the third equality follows from the fact that

P (T1 =∞|St, T1 > t) = P
(
T̃t,St =∞

)
.

�

To execute Step iv) in Algorithm 1, we apply Procedure B with n = Γ(κ).

3. Running time analysis

In this section, we provide a detailed running time analysis of Algorithm 1.

Theorem 3. Algorithm 1 has finite expected running time.

We divide the analysis into the following steps.

1. From Lemma 1, the number of iterations between step ii) and iii) follows a geometric distribution

with probability of success P (T1 =∞) ≥ 3/4.

2. In each iteration (when applying Procedure A), we will show that the length of the path needed

to sample J has finite moments of all orders (Lemma 4).

3. For step iv), we will show that Γ(κ) has finite moments of all orders (Lemma 5).

4. When applying Procedure B for step iv), we will show that the total length of the paths needed

in Procedure B has finite moments of every order (Lemma 6).

Lemma 4. The length of the path needed to sample the Bernoulli J in Procedure A has finite moments

of every order.

Proof. The length of the path generated in Procedure A is bounded by 2N+1, where the distribution

of N is defined in (4). Therefore, ∀r > 0,

E
[
2(N+1)r

]
=

∑∞
m=0 2(m+1)r2m exp

(
−a222mα−m−3

)∑∞
m=0 2m exp (−a222mα−m−3)

=

∑∞
m=0 exp

(
−a222mα−m−3 + (mr + r +m) log 2

)∑∞
m=0 2m exp (−a222mα−m−3)

.

Since for m sufficiently large,

exp
(
−a222mα−m−3 + (mr + r +m) log 2

)
≤ exp

(
−a222mα−m−4

)
,
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for fixed r > 0, ∃C > 0, such that

∑∞
m=0 exp

(
−a222mα−m−3 + (mr + r +m) log 2

)∑∞
m=0 2m exp (−a222mα−m−3)

≤C
∑∞
m=0 exp

(
−a222mα−m−4

)∑∞
m=0 2m exp (−a222mα−m−3)

<∞.

Note that this also implies that

E [T r1 I(T1 <∞)] ≤ E
[
2(N+1)rI(J = 0)

]
≤ E

[
2(N+1)r

]
<∞.

�

Lemma 5. Γ(κ) and L(Γ(κ)) have finite moments of any order.

Proof. We start with Γ(κ). Let Rn := Sn − anα − bn1−α. For Ti <∞, we also denote

Ri := STi − STi−1 − a(Ti − Ti−1)α − b(Ti − Ti−1)1−α.

Then we have

Γ(κ) =
⌈(

2STκ−1 + 2ξ
)1/α⌉

=


(

2
κ−1∑
i=1

(
STi − STi−1

)
+ 2ξ

)1/α


=


(

2
κ−1∑
i=1

Ri + 2
κ−1∑
i=1

(
a(Ti − Ti−1)α + b(Ti − Ti−1)1−α)+ 2ξ

)1/α


≤


(

2
κ−1∑
i=1

Ri + 2κξ +
κ−1∑
i=1

(Ti − Ti−1)α

)1/α
 .

where the last inequality follows from the definition of ξ in (2).
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In what follows, we first prove that conditioning on T1 <∞, RT1 has finite moments of every order.

E
[
eγRT1 I(T1 <∞)

]
=
∞∑
n=0

E
[
eγRnI(T1 = n)

]
=
∞∑
n=0

E
[
eγ(Xn+Sn−1−anα−bn1−α)I(T1 = n)

]
≤
∞∑
n=0

E
[
eγXnI(T1 = n)

]
≤
∞∑
n=0

E
[
epγXn

]1/p
E [I(T1 = n)]

1/q
for p, q > 1,

1

p
+

1

q
= 1 by Hölder’s inequality

=E
[
epγX1

]1/p ∞∑
n=0

P (T1 = n)1/q.

Because X1 has moment generating function within a neighborhood of 0, we can choose p > 0 and γ > 0

such that E[epγX1 ]1/p < ∞. In the proof of Lemma 4 we showed that ∀r > 0, E [T r1 I(T1 <∞)] < ∞,

which implies that P (T1 = n) = O( 1
nr ). As r can be any positive value,

∑∞
n=0 P (T1 = n)1/q <∞.

We next show that Γ(κ) has finite moments of all orders. By Jensen’s inequality, for any fixed r ≥ 1,

E [Γ(κ)r] ≤ E

(κ−1∑
i=1

(Ti − Ti−1)α + 2κξ + 2

κ−1∑
i=1

Ri

)r/α
≤ 3

r
α−1E

(κ−1∑
i=1

(Ti − Ti−1)α

)r/α
+ (2κξ)

r/α
+

(
2
κ−1∑
i=1

Ri

)r/α . (7)

We shall analyze each of the three parts on the right hand side of (7). As κ is a geometric random

variable, E[(2κξ)
r/α

] <∞.

E

(κ−1∑
i=1

(Ti − Ti−1)α

)r/α = E

E
(κ−1∑

i=1

(Ti − Ti−1)α

)r/α∣∣∣∣∣∣κ


≤ E

[
κr/α−1E

[
κ−1∑
i=1

(Ti − Ti−1)r

∣∣∣∣∣κ
]]

≤ E
[
κr/αE [T r1 |T1 <∞]

]
= E

[
κr/α

]
E [T r1 |T1 <∞] <∞.

Similarly, we have

E

(2
κ−1∑
i=1

Ri

)r/α ≤ E [(2κ)r/α
]
E
[
R
r/α
T1
|T1 <∞

]
<∞.
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Therefore, we have

E [Γ(κ)r] <∞.

As for L(Γ(κ)), we first notice that

L(Γ(κ))− Γ(κ) ≤ inf
{
n ≥ 0 : Sn+Γ(κ) <

a

4
(n+ Γ(κ))α

}
.

Given Γ(κ) = n∗ and SΓ(κ) = s∗, since s∗ < anα∗ + bn1−α
∗ ,

P (L(Γ(κ))− Γ(κ) > n|Γ(κ) = n∗, SΓ(κ) = s∗)

≤P
(
Sn ≥

a

4
(n+ n∗)

α − s∗
)

≤P
(
Sn ≥

a

4
(n+ n∗)

α − anα∗ − bn1−α
∗

)
≤P

(
Sn ≥

a

4
(n+ n∗)

α − 1

2
nα∗ − ξ

)
≤ exp

(
nθ2 − θ

(
a

4
(n+ n∗)

α − 1

2
nα∗ − ξ

))
for 0 < θ < δ′.

Let wn = a
4 (n+ n∗)

α − 1
2n

α
∗ − ξ. If we pick θ = εn|wnn | where εn is chosen such that θ < δ′, then

exp
(
nθ2 − θwn

)
≤ exp

(
−w

2
n

n
εn(1− εn)

)
≤ exp

(
−w

2
n

4n

)
.

We notice that for n large enough,

wn ≤
a

5
(n+ n∗)

α.

Thus, there exists C > 0, such that

P (L(Γ(κ))− Γ(κ) > n|Γ(κ) = n∗, SΓ(κ) = s∗) ≤ C exp

(
− a2

100

(n+ n∗)
2α

n

)
≤ C exp

(
− a2

100
n2α−1

)
.

This implies that, given Γ(κ) and SΓ(κ), L(Γ(κ))− Γ(κ) has finite moments of all orders.

�

Lemma 6. The total length of the paths needed to sample the Bernoulli J̃ in Procedure B has finite

moments of every order.

Proof. To sample the trajectory, using the notations defined in Procedure B, the length of each path

generated, step i) - iv), either accepted or rejected, satisfies:

n+ (L(n)− n)I{S̃k ≤ akα + bk1−α, 1 ≤ k ≤ n}+ 2Ñ+1I{S̃k ≤ akα + bk1−α, 1 ≤ k ≤ L(n)}

≤L(n) + 2Ñ+1,
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where Ñ is sampled in step iv) according to (5).

We start by establishing a bound for E
[
2rÑ

]
for any fixed r > 0. We’ve proved in Lemma 5 that

for ∀n, L(n) has finite moments of all orders. Moreover, for any r > 0, t > 0, Ñ(t) generated from pt(·)

(defined in (5)) satisfies

E
[
2Ñ(t)r

]
=

∑∞
m=0 2(r+1)m exp

(
−2−m−4a2(2m + t)2α

)∑∞
m=0 2m exp (−2−m−4a2(2m + t)2α)

(8)

We next prove that E
[
2Ñ(t)r

]
= O (tr), which leads to the desired bound for E

[
2rÑ

]
. This is achieved

in two steps. In step 1, we show that for m large enough, the summand in the numerator of (8) decays

exponentially fast.

Let η1 := 22α−2
2 . For m large enough, we have

2m ≥ (2 + η1)1/(2α) − 1

2− (2 + η1)1/(2α)
t (9)

⇐⇒ 2m(2− (2 + η1)1/(2α)) ≥ (2 + η1)1/(2α)t− t

⇐⇒ 2m+1 + t ≥ (2m + t)(2 + η1)1/(2α)

⇐⇒ (2m+1 + t)2α ≥ (2 + η1)(2m + t)2α.

Then we have

2(1+r)(m+1) exp
(
−2−(m+1)−4a2(2m+1 + t)2α

)
2(1+r)m exp (−2−m−4a2(2m + t)2α)

= exp
(
−2−(m+1)−4a2(2m+1 + t)2α + 2−m−4a2(2m + t)2α + (1 + r) log 2

)
= exp

(
−2−m−5a2

(
(2m+1 + t)2α − 2(2m + t)2α

)
+ (1 + r) log 2

)
≤ exp

(
−2−m−5a2η1(2m + t)2α + (1 + r) log 2

)
≤ exp

(
−2−5a2η12(2α−1)m + (1 + r) log 2

)
. (10)

Notice that (10) can be made arbitrarily small by having m sufficiently large. Thus, there exists m(r)

large enough such that for m ≥ m(r),

2(1+r)(m+1) exp
(
−2−(m+1)−4a2(2m+1 + t)2α

)
≤ 1

2
2(1+r)m(r) exp

(
−2−m−4a2(2m + t)2α

)
.

We now carry out the second step. Based on (9), let η2 := (2+η1)1/(2α)−1
2−(2+η1)1/(2α) . Then for t large enough,
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we have
∞∑

m=dlog(η2t)e+1

2(1+r)m exp
(
−2−m−4a2(2m + t)2α

)
≤2(1+r)dlog(η2t)e exp

(
−2−dlog(η2t)e−4a2(2dlog(η2t)e + t)2α

) ∞∑
k=1

1

2k

≤2(1+r)dlog(η2t)e exp
(
−2−dlog(η2t)e−4a2(2dlog(η2t)e + t)2α

)
.

Thus,

E
[
2Ñ(t)r

]
=

∑dlog(η2t)e
m=0 2(1+r)m exp

(
−2−m−4a2(2m + t)2α

)
+
∑∞
m=dlog(η2t)e+1 2(1+r)m exp

(
−2−m−4a2(2m + t)2α

)∑∞
m=0 2m exp (−2−m−4a2(2m + t)2α)

≤
∑dlog(η2t)e
m=0 2(1+r)m exp

(
−2−m−4a2(2m + t)2α

)
+ 2(1+r)dlog(η2t)e exp

(
−2−dlog(η2t)e−4a2(2dlog(η2t)e + t)2α

)∑∞
m=0 2m exp (−2−m−4a2(2m + t)2α)

≤
2rdlog(η2t)e

∑dlog(η2t)e
m=0 2m exp

(
−2−m−4a2(2m + t)2α

)
+ 2(1+r)dlog(η2t)e exp

(
−2−dlog(η2t)e−4a2(2dlog(η2t)e + t)2α

)∑dlog(η2t)e
m=0 2m exp (−2−m−4a2(2m + t)2α)

≤2rdlog(η2t)e+1 ≤ 3ηr2t
r.

We are now ready to establish the bound for E
[
(L(n) + 2Ñ+1)r

]
for any fixed r ≥ 1.

E
[(
L(n) + 2Ñ+1

)r]
≤ E

[
2r−1(L(n)r + 2(Ñ+1)r)

]
≤ 2r−1E [L(n)r] + 22r−1E

[
2Ñr

]
by Jensen’s inequality

≤ 2r−1E [L(n)r] + 22r−13ηr2E [L(n)r]

<∞.

We have thus shown that each path has finite moments of all orders.

As for the acceptance probability in step ii), iii) and v), we notice that

P
({
Sk ≤ akα + bk1−α, 1 ≤ k ≤ L(n)

}
∩
{
J̃ = 1

})
= P

(
T1 > L(n), T̃L(n),SL(n)

=∞
)

= P (T1 =∞) as P (T1 =∞|St, T1 > t) = P
(
T̃t,St =∞

)
≥ 3

4
by Lemma 1.

Then the number of times a path is rejected is stochastically bounded by a geometric random variable

with probability of success 3/4. Therefore, the total length of paths generated in Procedure B has finite

moments of all orders.

�
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3.1. Numerical experiments

In this section, we conduct numerical experiments to analyze the performance of Algorithm 1 for

different values of the parameter a. In Remark 1, we briefly discussed how the parameters a and b

would affect the performance of Algorithm 1. We shall fix the value of b upon our choice of a as in (1),

as we want to guarantee that the probability of record-breaking is small enough, while keeping Γ(κ) as

small as possible.

For the computational cost, we first notice that the choice of a and b will affect the distribution of N ,

which is the length of trajectory generated in Procedure A. In Procedure B, the values of Γ(κ), L(Γ(κ))

and the distribution of Ñ also depends on the value of a and b.

Let Xi
d
=X − 1, where X is a unit rate exponential random variable. Then ψ(θ) = −θ − log(1− θ),

for θ < 1. Let g(θ) := ψ(θ)− θ2. As g′(0) = 0, g′′(θ) = 1
(1−θ)2 − 2, we have

g(θ) < 0 ∀θ ∈ (−1, 1−
√

2

2
).

Therefore, we can set δ′ = 1−
√

2
2 , and when θ ∈ (−δ′, δ′), ψ(θ) < θ2. According to (1), a < min( 1

2 , 4δ
′) =

1
2 . We ran Algorithm 1 with different values of a and α. Table 1 summarizes the running time of the

algorithm in different settings.

Table 1: Running time of Algorithm 1 (in seconds)

a α = 0.8 α = 0.85 α = 0.9 α = 0.95

0.1 287.58 39.62 10.20 4.99

0.2 36.24 8.11 4.19 3.15

0.3 13.38 5.03 2.94 2.56

0.4 7.90 3.53 2.41 2.25

0.45 7.06 3.31 2.43 2.15

0.49 7.25 3.06 2.19 2.11

0.499 12.81 3.79 3.49 3.12

We observe that when a is relatively far away from the upper bound 1
2 (e.g. a ≤ 0.45), the running

time decreases as a increases. However, as a approaches 1
2 , the running time is increasing in a. This is

because ξ →∞ as a→ 1
2 (see (2)). We also observe that the changing rate of running time regarding a

is larger for smaller values of α, which in general implies greater curvature of the nonlinear boundary.
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4. Departure process of an infinite server queue

We finish the paper with an application of the algorithm developed in Section 2 to sample the

steady-state departure process of an infinite server queue with general interarrival time and service time

distributions. We assume the interarrival times are i.i.d.. Independent of the arrival process, the service

times are also i.i.d. and may have infinite mean.

Suppose the system starts operating from the infinite past, then it would be at stationarity at time

0. We want to sample all the departures in the interval [0, h].

We start by introducing a point process representation of infinite server queue to facilitate the

explanation of the simulation strategy. We mark each arriving customer as a point in a 2-dimensional

space, where the x-coordinate records its arrival time and the y-coordinate records its service time

(service requirement). Figure 2 provides an illustration with two points representing two arriving

customers. Customer 1 arrives at −A1 and has a service requirement of V1. Notice that as there

are infinitely many servers, this customer will enter service immediately upon arrival and will leave the

system at time −A1 +V1. If we draw a minus 45-degree line from (−A1, V1), the intersection of this line

with the x-axis represents Customer 1’s departure time. Likewise, we can also denote the departure time

of Customer 2 by the intersect of the minus 45-degree line staring from (−A2, V2) with the x-axis. We

observe that in this particular example, Customer 1 would leave the system in the interval [0, h], while

Customer 2 would leave the system before time 0. Based on this observation, we can draw a shaded

region in Figure 2, which has the property that all the points (customers) that fall into this region will

leave the system during [0, h]. Therefore, to sample the departure process on [0, h], we essentially would

like to sample all the points (customers) that fall into the shaded area.

We further divide the shaded area into two part, namely H and G. Points in shaded area G are

customers that arrive after time 0 and depart before time h, while points in area H are customers who

arrive before time 0 and depart between time 0 and h. Sampling the points that fall into G is easy. As

G is a bounded area, we can simply sample all the arrivals between 0 and h, and decide, using their

service time information, whether they fall into region G or not. The challenge lies in sampling the

points in H, as it is an unbounded region.

For the rest of this section, we explain how to sample all the points (customers) that fall into region

H. We mark the points sequentially (according to their arrival times) backwards in time from time 0

as (−A1, V1), (−A2, V2), . . . , where −An is the arrival time of the n-th arrival counting backwards in

time and Vn is its service time. Let A0 := 0. We then denote Xn := An−An−1, as the interarrival time

between the n-th arrival and the (n − 1)-th arrival. Let µ := E[X] denote the mean interarrival time
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Figure 2: Point process representation of infinite server queue

H 

G 
0 h t

!"#$%&'$(

!"#)%&')( H 

G 

and σ2 := V ar(X) denote its variance. For simplicity of notation, we write

H := {(−An, Vn) : An < Vn < An + h}.

It is the collection of points that fall into region H.

The following observation builds the foundation of our simulation strategy. Suppose we can find a

random number Ξ such that

Vn < An or Vn > An + h

for n ≥ Ξ, then we can sample the point process up to Ξ, i.e. {(−Ai, Vi), 1 ≤ i ≤ Ξ}, and find H. Built

on this observation, we further introduce an idea to separate the simulation of the arrival process and

the service time process. It requires us to find a sequence of {εn : n ≥ 1}, satisfying the following two

properties:

1. There exists a well-defined random number Ξ1, such that

nµ− εn < An < nµ+ εn for all n ≥ Ξ1.

2. There exists a well-defined random number Ξ2, such that

Vn < nµ− εn or Vn > nµ+ εn + h for all n ≥ Ξ2.

Now, set Ξ = max{Ξ1,Ξ2}. Then we have Vn < An or Vn > An + h for n ≥ Ξ. Notice that based on

the introduction of εn’s we can find Ξ1 and Ξ2 separately.

To guarantee that Ξ1 and Ξ2 are well-defined, i.e. finite, we need to choose εn’s that satisfy the

following two conditions:

C1)
∑∞

n=1 P (|An − nµ| > εn) < ∞,

C2)
∑∞

n=1 P (Vn ∈ (nµ− εn, nµ+ εn + h)) < ∞.
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Under C1) and C2), Borel-Cantelli Lemma guarantees that Ξ1 and Ξ2 are finite almost surely.

We next introduce a specific choice of εn when the service times follow a Pareto distribution with

shape parameter β ∈ (1/2, 1). We denote the pdf of Vi as f(·), which takes the form

f(v) = βv−(β+1)I{v ≥ 1}. (11)

We also write F̄ (·) as the tail distribution of Vi. We assume the interarrival time has a finite moment

generating function in a neighborhood of the origin. This is without loss of generality. Because if

the interarrival time is heavy-tailed, we can simulate a coupled infinite server queue with truncated

interarrival times, XC
i = min{Xi, C}. This coupled infinite server queue would serve as an upper bound

(in terms of the number of departures) of the original infinite server queue in a path-by-path sense.

Set εn = nα for 1/2 < α < β. In what follows, we shall show that our choice of εn satisfies C1) and

C2) respectively. We shall also explain how to find (simulate) Ξ1 and Ξ2.

4.1. Sampling of the arrival process and Ξ1

The following Lemma verifies C1).

Lemma 7. If εn = nα for α > 1/2,

∞∑
n=1

P (|An − nµ| > εn) <∞.

Proof. We notice that An =
∑n
i=1Xi is a random walk with Xi being i.i.d. interarrival times with

mean µ, except the first one. X1 follows the backward recurrent time distribution of the interarrival

time distribution. By moderate deviation principle [7], we have

1

n2α−1
logP (|An − nµ| > nα)→ − 1

2σ2
.

As 2α− 1 > 0,
∑∞
n=1 P (|An − nµ| > nα) <∞. �

Let Sn = An − nµ. We notice that both Sn and −Sn are mean zero random walks.

P (|Sn| > nα) ≤ P (Sn > nα) + P (−Sn > nα).

Thus, we can apply a modified version of Algorithm 1 to find Ξ1. In particular, we define a modified

sequence of record-breaking times as follows. Let T ′0 := 0. For k ≥ 1, if T ′k−1 <∞,

T ′k := inf
{
n > T ′k−1 : Sn > ST ′k−1

+ a(n− T ′k−1)α + b(n− T ′k−1)1−α

or Sn < ST ′k−1
− a(n− T ′k−1)α − b(n− T ′k−1)1−α

}
;
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else, T ′k =∞. Then the modified version of Algorithm 1 goes as follows.

Algorithm 1′. Sampling Ξ together with (Xi : 1 ≤ i ≤ Ξ).

i) Initialize T ′0 = 0, k = 1.

ii) For T ′k−1 <∞, sample J ′ ∼Bernoulli(P (T ′k =∞|T ′k−1)).

iii) If J ′ = 0, sample (Xi : i = T ′k−1 + 1, . . . , T ′k) conditional on T ′k < ∞ (see Procedure A′). Set

k = k + 1 and go back to step ii); otherwise (J ′ = 1), set Ξ1 = T ′k−1 and go to step iv).

iv) Apply Procedure C (detailed in Section 4.2) iteratively to sample Ξ2.

v) Set Ξ = max{Ξ1,Ξ2}. If Ξ > Ξ1, sample (Xi : i = T ′k−1 + 1, . . . ,Ξ) conditional on T ′k = ∞ (see

Procedure B′).

We also modify Procedure A and Procedure B as follows.

Procedure A′. Sampling J ′ with P (J ′ = 1) = P (T ′1 =∞). If J ′ = 0, output (X1, . . . , XT ′1
).

i) Sample a random time N with pmf (4). Let θN = a2N(α−1)−2. Sample U1 ∼Uniform[0, 1]. If

U1 ≤ 1/2, go to step ii a), else go to step ii b).

ii a) Generate X1, . . . , X2N+1−1 under exponential tilting with tilting parameter θN . Let

T ′1 = inf{n ≥ 1 : |Sn| > anα + bn1−α} ∧ 2N .

ii b) Generate X1, . . . , X2N+1−1 under exponential tilting with tilting parameter −θN . Let

T ′1 = inf{n ≥ 1 : |Sn| > anα + bn1−α} ∧ 2N .

iii) Generate U2 ∼Uniform[0, 1]. If

U2 ≤
(

1
2 exp(θNST ′1 − ψ(θN )T ′1) + 1

2 exp(−θNST ′1 − ψ(−θN )T ′1)
)−1

p(N)
× I

{
T ′1 ∈ [2N , 2N+1)

}
,

then set J ′ = 0 and output (X1, X2, . . . , XT ′1
); else, set J ′ = 1.

Proposition 1. In Procedure A′, J ′ is a Bernoulli random variable with probability of success P (T ′1 =

∞). If J = 0, the output (X1, X2, . . . , XT ′1
) follows the distribution of (X1, X2, . . . , XT ′1

) conditional on

T ′1 <∞.
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The proof of Proposition 1 follows exactly the same line of analysis as the proof of Theorem 1. We

shall omit it here.

Let

L′(n) = inf
{
k > n : Sk ∈

(
−a

4
kα,

a

4
kα
)

or Sk > akα + bk1−α or Sk < −akα − bk1−α
}
.

Procedure B′. Sampling (X1, . . . , Xn) conditional on T ′1 =∞.

i) Sample (X1, . . . , Xn) under the nominal distribution P (·).

ii) If max1≤k≤n{Sk−akα− bk1−α} > 0 or min1≤k≤n{Sk +akα + bk1−α} < 0, go back to step i); else,

go to step iii).

iii) Sample L′(n) and (Xn+1, . . . , XL′(n)) under the nominal distribution P (·). If |SL′(n)| > aL′(n)α+

bL′(n)1−α, go back to step i); else, go to step iv).

iv) Sample Ñ with probability mass function pL(n) defined in (5). Set θ̃Ñ = 2Ñ−2a
(

2Ñ + L(n)
)α

.

Sample U1 ∼Uniform[0, 1]. If U1 < 1/2, go to step v a); else, go to step v b).

v a) Generate X̃1, X̃2, . . . , X̃2Ñ+1−1 under exponential tilting with tilting parameter θ̃Ñ . Let

T̃ ′ = inf
{
n ≥ 1 :

∣∣∣SL′(n) + S̃k

∣∣∣ > a(k + L′(n))α + b(k + L′(n))1−α
}
∧ 2Ñ+1.

v b) Generate X̃1, X̃2, . . . , X̃2Ñ+1−1 under exponential tilting with tilting parameter −θ̃Ñ . Let

T̃ ′ = inf
{
n ≥ 1 :

∣∣∣SL′(n) + S̃k

∣∣∣ > a(k + L′(n))α + b(k + L′(n))1−α
}
∧ 2Ñ+1.

vi) Sample U2 ∼Uniform[0, 1]. If

U2 ≤

(
1
2 exp

(
θ̃Ñ S̃T̃ ′ − ψ̃(θ̃Ñ )

)
+ 1

2 exp
(
−θ̃Ñ S̃T̃ ′ − ψ̃(−θ̃Ñ )

))−1

pt(Ñ)
× I

{
T̃ ′ ∈

[
2Ñ , 2Ñ+1

)}
,

set J̃ ′ = 0 and go back to Step i); else, set J̃ ′ = 1 and output (X1, . . . , Xn).

Proposition 2. The output of Procedure B′ follows the distribution of (X1, . . . , Xn) conditional on

T ′1 =∞.

The proof of Proposition 2 follows exactly the same line of analysis as the proof of Theorem 2. We

shall omit it here.
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4.2. Sampling of the service time process and Ξ2

We start by verifying C2).

Lemma 8. If εn = nα for 1/2 < α < β,

∞∑
n=1

P (Vn ∈ (nµ− εn, nµ+ εn + h)) <∞.

Proof.

P (Vn ∈ (nµ− εn, nµ+ εn + h)) = F̄ (nµ− εn)− F̄ (nµ+ εn + h)

≤ β

(nµ− nα)(β+1)
(2nα + h)

=
β(2 + hn−α)

nβ+1−α(µ− n−(β−α))β+1
.

As β + 1− α > 1,
∞∑
n=1

β(2 + hn−α)

nβ+1−α(µ− nα−β)β+1
<∞.

�

To find Ξ2, we use a similar record-breaker idea. In particular, we say Vn is a record-breaker if

Vn ∈ (nµ− εn, nµ+ εn + h).

The idea is to find the record-breakers sequentially until there are no more record-breakers. Specifically,

let K0 := 0. If Ki−1 <∞,

Ki = inf{n > Ki−1 : Vn ∈ (nµ− εn, nµ+ εn + h)};

if Ki−1 =∞, Ki =∞. Let τ = min{i > 0 : Ki =∞}. Then we can set Ξ2 = Kτ−1.

The task now is to find Ki’s one by one. We achieve this by finding a proper sequence of upper and

lower bounds for P (Ki =∞). We start with K1. Notice that

P (K1 =∞) =
∞∏
n=1

(1− P (Vn ∈ (nµ− εn, nµ+ εn + h))) .

Let

u(k) =
k∏

n=1

(1− P (Vn ∈ (nµ− εn, nµ+ εn + h))) .

Then we have P (K1 =∞) < u(k + 1) < u(k) for any k ≥ 1, and limk→∞ u(k) = P (K1 =∞). We also

notice that u(k)− u(k − 1) = P (K1 = k).
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From the proof of Lemma 8, we have for n > (2/µ)1/(β−α),

P (Vn ∈ (nµ− εn, nµ+ εn + h)) <
2(2 + h)β

µ

1

nβ+1−α .

Then for k∗ large enough such that k∗ > (2/µ)1/(β−α) and 2(2+h)β
µ

1
k∗,β+1−α < 1, we have for k > k∗.

∞∏
n=k+1

(1− P (Vn ∈ (nµ− εn, nµ+ εn + h)))

≥
∞∏

n=k+1

(
1− 2(2 + h)β

µ

1

nβ+1−α

)

≥ exp

(
− (2 + h)β

µ

∞∑
n=k+1

1

nβ+1−α

)

≥ exp

(
− (2 + h)β

µ
(k + 1)−(β−α)

)
.

Let l(k) = 0 for k < k∗, and

l(k) = u(k) exp

(
−2(2 + h)β

µ
(k + 1)−(β−α)

)
for k > k∗. Then we have l(k) ≤ l(k + 1) < P (K1 =∞) and limk→∞ l(k) = P (K1 =∞).

Similarly, given Ki−1 = m < ∞, we can construct the sequences of upper and lower bounds for

P (Ki =∞|Ki−1 = m) as

um(k) =
k∏

n=m+1

(1− P (Vn ∈ (nµ− εn, nµ+ εn + h)))

for k > m, and

lm(k) = um(k) exp

(
− (2 + h)β

µ
(k + 1)−(β−α)

)
.

Based on the sequence of lower and upper bounds, given Ki−1 = m, we can sample Ki using the

following iterative procedure.

Procedure C. Sample Ki conditional on Ki−1 = m.

i) Generate U ∼Uniform[0, 1]. Set k = m+ 1. Calculate um(k) and lm(k).

ii) While lm(k) < U < um(k)

Set k = k + 1. Update um(k) and lm(k).

end While.

iii) If U < lm(k), output Ki =∞; else, output Ki = k.
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Once we find the values of Ki’s, sampling Vn’s conditional on the information of Ki’s is straightfor-

ward. We summarize the simulation of the service time process together with Ξ in Algorithm 2.

Algorithm 2. Sampling Ξ together with (Vi : 1 ≤ i ≤ Ξ).

i) Initialize K0 = 0, i = 1.

ii) Given the value of Ki−1 <∞, sample Ki using Procedure C.

iii) If Ki <∞, set i = i+ 1 and go back to Step ii); otherwise, set Ξ2 = Ki−1 and go to Step iv)

iv) Apply Algorithm 1’ to find Ξ.

v) Sample (Vi : i = 1, 2, . . . ,Ξ) conditional on (K1,K2, . . . ,Ki−1) using acceptance-rejection method

with the nominal distribution of the service times as the proposal distribution.

We next provide some comments about the running time of Procedure C. Let Φi denote the number

of iterations in Procedure C to generate Ki. We shall show that while P (Φi < ∞) = 1, E[Φi] = ∞.

Take Φ1 as an example:

P (Φ1 > n) = P (K1 > n)

= P (l1(n) < U < u1(n))

≥ u1(n)

(
1− exp

(
−2(2 + h)β

µ
(n+ 1)−(β−α)

))
,

with

1− exp

(
−2(2 + h)β

µ
(n+ 1)−(β−α)

)
= O(n−(β−α)),

and u1(n) ≥ P (K1 = ∞) for any n ≥ 1. As 1 < β − α < 1, we have P (K1 < ∞) = 1, but∑∞
n=1 P (K1 > n) =∞. Thus, P (Φ1 <∞) = 1, but E[Φ1] =∞.

The fact that the Procedure C has infinite expected termination time may be unavoidable in the

following sense. In the absence of additional assumptions on the traffic feeding into the infinite server

queue, any algorithm which simulates stationary departures during, say, time interval [0, 1], must be

able to directly simulate the earliest arrival, from the infinite past, which departs in [0, 1]. If the arrivals

are simulated sequentially backwards in time, we now argue that the expected time to detect such an

arrival must be infinite. Assuming, for simplicity, deterministic inter-arrival times equal to 1, and letting
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−T < 0 be the time at which such earliest arrival occurs, then we have that

P (T > n) ≥ P (∪∞k=n+1{Vk ∈ [k, k + 1]})

≥ (1− P (V > n))
∞∑

k=n+1

P (Vk ∈ [k, k + 1])

= (1− P (V > n))P (V > n+ 1).

As
∑∞
n=0 P (V > n) =∞, we must have that E[T ] =∞.

Remark 2. Based on our analysis above, in general, the choice of εn imposes a trade-off between Ξ1

and Ξ2. The smaller εn is, the larger the value of Ξ1 and the smaller the value of Ξ2.

4.3. Numerical experiment on the departure process of an M/G/∞ queue

In this section, we apply the Algorithm 1’ and 2 to simulate the steady state departure process of an

infinite server queue whose service times have infinite mean.

We consider an infinite server queue having Poisson arrival process with rate 1, and Pareto service

time distributions with probability density function (pdf)

f(v) = βv−(β+1)I{v ≥ 1},

for β ∈ (1/2, 1). Notice that we already know that the departure process of this M/G/∞ queue should

also be Poisson process with rate 1. Therefore, this numerical experiment would help us verify the

correctness of our algorithm.

We truncate the length of path at 106 steps. We tried different pairs of parameters α and β, and

executed 1000 trials for each pair of α and β. We count the number of departures between time 0 to 1

for each run and construct the corresponding relative frequency bar plot in Figure 3. We observe that

the distribution of simulated departures between time 0 and 1 indeed follows a Poisson distribution with

rate 1. In particular, the distribution is independent of the values of α and β, which is consistent with

what we expected. We also conduct the χ2 test as a goodness of fit tests with the four groups of sampled

data against the Poisson distributon. The corresponding p-values are 0.2404, 0.2589, 0.4835, and 0.1137

respectively. Therefore the tests fail to reject that the generated samples are Poisson distributed.
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Figure 3: Histograms comparison for sampled departure
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