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ABSTRACT

This paper analyzes the performance of distributed Medium Ac-
cess Control (MAC) protocols in ultra-dense multichannel wireless
networks, where N frequency bands (or channels) are shared by
M = mN devices, and devices make decisions to probe and then
transmit over available frequency bands. While such a system can
be formulated as an M-player Bayesian game, it is often infeasible
to compute the Nash equilibria of a large-scale system due to the
curse of dimensionality. In this paper, we exploit the Mean Field
Game (MFG) approach and analyze the system in the large pop-
ulation regime (N tends to co and m is a constant). We consider
a distributed and low complexity MAC protocol where each de-
vice probes d/k channels by following an exponential clock which
ticks with rate k when it has a message to transmit, and optimizes
the probing strategy to balance throughput and probing cost. We
present a comprehensive analysis from the MFG perspective, in-
cluding the existence and uniqueness of the Mean Field Nash Equi-
librium (MFNE), convergence to the MFNE, and the price of anarchy
with respect to the global optimal solution. Our analysis shows that
the price of anarchy is at most one half, but is close to zero when
the traffic load or the probing cost is low. Our numerical results
confirm our analysis and show that the MFNE is a good approxima-
tion of the M-player system. Besides showing the efficiency of the
considered MAC for emerging applications in ultra-dense multi-
channel wireless networks, this paper demonstrates the novelty of
MFG analysis, which can be used to study other distributed MAC
protocols in ultra-dense wireless networks.
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1 INTRODUCTION

The proliferation of smart wireless devices has brought revolution-
ary changes in many domains, such as smart homes, smart cities,
autonomous cars, virtual-reality/argumented reality, the Internet of
the Things (IoT). To accommodate the increasing demand of emerg-
ing wireless applications on spectrum, large amounts of spectrum
bands that were previously unused or unavailable have recently
been released for public use as unlicensed bands for large-scale
access, which calls for spectrum access algorithms that are both
distributed and efficient.

We consider a scenario in which a large number of smart wire-
less devices need to constantly communicate their recent status
to a fusion center or to nearby peers. This setting includes appli-
cations such as sensing and monitoring in smart cities, factories
or power stations, and safety messages in autonomous driving. In
such applications, an old message can usually be discarded when a
new message arrives, because the outdated information is no longer
useful when new information is available. Managing wireless chan-
nel access for such an ultra-dense deployment of devices with a
non-traditional traffic load is a challenge.

In this paper, our focus is on performance analysis of distributed
Medium Access Control (MAC) protocols in such ultra-dense multi-
channel wireless networks. Given the sheer number and the hetero-
geneous nature of the ownership and applications of the devices,
as well the large unlicensed bands that they operate over, it is diffi-
cult (if not impossible) to have a centralized scheduler to allocate
channels (frequency bands) to devices. Therefore, distributed MAC
protocols of simple plug-and-play type are essential. However, per-
formance analysis of even simple distributed MAC in large-scale
systems is challenging.

Under our model, each device generates update packets at some
rate, and the device drops any previously created packet when
a new one is generated, i.e., only the most recent packet at each
device is a candidate for transmission. The devices employ a simple
MAC protocol under which each device has a clock, and when the
clock ticks randomly probes several spectrum bands, and randomly
picks one that is free. However, since such probing incurs an energy
cost and the number of bands is large, the device can neither probe
at a high frequency, nor probe all bands at each clock tick. Thus, it
must optimally determine both the frequency of its clock, as well
as how many bands to probe when its clock ticks.

We seek to understand the performance of such a MAC protocol
when the number of devices, M and available spectrum bands, N
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are related as M = mN, where m is a constant. The devices need to
share access to the available spectrum bands, and desire to maximize
their individual steady state throughputs while accounting for the
energy that they expend in probing. Each device has an exponential
clock, and can select any desired clock rate, k. When the clock
ticks, the device probes d/k bands, where d is a parameter that
it chooses'. Now, the optimal choice of parameters (k;, d;) for a
device i depends on the probability that a randomly probed band is
currently utilized, which in turn depends on the parameters selected
by the other devices. Hence, the devices engage in a strategic game
of observing channel utilization, and choosing the tuple (k;,d;)
while trading off steady state throughput and probing cost.

While this system can be modeled as an M-player Bayesian game
where each device makes myopic probing/transmission decisions
based on local observations, it is infeasible to compute the Nash
equilibria for large M due to the curse of dimensionality. In this
paper, we use a mean field game (MFG) approach to overcome this
difficulty by studying the asymptotic performance of the system
as the numbers of devices and spectrum bands both go to infinity.
In this large-population regime, the distribution of channel states
converges weakly to a point mass, which can be computed explicitly.
Therefore, instead of interacting with M — 1 other players, each
device optimizes its strategy with respect to a fixed channel state
distribution, which dramatically simplifies the problem.

Main Results

Our main results are detailed as follows.

MFG Formulation: We first introduce the model and the M-
player Bayesian game in Section 2. The problem is hard to analyze
because it involves an M-dimensional Markov chain. To overcome
this difficulty, we adopt the MFG approach, developed in [12]. We
first show that for fixed k and d for each device, in the mean-field
limit, the fraction of busy channels, denoted by y, converges weakly
to a constant (the result is presented in Theorem 1). Therefore, in
the mean-field limit, each device maximizes its utility (throughput
minus the probing cost) with respect to a constant y instead of
the probability distribution of N channel states, which makes the
analysis tractable. In Section 3, we also prove that probing one
channel with rate d dominates probing d/k channels with rate k,
which reduces the policy space of each device to a single parameter
d. In the mean-field limit, the M-player Bayesian game becomes
an MFG. Specifically, given y, the fraction of busy channels, each
device chooses a myopic d to maximize its utility, which defines
the mapping T : y — d. Given d, we can calculate the fraction of
busy channels in the mean-field limit, which defines the mapping:
Ty : d — y. The Mean Field Nash Equilibrium (MFNE) is a pair
(d*, y*) such that

d* = Ty(Ta(d")).

Existence, Uniqueness and Convergence to MFNE: In Sec-
tion 5, we present a comprehensive analysis of the existence and
uniqueness of the MFNE. Theorem 2 states that there exists a
unique MFNE when the traffic load is high, that the MFNE results
in d* = oo (i.e. each device probes channels continuously without
any waiting) when the traffic load is low, and that the system jumps

The form d/k is for notational convenience, and the optimal choice will turn out to
be an integer.
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between a finite probing rate and infinite probing rate when the
load is in between. The precise meanings of “high” and “low” are
defined in Theorem 2.

In Section 5, we examine convergence to the MFNE. We focus
on the most interesting regime, namely, the high load regime, un-
der which d* is finite in the unique MFNE. Proposition 3 shows
that the composition of Tz and T; is a contraction mapping, which
implies the convergence to the unique MENE from any initial con-
dition following the Banach fixed point theorem.

Price of Anarchy: In Section 6, we compare the performance
of the distributed MAC protocol with a solution that solves a cen-
tralized optimization problem and forces the resulting probing rate
upon all the devices. The key difference between the two is that the
central solution knows exactly how changing the probing rate of a
device level will affect the fraction of busy channels in the network,
i.e. it knows the function y = Ti(d); whereas in the distributed
algorithm, each device optimizes its probing rate d assuming that y
is a constant. We show that the price of anarchy is upper bounded
by 0.5, i.e., the loss of efficiency is at most half. Numerical studies
show that the price of anarchy is close to zero when the load is light
and approaches the upper bound 0.5 when the traffic load increases.

Numerical Evaluation: Finally, we evaluate the algorithm with
extensive simulations. In particular, we compare the performance of
the distributed MAC in finite population systems with the MFG solu-
tion. We observe that the performance predicted using MFG is close
to the performance of finite population systems even with moderate
N, which confirms the effectiveness of the MFG approach. We also
observe that the proposed algorithm significantly outperforms a
CSMA protocol with exponential back-off. Additionally,numerical
evaluations show that the protocol performs similarly both under
homogeneous and heterogeneous conditions i.e, both when the
devices are symmetric and when they have different arrival rates
and energy constraints.

Related Work

The mean field approach is a method of identifying the steady-
state behavior of an M—dimensional Markov chain, where M is the
number of particles (devices in our case), whose states are modeled
via the Markov chain. The goal is to characterize the steady-state
distribution (time becomes asymptotically large) for a finite M, and
then determine the limiting steady-state distribution as M becomes
asymptotically large.

In order to do so, the mean field method proceeds to take the two
limits (particles and time) in the reverse order. The main idea is to
use the fact that under mild conditions, as the number of particles, M
becomes asymptotically large, the state distribution of the limiting
Markov chain can be accurately represented using an ordinary
differential equation (ODE). Then the steady-state distribution of
the limiting Markov chain is the same as the infinite time limiting
state of the ODE (if it exists). Finally, if it can be shown that the
order of taking the particle and time limits can be interchanged
(yield the same limit) for the Markov chain, then the limiting state
of the ODE provides the desired solution referred to as the Mean
Field Equilibrium (MFE) (see [2] and references within). A recent
approach based on Stein’s method [7, 8, 18, 19] can directly establish
the convergence of steady-state distributions to the MFE without
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the interchange of the limits argument and provide the rate of
convergence.

When we do have convergence of the steady-state distribution
to a deterministic limit of the ODE, we have a further property
referred to as Propagation of Chaos ([9, 16]), under which the states
of any finite set of particles are independent of each other given
the state distribution as a whole. Such an independence property is
particularly useful in identifying the behavior of a given particle
in the large M limit, and to determine the corresponding ODE
of the system. In the context of wireless MAC protocols, such an
independence assumption regarding the backoff processes of the
devices using 802.11 MAC enabled the derivation of steady-state
performance in the limiting case of a large number of devices that
always have packets to transmit (called “saturated”) [3].

This assumption was questioned in [2], in which it was shown
that simply having a unique fixed point of the corresponding ODE
is insufficient, and that all trajectories have to converge to that
fixed point in order for the independence claim to hold. Later, it
was shown that there exist natural parameter selections for 802.11
under which the sufficiency conditions of [2] are satisfied for the
cases of infinite and finite backoff stages [4, 6]. More recently, the
performance of 802.11 MAC in the unsaturated case was charac-
terized using the mean field approach [5]. However, existing work
considers the case of a single interference channel or an interfer-
ence graph, unlike our setup of channel selection under a high
bandwidth regime.

The mean field regime has also been studied under a game the-
oretic setting. Initial work in this space and many that followed
consider a one shot game under which the mean field independence
property is used to simplify decision making [12]. More recent work
has considered repeated games under a variety of different appli-
cation settings [1, 10, 13, 17]. Here, the MFG is considered as the
extension of a Bayesian repeated game to infinite players, with the
independence property being used to enable the identification of ex-
istence and structural properties of a Mean Field Nash Equilibrium
(MFNE). More papers on the topic can be found in [15]. However, no
claim is typically made about the convergence of the steady-state
distribution of the finite player system to the mean field in the limit
as the number of players increases. This paper not only establishes
the existence and convergence of MFNE in the limit but also shows
the convergence of the steady-state distribution to the MFE under
a given policy.

2 SYSTEM MODEL AND AN M-PLAYER GAME

We consider a multi-channel ultra-dense wireless network with
N channels and M = mN devices. At each time instance, one
and only one device can transmit over a given channel due to
interference. As in many IoT applications, each device wants to
continuously communicate their latest status to corresponding
receivers, which could be an access point or another IoT device.
The messages are called status messages in this paper. We note
after a new status message is generated, the device does not need to
transmit old, unsent status messages currently in the buffer, so the
old status messages will be discarded. This communication model
is an example where the system wants the most fresh information
and wants to minimize the “age of information” [11].

We assume for each device, status messages are generated ac-
cording to a Poisson process with rate A. When the device is probing
an idle channel to transmit, it only stores the latest status message.
If the device is transmitting a status message when a new status
message arrives, the device keeps the newest status message in the
buffer and transmits it immediately after finishing sending the one
in transmission. A channel being used to transmit a status message
is in busy state, otherwise the channel is in idle state. We further
assume that the time it takes to transmit a message is exponentially
distributed with mean one.

When a device has a status message to transmit, it searches for
an idle channel to transmit the message. A device cannot afford to
continuously monitor all N frequency bands at all times, because
channel probing costs energy and battery powered smart wireless
devices are energy constrained. We assume each device maintains
an internal exponential clock with rate k. When the exponential
clock ticks, the device probes % channels. If one of the % channels
is idle, the device occupies the channel and transmits the message
in the buffer. A device has three possible states: idle (0), probing
(1) and transmitting (2). Let Q;(t) denote the number of devices in
state i at time t. Each device is associated with a continuous-time
Markov chain with three states as shown in Figure 1 in principle.
The Markov-chain includes three states and the transitions occur
as follows:

o The state moves from idle to probing when a message arrives,
which occurs with rate A.

Let d; and k; denote the probing parameters used by device
I, and d and k denote M-dimensional vectors that represent
the probing parameters of all M devices. Given Qz(t), the

number of devices in the transmitting state, by probing %

channels, the probability of finding an idle channel is
]

1- QzT(t) ki . Therefore, the state of the Markov chain

transits from probing to transmitting with rate

- (220)
N

The state transits from transmitting to idle when (1) the sta-
tus message is transmitted, which occurs with rate one, and
(2) no new status message arrives during the transmission,
which occurs with probability ﬁ To see this let T denote
the transmission time of a message, which is an exponential
random variable with mean one. Under the Poisson arrival,
the probability of no arrival during a period of duration ¢ is
¢~ Therefore, the probability that there is no new message
arrival during the transmission is

Pr (no arrival during transmission)

=E [Pr (no arrival during duration T|T)]

(o]
=/ e Met gt
=0

1
T1+ A

Therefore, the transition rate is ﬁ
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Figure 1: The Continuous-Time Markov Chain
Suppose Q»(t) is a constant, then the stationary distribution of

this three-state Markov chain, denoted by 7, can be calculated using
the global balance equations:

k 1
Ao —kl(l—(Qz) 1)7{1 = mﬂz,

from which, we have

1
S TC T
1

m = 4 2

el

1

= 1 1

I+ 5t 4

(1+A)k,(1—(%)"t

However, Q(t) is a random process whose stationary distribution is
determined by d and k so is difficult to calculate. Now let 7r<1)(d, k)
denote the stationary distribution of the Markov chain associated
with device [. As mentioned earlier, calculation of W is difficult
even for fixed k and d.

Making the problem even more difficult, each device needs to
balance the energy consumed for probing and the amount of infor-
mation transmitted. We consider the following cost function for
each device:

Jdpky) = DA,k + ¢ (nf)(d, k)dl)z . @)

In the equation above, the first term nél) (d, k) is the fraction of
time the device is in the transmitting state, so can be viewed as the
average throughput. In the second term, nfl)(d, k) is the fraction
of time the device is in the probing state and d; is the number of
channels it probes per unit time when it is in the probing state, so
n{l)(d, k)d; is the average number of channels probed per unit time.
c is a constant. The quadratic form is in keeping with the idea that
energy usage for a given task is convex for most communication
applications. Given other devices’ probing parameters d_; and k_;,
device [ aims at finding the optimal d} and k; such that

(d;. k) earg min J(dp ky)

2
=arg min - (A1) + ¢ (r (@ dr) . ©)
dik;
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We note that this is an M-player game and the difficulty in solv-
ing the Nash equilibrium of this M-player game is in calculating
7(d, k) as discussed earlier.

3 MEAN-FIELD GAME FOR ULTRA-DENSE
WIRELESS NETWORKS

Since solving the M-player game (3) is difficult, we use the MFG
approach with N, M — co. In the next section, we will show that
assuming all devices use the same probing policy (d, k), then as
N, M — oo, Q;i(c0)/M converges weakly to g}, which is the equi-
librium point of the following mean-field model:

dqo 1

290 _ g _

dt P+ 1+ qu

d

AL = g0 - k(1= (mg)M)q (4)
dgz _ dJk 1

dt —k(l—(qu) )q1 T1aa2

We defer the derivation of this mean-field model and the proof of
convergence to the Technical report [[14]]. Intuitively, g;(¢) is an
approximation of Q;(t)/M and q; is an approximation of Q;(c0)/M
at the mean-field limit.

Given ¢, the fraction of devices are in transmitting state, the
fraction of busy channels is y* = mgqj,. Now to introduce the MFG,
we assume time-scale separation such that devices adapt their prob-
ing strategies in a slower time scale than the convergence of the
mean-field model. Under this assumption, when it is the time for
devices to adapt their probing policies, all devices can measure
v, which can be done accurately under the time-scale separation
assumption. Then after measuring the fraction of busy channels is
v, each device can compute the stationary distribution of its three-
state Markov chain according to (1) by substituting y = Q2/N,
and also the corresponding cost J(d, k). Each device optimizes its
probing strategy (d*, k*) such that

(d*,k*) earg ’}}iﬁ](d’ k), (5)
where
1
J(d’ k) == 1

taaa t Pl

(l+)L)k(l—y k)
2
+c d . (6)

d k ( 1-y %
(1+A)k(1—ﬂ)+ —L 41

In other words, choosing a probing strategy to minimize its cost for
given y. Note that the cost function J(d, k) is different from J(d, k)
defined in (2) because y is a constant in J(d, k) but it is a function
of (d, k) in J(d, k). We can view J(d, k) as the true cost function and
J(d, k) is an estimate of the true cost obtained by assuming y does
not change even when the device changes its probing strategy. We
use different notations to emphasize the difference.

In summary, given (d, k), the mean-field model (4) maps (d, k)
to the fraction of busy channels y. Let T; denote this mapping, i.e.

Ty : (dk) > y.
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Given the fraction of busy channels y, each device minimizes the
cost function J in (d, k), which maps y to policy (d, k). Let T denote
this mapping, i.e.
Tyiy — (d k).
With the notation defined above, we formally define the MFG
and Mean Field Nash Equilibrium (MFNE).
MFG for Distributed MAC:

o Initialization: All devices are initialized with a common
probing policy (d, k).

o System Adaptation: The mean-field model (4) converges
under policy (d, k) and the fraction of busy channels con-
verges to a constant y.

e Policy Optimization: All devices learn y in the system
adaptation step, and optimize their probing strategies by
minimizing J(d, k). Go to the system adaptation step.

A policy (d*, k*) is called the MFNE if
(d%, k%) = To(To(d", k7).

At the MFNE where all devices use the policy (d*, k*), no device has
incentive to unilaterally change the strategy in the mean-field limit.
We also remark that the assumption that all devices use the same
policy (d, k) at the beginning is not critical. Under the assumption all
devices have the same cost function, the optimal probing strategy
is determined only by y. Therefore, even devices have different
probing strategies at the beginning, after they measure y in the
policy optimization step, they will start to use the same probing
policy.

In the next section, we prove the weak convergence of Q;(c0)/M
to g7, which is the key assumption we have used to derive the MFG.

4 MEAN-FIELD LIMIT WITH FIXED (d, k)
Assume all devices have the same cost function. Then given the frac-
tion of busy channels y, the solution of the optimal policy (d*, k*)
is the same for all devices. Therefore, without loss of generality, we
assume all devices use the same policy (d, k) and consider the con-
vergence of the fraction of busy channels to its mean-field limit in
this homogeneous case. Before proving this result, we first present
the following lemma.

LEMMA 1. The cost function J(k, d) satisfies for any k < d,
J(d.d) < J(d. k).

Proor. Given y, k and d, the stationary distribution of the three-
state Markov chain is given by (1) with Q2 /N = y. The cost function
J(k,d), therefore, can be written in terms of y, k, and d as

(1+ k(1 -y %)
1+ k(1 -y4/R) 1+ 2+ 1))
o d 2
(1+k(-yd*)a+a+ 1))
The transition rate from the probing state to the transmitting

state is k(1 — yd/k). Note that k(1 — yd/k) is increasing in k when
% > 1 because

Jk.d) = -

logy.

b ul IS

) o

Now define
fyy)=1-yY +yYylogy.
We next prove that f(y) > 0 fory > 1 and 0 < y < 1. Note that
0
6—yf(y, y) = —y¥logy +y¥logy + y¥y(logy)® = y¥y(logy)* > 0.
Now consider

fLy)=1-y+ylogy.
We have

d
—f(1 =1 <0.
ayf( ,y)=logy <

Therefore, we conclude that for y > 1 and 0 < y < 1, we have

fl.y)> f(Ly) 2 f(LD =0,

%(k@_y%)):1—y%+y%%logy20

Define x = k(1 - yd/k). We obtain

1+
1 1
sH1+A+ 5

J6) =~

)
[ 5
1+x(1+24+7)

which is clearly a decreasing function of x. Therefore, for fixed d,
J(d, k) is a decreasing function of k. Therefore, we have J(d,d) <
J(d,k) whend > k. O

According to the lemma above, given y, the optimal policy
(d*, k™) satisfies k* = d*. In other words, given d, it is optimal
to probe one channel at a time with rate d. Therefore, in the follow-
ing discussion, we focus on probing policies such that d = k. Since
d = k, we will now proceed assuming that each device wishes to
optimize a cost function written in terms of d. This function can be
written as:

2
(1+Md1-y) N d
c .
1+d(1-y)(1+A+ ) 1+d(1-y)(1+2A+ )
7

J@)=-

and the dynamical system can be written as:

dqo

=L __)

dt P T%

d

% = Aqo — d(1 — mq2)qs (8)
dqg _

DT e

THEOREM 1. Assume that all devices use the same policy (d, d).
Let y(N)(OO) denote the fraction of busy channels at the steady state in
a system with N channels and mN devices. Then y(N)(OO) converges
weakly to y, which is the unique equilibrium of mean-field model (4)
with d = k, and is the unique solution of the following equation:

~ m(1+ k(1 - y)
S 1+d1-p)(A A+ D)

©)
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Due to space constraints the proof can be found in the Technical
report [[14]], where we also briefly discuss the derivation of the
mean-field model (4). Figure 2 shows the simulation results with
m=5andc = 10, A = 0.7, and d = 0.065. We varied N from
10, to 100 and then to 1,000. We can clearly see that y converges
to the mean-field limit as N increases, and when N = 1,000, y
concentrates to the mean-field limit.

4

I
OahH!_\/}HW‘H ﬂ‘

At H‘HH“MV‘ ik
|
H\_I
.
B
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200 220 240 260 280 300 320 340 360 380 400
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Figure 2: Convergence to the Mean Field Limit with Fixed d

5 UNIQUENESS AND CONVERGENCE OF
MFNE
In the previous section, we have shown that given policy (d, d),

the stationary distribution of the mN-device system converges to a
unique mean-field limit, which defines mapping

T d— Y. (10)

The mapping
Tr:y—>d (11)

is obtained by solving the optimization problem miny J(d) for given
Y.

The following lemma provides the closed-form expression of
mapping T».

LEMMA 2. Given0 <y < 1 andd > 0, J(d) has a unique mini-

mizer
a

"~ max {2c — ab,0}’
wherea:(l—y)(1+ﬂ.)andb:(l—y)(l+/1+%).

PrROOF. Definea = (1+A)(1—y)and b = (1-y)Q1+ A+ %)
Then J(d) can be written as

ad d \?
](d)__1+bd+c(1+bd) ’

and

aJ(d) 1 2cd
= —a+ .
dd  (1+bd)? 1+bd
We now consider
2cd

h(d)z—a+l+bd.
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Note that h(d) is an increasing function for d > 0. Furthermore
h(0) = —a and

; Cgt 2
h(d) < lim h(d)=-a+ .

Therefore, if Zf < a, (i.e. h(d) < 0), then J(d) is a strictly decreasing
function and the minimum is achieved at d = co. Otherwise, the
minimum is achieved when
_a
T 2c—ab’
In summary, J(d) is minimized at
B a
" max {2c - ab, 0}’
m}

Now given mapping T; characterized in Theorem 1 and mapping
T, characterized in Lemma 2, the following theorem establishes the
existence and uniqueness of the MFNE.

THEOREM 2. The existence of MFG equilibria depends on the traffic
load A and constant c. The results can be divided into three cases.
For fixed c, the following three cases correspond to“low”, “high” and
“medium” traffic regimes.

e Case I (Low Traffic Regime): If

m(1+A)
2¢ < |max40,1— — 7
1+A+ 3
then d* = oo is the unique MGF equilibrium. In other words,
in this case, a device should continuously probe idle channels

when there is a message to transmit.
e Case II (High Traffic Regime): If

2
(1+}L)(1+A+%), (12)

26>(1—y*)2(1+/1)(1+/1+%), (13)

where

. c c? 2c
v AT \/m2(1 ) mae
then there exists a unique MGF equilibrium
o (1-y)1+2) |
2c—(1—y*)2(1+)t)(1+/1+ %)

(14)

o Case III (Medium Traffic Regime): Otherwise, MFNE does
not exist and devices switch probing strategy between d = co
and

de 1-pa+4
20—(1—)7)2(1+A)(1+/1+%)7

. . m(1+ A7)
Yy =min<1, — ("
1+4+5
Proor. We first consider Case I such that

2
2 < (max{o,l—M}) (1+A)(1+A+%). (15)

1
1+/1+7

where
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Under this condition, we have
m(l1+ A
— (—2 > 0.
1+4+ 5

(16)

Recall (g5, g7, q;) denote the unique equilibrium point of mean

field model (8) for a given d. For any d > 0, we have
o 1+
2= Tias 1

This upper bound holds because the following equations holds for
alld > 0:

* 1 *
Agqy = qu (17)

Zq’; =1, (18)

which implies

1
7 * *
T/lq§+q1+q2=l

1
1
2| o«
1+ <1
( 1+A)q2_

Recall that y* = mg3, so

and

. o m(1+/1).
1+1+ %

Substituting this inequality into (15), we have that the following
inequality holds for any d > 0 :

ch(l—y*)2(1+/1)(1+}t+%):ab, (19)

where a and b are defined in Lemma 2. Therefore, 2¢ < ab, and
d* = oo according to Lemma 2. Furthermore, given d* = co, we
have
s _ 1m(l + /13 >0
+A+ 5

according to Theorem 1 by taking d — oo. Therefore, d* = o is
the unique MFG equilibrium.

Now if d* < oo is a MFG equilibrium, it satisfies the following
two equations

1-y)(+2)
2c—(1—y*)2(1+/1)(1+)t+ %)
. md(=y)+ D)
oA by

d' = (20)

Substituting the first equation into the second one, we obtain
(1-y"H(a+H)
2c—(1-y* 2 (1+A)(1+A+ 1)

(1-y*)(A+4)
2c—(1-y* 2 (1+A)(1+2+ 1)

m(1—-y*)(1+ 1)

*

:1+(1—y*)(1+l+%)

m(1 + )
— ( ) (1 _ Y*)Z
2¢

2

Note that y* = %(1 — ¥*)? has a unique solution y* €

(0, 1) since y* is an increasing function (increasing from 0 to 1)

and (1 — y*)? is a decreasing function (decreasing from 1 to 0). In
particular, the unique solution is

=1+ ¢ c + 2 (21)
VT @ N ma e m e
Now to guarantee d* < oo, it requires
1
2¢ > (1—y*)2(1+A)(1+A+ Z)

according to (20), which concludes Case II.
Finally we consider Case III. When condition

2c>(1—y*)2(1+l)(1+l+%)

does not hold, after learning y* defined in (21), all devices choose
strategy d = co. However, when

2
m(1+ A1) 1
2c > (maX{O,l—m}) (1+/1) (1+/1+X), (22)

d = o is not an MFG equilibrium because

1
7 = T1(c0) = min Lm(—+/13
1+4+ 5
but
d=Ty(y) < o0
when

20>ab:(l—)?)z(l+l)(l+/1+%),

Therefore, after all devices choosing d = oo, the fraction of busy
channels is y in the mean-field limit. After learning the fraction
of busy channels is y, all devices change their policy to d = d.
It can be verified that Ty (d) < y*, so under policy d, the fraction
of busy channels in the mean-field limit is at most y*. Then after
learning the fraction of busy channels, all devices switch to policy
d = co. Therefore no MFG equilibrium exists in this case. The
system switches between d = co and d = d. O

We remark that “d=c0” in Case I is a limit after letting N — oo
first, in other words, the following limit: limy_,, limn_,c . Practi-
cally, it means that each device probes with its maximum probing
rate. The theorem above presents the conditions under which an
MEFNE exits. Next, we study the convergence (i.e, stability) of the
MENE. For Case I, the convergence is immediate as indicated in
the proof of Theorem 2, where we can see that all devices choose
strategy d* = oo after learning the fraction of busy channels and
reach the MFNE. We now focus on Case I under which d* is a finite
value and have the following global convergence result. Since no
MENE exits in Case III, the question of convergence is irrelevant.

THEOREM 3. Consider Case II in Theorem 2. For any ¢ > ¢y, 3
where ¢,  is a positive constant such that

2Cm, 2 1

(1+2) @A) *

m(1+A+1/)L)(

2 = b
2¢m, 2 -1
(1+)(1+A+5) )

the system converges to the MENE starting from any initial condition.
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We remark that convergence to the mean-field limit (Theorem 1)
and convergence to the MFNE (Theorem 3) are two fundamentally
different concepts. Convergence to the mean-field limit shows that
the stationary distributions of finite size systems converge weakly
to the fixed point of the mean-field model for fixed (d, k), so no
“game” is involved but the result does justify the MFG approach.
On contrast, convergence to the MFNE does not involve finite-size
stochastic systems, but investigates the dynamics of the MFG. The
result shows that the iterative process, defined as the MFG for
distributed MAC in Section 3, converges to the unique MFNE.

Proor. Recall mappings T; and Ty. Given policy (d, d), the sta-
tionary distribution of the mN-device system converges to a unique
mean-field limit, which defines the following mapping

Ti:d—y. (23)

The mapping
Ty:y —d (29)

is obtained by solving the optimization problem min, J(d) for given
Y-

We begin by showing that, for fixed m, T; always has Lipschitz
constant which is upper bounded by m(1 + A). Based on (9), we first
obtain
m(1+)(1—-y)

@ B m(1 + A)d ady .

- 2 94 2
od (1+d(1—y)(1+/1+%)) od (1+k(1—y)(1+/1+%))
which implies that

9y
ad

_ m(1+ )1 -y)
m(1+A)d + (1+d(1 - y)(1+A+1/2)°
<m(1+2).

Recall that Ty is a map from y to d which gives us the unique
minimizer for the cost function J(d), and that we consider Case II
such that

P 1
2c>(1-y) (1+/1)(1+/1+1+/1),

and
.- (-1 +2)
2c—(1—-y)2A+)A+A+1/1)°
Define o = Zc , we further obtain

(1+)(1+2+ %)
1 1-y
k= ,
A+A+1/) a-(1-y)?
from which, we have

od
dy

B 1 a+(1-y)?
T1+ A+ 1A (@ - (1-p)?)?
1 a+1
1T A+ 1A (@—17
Define T(d) = T»(T1(d)). From the discussion above, we have
oT _ '@ <m (1+2) a+1
od Ad|” (A +A+1/A) (@ -1)2"

ad
dy

Note
a+1

(a — 1)
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is a decreasing function of & for > 1 because
d (a+1 )  a+3
da \(a—1)>2 (a—1)°

so is a decreasing function of ¢ according to the definition of «a.
Furthermore,

a+1
=0.

im
a—0oo (a - 1)2
Therefore, given m and A, there exists ¢, 3 > 0 such that

2Cm, 2 1

(1+21) ah(+ard) *

m(1+/1+1//1)( =1L

2
2Cm, 2 _1
(1+D)(1+2+ 1) )
For any ¢ > ¢, 3, we have a contraction mapping and the system
converges to the MFG equilibrium. O

6 PRICE OF ANARCHY

In this section, we analyse the performance of the distributed MAC
with respect to a global optimal solution where a centralized con-
troller chooses the optimal k for minimizing

2

jd) = - (1+A)d(1-y) e d |
1+d1-y)(1+2+7) 1+4dQ-y)(1+2+7)
(25)
where
m(1+A)d(1-y) 26)

T irdi-pa+a+ D)

Denote by d the optimal solution. All devices are forced to use
probing rate d. We will call the cost corresponding to this probing
rate the global optimal cost and compare it with the cost at the
MEFNE.

Recall that for the MFNE, each device minimizes it cost function
by assuming that y is fixed. For the centralized case, the controller
solves (25) by considering y to be a function of d as defined in (26).
This is the reason the global optimal solution differs from the cost
at the MFNE. Let y denote the fraction of busy channels that occurs
as a result of the central controller picking an optimal probing rate.
Define

o)l
/@)l
to be the price of anarchy. The following theorem shows that the
price of anarchy is at most 0.5. Note that the cost at the MFNE and
the global optimal cost are both negative because the policy that
does not probe any channel and does not transmit any message has
cost zero. Therefore, lower the cost, the larger its absolute value.

THEOREM 4. The price of anarchy, 1 — TGOI/T@), is at most
1/2. In Case I, the low traffic regime defined in Theorem 2, the price
of anarchy is zero.

We note that in the low traffic regime (Case I in Theorem 2),
both the distribution MAC and the centralized solution use probing
strategy with k* = oo, so the price of anarchy is zero. We provide a
proof for Case II defined in Theorem 2.
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Proor. By substituting (26) into (25), we obtain

2
N __L y
s = m”(mmu)(l—y))

The optimal solution to minimize J(y) can be obtained by setting
g—] to be zero, which yields that the minimizer y is the unique
Y

solution to the following equation
. m(1+ (1 -p)
r= 2¢ '

By simple substitution, we further obtain

(1422

w1 PPa+7) (27)

Ji) =~

It can be shown (and indeed we show this in the technical report)
that y* is the unique solution of the following equation

o m(1+ A1 - y*)>?
v = 2¢ '
By substituting it into (25), we have

1+ 1)?

- (28)

Joy") =~

The ratio of the cost function at MENE to the optimal cost function
is given by:
OO _ 1 =y 1yt
Pl @+p) a=-p3  Q+p) -

(29)

where the last equality holds because

1+ (1=y*)? %
T -yt

TomAPa-p? T (1-p)3
2c

*

v
v

Observe that y is strictly smaller than y* because otherwise

* 1—y* 2
v O-rg
vy o Q-7
Therefore, we conclude that

P[09] 1

>

@ @+

1
1> > —.
2
Which implies that:

1
0 < Price of Anarchy < 2

In other words, the price of anarchy is upper bounded by 0.5. O

Focusing on Case II defined in Theorem 2, Figure 3 shows the
price of anarchy with ¢ = 0.1 and m = 5 with A varying from 0.5 to
2. We can see that the price of anarchy increases as A increases and
approaches 0.5.

price of anarchy
o o o o
@ @ @ @
& < & 8

o
@
&

0.34
05 1 1.5 2

Figure 3: Price of Anarchy versus 1

7 SIMULATIONS

In this section, we use simulations to compare the distributed MAC
policy, named DMAC-G for short with other similar light-weight
distributed protocols. We simulated N = 1, 000 devices with m = 5,
and ¢ = 10, and the average A varying from 0.5 to 1. These choices of
parameters guarantee the existence and convergence to the MENE.
We used uniformization to simulate the CTMC described in our
system model in Section 2.

DMAC -G :We simulated two different scenarios for the DMAC
-G protocol:homogeneous case where all devices have the same
arrival rate and the same parameter, ¢ and heterogeneous case
where devices have different arrival rates and different values of
parameter c. Since we ran the simulations on a laptop without
parallelization, to speed up the simulations, the fraction of busy
channels was measured as a common variable shared by all devices.
In this way, we were able to simulate an M-device system efficiently
using uniformization.

e The homogeneous case In the homogeneous case every
device has the same arrival rate A and energy parameter
c. Hence, each device has the same utility function and so
will choose the same sampling rate when given the common
random variable for the fraction of busy channels.

o The heterogeneous case Each device follows the policy
(d, d), however, the devices have different arrival rates and
parameters c. The arrival rates were picked uniformly at ran-
dom from [0.75A4, 1.254]. Similarly the values of the parame-
ter ¢ were chosen uniformly at random from [0.75¢, 1.25c¢]
for some c.

Therefore, both cases have the same average arrival rates and cost
parameters. In the simulations, each device picks an initial probing
rate. After the system converges to its steady state, each device
then picks a new probing rate which minimizes its cost given the
measured fraction of busy channels. The process repeats until the
system reaches the equilibrium and devices “learn” the probing
rates in the simulations.

E-CSMA : Each device maintains an exponential clock with initial
rate k = 1. When the clock ticks, the device probes one of the N
channels, chosen uniformly at random. If the probed channel is idle,
the device starts to transmit the packet, if not the device halves
its probing rate and the clock restarts. We simulated this protocol
under both homogeneous and heterogeneous scenarios.
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We evaluated the performance of the protocols in terms of the
cost and per-packet delay(for those successfully transmitted pack-
ets). We can observe from Figure 4 that DMAC-G yield a lower cost
than E-CSMA and the gap increases as A increases. Note, that the
cost function is a linear combination of the probing cost minus the
throughput. From Figure 6, we can also observe that our algorithm
has much lower per-packet delay. The average delay is less than 2
for all the A under DMAC-G, which reduces the probing rate when
the traffic load increases, which reduces overall cost and per-packet
delay(increases the freshness of the information).

These simulations confirm: (i) the analytical results in this paper,
while derived for the homogeneous case, also match the perfor-
mances of the heterogeneous case reasonably well; and (ii) our
low-complexity, adaptive MAC protocol signficantly outperforms
the exponential back-off MAC protocol (a commonly used MAC
protocol).

0.24 T T T T T T T T T
026 ﬁ*f———ffl
g
&= B
—&— homogenous DMAC
B . —— heterogenous DMAG | |
38 homogenous E-CSMA
e —&— heterogenous E-CSMA | |
©
]
2 ]
3 -
%
8\\\ X 4
. AN
N AN
041 e 4
N\
\
-0.42 N
\
-0.44
05 055 06 065 07 075 08 085 09 095 1
average \

Figure 4: Average Costs under the Four Different Scenarios.
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fraction of busy channels

"y ]
SN

0.85 09 095 1

0.26
05 055 06 065 07 075 08
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Figure 5: Average Fraction of Busy Channels under the Four
Different Scenarios.

8 CONCLUSION

This paper formulated a multichannel ultra-dense wireless net-
work with distributed MAC as a mean-field game, and provided a
comprehensive analysis of the system including the existence and
uniqueness of the MENE, convergence to the MFNE and the price
of anarchy compared with a global optimal solution. Numerical
evaluations confirmed our theoretical results.
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Figure 6: Average delay per delivered packet per user under
the Four Different Scenarios.
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