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Place a car independently with probability p at each site of a graph. Each
initially vacant site is a parking spot that can fit one car. Cars simultaneously
perform independent random walks. When a car encounters an available park-
ing spot it parks there. Other cars can still drive over the site, but cannot park
there. For a large class of transitive and unimodular graphs, we show that the
root is almost surely visited infinitely many times when p > 1/2, and only
finitely many times otherwise.

1. Introduction. The study of parking functions dates back over 50 years to
the work of Konheim and Weiss [21]. Motivated by a hashing algorithm, they in-
troduced a parking process on the path with n vertices. It starts with a parking spot
at each vertex and x; cars at spot i. The configuration vector x = (xy, ..., x,) has
the multinomial distribution that comes from placing each of the [an] cars inde-
pendently at a uniformly chosen random spot. Cars then deterministically drive
with unit velocity toward 1 and park at the first available spot. Parking spots fit at
most one car and ties are broken arbitrarily.

Configurations x for which all cars park are called parking functions. The au-
thors of [21] find that the probability that a random initial configuration is a parking
function converges to (1 — «)e® as n — oo. Parking functions have attracted a lot
of attention since. Their relation to polytopes was studied by Stanley and Pitman in
[28]. More recently, Diaconis and Hicks studied the geometry of a random parking
function [11].

In this paper, we modify the underlying graph and car trajectories so that the
parking process is less combinatorial and more like an interacting particle system
from statistical physics. We consider a process in which vertices of a graph (V, £)
are each initially independently labeled a car or a parking spot with respective
probability p and 1 — p. The cars perform independent random walks according
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F1G. 1. Simulation of parking process on finite path of 2000 nodes for 2000 iterations for car
density p = 0.45 (left) and p = 0.55 (right). Cars and spots are depicted by blue and red dots,
respectively. Times runs from bottom to top.

to a transition kernel K and stop at a spot if it is unoccupied. If multiple cars arrive
at the same unoccupied spot at the same time, one of them is uniformly chosen to
park. Cars arriving at occupied spots pass through unaffected. For each site v € V,
let V,(v) be the number of visits to v up to time ¢ by cars (not including time zero),
and let V® =1lim,_, o, V,”’ be the total number of visits to v. When the V,"”’ have
the same distribution for all v, we write V; and V for random variables with the
same distributions as Vt(v) and V.

At p = 1/2, the densities of cars and spots are equal. It is natural to guess that
a phase transition in V® occurs at this balance point. We show that this is true
for sufficiently homogeneous graphs, and describe the behavior at criticality under
rather general conditions. Before describing these conditions, we state a special
case of our result on the lattice (see Figure 1).

THEOREM 1.1. Consider the parking process on Z¢ with simple symmetric
random walks:

(1) If p = 1/2, then V is infinite almost surely. Moreover, EV; = 2p — 1)t +
o(t).

(i) If p < 1/2, then V is finite almost surely. Moreover, if p < (256d%%)~1,
then EV < oo.

1.1. Background and motivation. The setting for our parking dynamics is the
class of transitive, unimodular graphs with homogeneous random walk kernels.
Applying unimodularity to study interacting particle systems has been a recent
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trend [15, 20, 26]. This level of generality often allows for simpler proofs and
deeper insights about why the theorems hold.

Cars and spots are a helpful metaphor when visualizing our process. However,
the main feature of our dynamics are “collisions” between cars and parking spots
that result in mutual annihilation. Numerous similar processes have evaded a rig-
orous analysis, so it may be somewhat surprising that we are able to, in some
generality, characterize the phase transition in this annihilating system. We now
put our work in the context of a few related models.

A model that is fairly well understood is annihilating random walk, which can
be described as the parking process in continuous time, with no parking spots
(p = 1), and in which cars mutually annihilate upon colliding. The process was
introduced by ErdSs and Ney [14] in one dimension, and first analyzed on Z¢ by
Griffeath [18], Bramson and Griffeath [4], and Arratia [1, 2]. To study p;, the
probability that a particle is at the origin at time ¢, the authors rely on a parity
coupling to coalescing random walk, the modified process in which only one par-
ticle is annihilated in each collision. The advantage of coalescing random walk is
that its time-reversal dual is the Markov process known as the voter model. This
makes it possible to analyze the coalescing random walk, and thus the annihilating
variant, by studying the size of a voter model cluster. There does not seem to exist
a Markov process with a useful time-reversal connection to the parking process.
However, one of our main tools is another kind of duality, between spots and cars,
which is a consequence of a mass transport principle on unimodular graphs (see
Lemma 4.1). The model closer to ours is the two-type annihilating random walk
studied by Bramson and Lebowitz [5-7], in which particles of the same type do
not interact, but two particles of different types mutually annihilate.

The introduction of stationary particles (i.e., spots), makes the question of sur-
vival of moving particles (i.e., cars) in our annihilating process resemble the noto-
riously difficult question of fluctuation in ballistic annihilation. In this process on
7, each site is initially a particle (resp., a blockade) independently with probability
p (resp., 1 — p). Each particle is also independently assigned a direction, either
left or right, with equal probability. Particles then move deterministically at unit
velocity in their assigned directions and annihilate if they meet another particle
or blockade. If every blockade is destroyed almost surely we say the process fluc-
tuates, otherwise it fixates. It is conjectured in [13] that for p > 3/4 this process
fluctuates. This is worked out in a nearly rigorous way in [22], but the argument
does not yield any probabilistic intuition. Recent papers [12, 27] prove results that
imply fixation for p < 2/3 4 € for a small € > 0, but currently nothing is known
about the fluctuation phase, not even whether it exists for some p < 1.

A related process is the meteor model, introduced by Benjamini about 10 years
ago (see [3]). Fix an € > 0 and place e-balls in Euclidean space with centers at a
unit intensity Poisson process. Each of these balls is assigned a uniformly random
direction, and proceeds to move deterministically along this direction at unit speed.
Like in ballistic annihilation, when meteors collide they mutually annihilate. It
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FI1G. 2.  Evolution of the critical (p = 1/2) dynamics on the unoriented two-dimensional lattice,
represented by the 300 x 300 square with periodic boundary. Times 10, 50 and 300 are depicted,
and any empty site whose closest nonempty site is a car (resp., a parking spot) is colored blue
(resp., orange), with increasingly rare ties colored grey.

remains an open problem, in any dimension d > 2, to prove that the origin is a.s.
occupied by infinitely many meteors [3], Conjecture 3.4.

The difficulty with models like parking, ballistic annihilation and the meteor
model is that the long-time behavior of different particles is highly correlated:
knowing a particle has yet to be annihilated depends in a meaningful way on all
particles in a growing neighborhood. For example, if a meteor has survived up to
time ¢, then many meteors in front of it must have been destroyed earlier. This
requires intricate coordination between a compounding number of meteors. Simi-
larly, if a car ¢ is unparked at time ¢ in the parking model, then every parking spot
on the trajectory of ¢ must have been occupied before ¢ arrived. It is not immedi-
ately clear how this affects the likelihood of having spots or cars near c. One might
guess that ¢ needed many cars nearby because it has survived so long, but as time
goes on, these cars protect ¢ by parking, and so ¢ may become more and more iso-
lated. The complicated dependence structure, especially at criticality (p = 1/2),
is evident in the clustering of cars and unparked spots we see in simulations (see
Figure 2).

1.2. Related work. Goldschmidt and Przykucki study a similar process on
trees in [16]. Let Poi(«) denote a Poisson distribution with mean «. Their main
result concerns rooted Galton—Watson trees with a Poi(1) offspring distribution,
oriented so that all edges point toward the root and, therefore, all random walks
move at each step closer to the root. Every vertex is initially a parking spot. Place
Poi(a) cars at each site. A car parks if it arrives at an available spot (breaking ties
uniformly at random). If a car arrives at an occupied spot, it continues toward the
root until it finds a spot or drives off the tree through the root.

Let X be the total number of cars that never find a spot. Since the tree (and there-
fore X) is almost surely finite, it is more natural to consider the expected value of
X. In [16], Theorem 1.2, the authors prove that EX undergoes a sharp phase tran-
sition: EX = oo for @ > 1/2, and EX <1 for @ < 1/2. They also study X when
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the critical Galton—Watson tree is conditioned to be infinite. In [16], Theorem 1.3,
they prove that, for o < 1/2, with probability g, = +/1 —20/(1 — &) every car
finds a parking spot. Note that « = 1/2 is not the exact analogue of p = 1/2 in the
parking process we consider here. Because [16] has every site initially a parking
spot, the probability that a parking spot is empty after placing cars is e~ %, and
the expected number of cars at a site is E(Poi(a) — 1)T = e % 4+ a — 1. These
two quantities are not equal at « = 1/2; in fact, there are many more vacant spots
than cars. We will see that this imbalance comes from the fact that the oriented
trees they consider are not unimodular. Goldschmidt and Przykucki’s work gives
a probabilistic intuition for an analogous phase transition established by Lackner
and Panholzer [23]. There is also another class of parking models (also called ran-
dom sequential adsorption), in which cars arrive by external deposition and do not
move within G; see, for example, [10].

For [16] and [23], the randomness comes from the environment and the initial
placement of cars. Since the underlying graph is a directed tree, the cars follow de-
terministic paths. By contrast, in our parking process on graphs cars decide where
to move according to a common transition kernel K. Depending on this kernel,
the resulting car trajectories may be deterministic or random. Our main result,
Theorem 2.1, states that Theorem 1.1 holds in general if the kernel K has certain
transitivity and unimodularity properties.

Organization of paper. 'We give a more precise definition of the model and our
results in Section 2. We give some examples and state open questions in Section 3.
The proofs of our main results—Theorems 2.1 and 2.2—are given in Section 4.

Note added in the revision. As we prepared the revision of this paper, we be-
came aware of the recent paper [9], which contains a recurrence theorem for a
continuous time version of the model (similar to the first half of Theorem 2.1(1)).
In their model, each vertex of a graph is randomly assigned a number of either
type-A particles or type-B particles, and assignments are made in an i.i.d. fash-
ion. Particles perform continuous time random walks, type-A with rate D4 and
type-B with rate Dp. When an A and a B particle meet, they annihilate. The class
of graphs considered has symmetry constraints similar to ours (“reflectable” and
“generously transitive” replace our conditions).

Most of their paper deals with the case where D4 and Dp are positive. Our
model (which is in discrete time instead of continuous time) corresponds to the
case that Dp = 0 and D4 = 1; that is, the type-B particles behave like parking
spots and type-A particles behave like cars. This case is studied in [9], Section 4.4,
in which it is shown that if the density of type-A particles is at least equal to that
of the type-B particles, then a.s., each vertex is visited infinitely often by (type-A)
particles. This corresponds to our Theorem 2.1(i) part 1. It is also shown in [9],
Theorem 4, that for general rates D4 and Dp, the total density of particles per
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site at time t is no smaller than C/t, and in our setting this should correspond to a
lower bound of Clog¢ for EV; when p > 1/2.

The methods of [9] also involve the mass-transport principle, but for their den-
sity lower bound, they modify an argument of Bramson—-Lebowitz [5]. A main
difference between the analysis in [9] and that of our paper is that our perspective
is from phase transitions in particle systems, rather than recurrence, and so our
techniques differ. Namely, (a) in Theorem 2.1(i), we derive a recurrence equation
for the mean EV; and use it to find the asymptotic (2p — 1)t + o(¢) (giving o(¢)
at the critical value) and (b) in Theorem 2.1(ii), we use the notion of “busy sub-
graphs” to show that if the density of spots (corresponding to type-B particles) is
sufficiently small, then the total number of visits to a site has finite mean. Both of
these approaches allow us to give quantitative control in the different phases, and
are aspects of the model that do not appear in [9].

2. Definitions and statements of results. Let G = (V, £) be a graph, where
V is a set of vertices and £ C V? is a set of edges. We assume that G is a lo-
cally finite, connected, simple graph, and we distinguish an arbitrary vertex 0 € V
for purposes of stating some of our results. For v € V, let N(v) be the set of all
neighbors of v in G. For x, y € V, we let dist(x, y) denote shortest path distance
between x and y. Let B(x,t) = {v € G: dist(x, v) <t} denote the ball of radius ¢
centered at x, and let 1{-} be an indicator random variable.

The parking process is defined on a pair (G, K), where K is a (Markov) ker-
nel on G, which is a function K: V x V — [0, 1] such that K(u,v) = 0 if
(u,v) ¢ € and } ey K(u,v) = 1. For each u,v € V, we say u is accessible
from v if there exists a sequence v = xg, X1, ..., X, = u of adjacent nodes such
that ]—Il'.’:_o1 K (x;, xiy+1) > 0.

Initially, each v € V is assigned an unparked car, written as (v, unparked),
independently with probability p. Unassigned sites are parking spots that can fit
one car. Unparked cars simultaneously perform independent discrete time random
walks according to the kernel K until they find an available spot. When multiple
unparked cars move to the same parking spot, each car generates a uniform [0, 1]
variable. The car with smallest value parks and the others remain unparked.

Our probability space is

(1) Q= ({—1, 1} x (WY) x ([0, 1]V))Y

with probability measure P, under which all coordinates are independent, and for
each v € V the three independent components are distributed as follows. The first
coordinate is a random variable with probability p to be 1 (if there is a car initially
at v) and probability 1 — p to be —1 (otherwise). The second is a random walk
started at v with transition kernel K, which is the path that an unparked car placed
at v will follow (this path continues past the parking time). The third is a sequence
of i.i.d. uniform [0, 1] random variables to break ties if multiple cars arrive at the
same parking spot.
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If j €V initially has a car, we say that it visits site v at time ¢ > 1 if
(j,unparked) is at some neighbor u € N (v) at time ¢ — 1 and moves to v at
time ¢. Define

t
Vt(v) = Z#{j € V: car j visits site v at time s},

s=1

andlet V® :=1lim,_, Vt(v) be the total number of visits to v. When the Vt(v) have
the same distribution for all v, we write V; and V for random variables with the
same distributions as V,(U) and V.

The canonical example of our theorem is the parking process with simple ran-
dom walk on Z? from Theorem 1.1. In this setting we have translation invariance,
a mass-transport principle by which we are able to change perspectives between
cars and spots, and nice ergodicity properties. These essential features are shared
by a broader class of graphs that includes regular trees and Cayley graphs. We
describe them in more detail now.

Denote by Aut(G) the group of all automorphisms of the graph G. Let Autg (G)
be the subgroup of Aut(G) consisting of all K -preserving automorphisms; that is,

Autg (G) = {p € Aut(G): K (u,v) = K (¢u), ¢(v)) Yu,v € V}.

Given a subgroup I'g < Autg (G) of K-preserving automorphisms of G, for each
u,v €V, denote 'k (u,v) ={p € 'k : ¢(u) = v}. We define the following condi-
tions on the triple (G, K, I'k):

1. (transitivity) (G, K, ') is transitive if I' g (u, v) is nonempty for each u, v €
V.
2. (unimodularity) (G, K, ') is unimodular if for each u, v € V,

|FK(u,u)v| = |FK(U, v)u{ < 0.

3. (infinite accessibility) (G, K, ') is infinitely accessible if there exist ¢ €
'k and u € V such that {¢" (u) : n > 0} is infinite and u is accessible from @ (u).

Any subgroup I'k < Autg (G) of K-preserving automorphisms on G acts on
our probability space naturally by shifting all vertex labeled variables; that is, for
each o e 'y and w € Q, p(w)(v) := a)(go_l(v)). Note that if (G, K, 'k) is tran-
sitive, then the parking process on (G, K) is invariant under this action in law. In
particular, for each fixed ¢ > 0, the law of V,(") does not depend on v € V. This is
crucial to obtain a recursive relation for EV; (see Proposition 4.5).

Duality between parking spots and cars on Z¢ is obtained in a form of the well-
known mass-transport principle, which holds in general for unimodular graphs.
Our definition of unimodularity for the triple (G, K, I'x) is adapted from the stan-
dard unimodularity defined for Bernoulli percolation (see [24]) in order to respect
the parking process. For instance, this property is trivially satisfied when G is a
Cayley graph and K is uniform (see Example 3.4 for more detail).
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A key ingredient for both parts of Theorem 2.1, is a 0—1 law for V. This relies on
the existence of an ergodic transformation ¢ € I'g. Furthermore, in order to show
EV < oo for small p, we need to estimate the expected exit time of a random walk
from a ball of fixed radius. The infinite accessibility for (G, K, I'k) is sufficient to
make these arguments work. Note that in the definition of infinite accessibility, u
is accessible from all ¢" (1) since ¢ € I'x. We remark that there exists a transitive
and unimodular but not infinitely accessible triple (G, K, I'x) where G is infinite
and locally finite (see Example 3.4).

We briefly sketch the argument that any ¢ € I'x in the definition of infinite
accessibility must be ergodic. Take an event A which is g-invariant, approximate
it by a cylinder event B, and choose any k so that ¢* B and B depend on disjoint
sets of variables, and thus are independent (this is possible because all vertices have
infinite orbits under ¢). Since B approximates A and ¢* B approximates g A = A,
A is independent of itself.

Now we state the general version of Theorem 1.1 and also give a theorem that
describes the probabilities that cars and spots remain unparked for all time.

THEOREM 2.1. Let G be a locally finite graph with a kernel K, and let 'k
be a subgroup of Autg (G). If (G, K, ') is transitive, unimodular and infinitely
accessible, then the following hold:

(1) If p = 1/2, then V is infinite almost surely. Moreover, EV; = 2p — 1)t +
o(t) ast — Q.

(1) If p < 1/2,then 'V is finite almost surely. Moreover, if p is sufficiently small,
then EV < oo.

The proof of Theorem 2.1 hinges on a recursive distributional equation (Propo-
sition 4.5) that expresses V;y1 in terms of the number of visits to its neighboring
sites, and a duality between parking spots and cars coming from the mass-transport
principle (Lemma 4.1).

We also specify the probability that a given car eventually parks, and that a
parking spot remains vacant forever. For the sake of concision, we say that a car
parks if it eventually parks, and we say that a spot is parked in if a car eventually
parks in that spot.

THEOREM 2.2. Let (G, K, T'g) be as in Theorem 2.1. Then,

1—

(2)  Plcar initially at 0 parks|0 has a car initially] = p
1, p<1/2,
1, p>1/2,
3) Plspot at 0 is parked in|0 is a parking spot] = )4 p<1/2.

l—p’
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The case p = 1/2 is especially interesting. Note that Theorem 2.1 says EV;
grows linearly in ¢ for p > 1/2, but sublinearly for p = 1/2. Moreover, Theo-
rem 2.2 says that when p = 1/2, despite the fact that V is infinite, every car finds
a parking spot, and every parking spot is parked in. This implies that some cars
drive a very long distance to find a spot.

The phase transition at p = 1/2 does not occur on asymmetric graphs. Indeed,
[16], Proposition 3.5, shows that on the directed binary tree the critical probability
is in the interval [1/64, 1/4] ~ [0.02, 0.25]; see also Example 3.3. Moreover, on
graphs with rapid enough degree expansion, there is no phase transition. For ex-
ample, consider the tree where each vertex at distance n from the root has degree
2". Even when p = 1 the induced drift is so strong that only finitely many cars will
visit the root.

3. Examples and further questions. In this section, we discuss some exam-
ples of triples (G, K, I'k) for which our main theorems apply. We also state a few
further questions.

EXAMPLE 3.1 (Unoriented lattices and regular trees). Let G = (V,€) be
either the d-dimensional integer lattice Z¢ with nearest neighbor edges or the
(d + 1)-regular tree Tg‘)m. Let K be the uniform kernel on G; that is, K (u, v) =
K(u,w) if v, w € N(u). Lattices and regular trees both have a natural notion of
translations, so we let I'x be the subgroup of all translations on G (recall that we
do not require 'k to be the collection of all automorphisms). Clearly, (G, K, I'k)
is transitive; since translations have no fixed points, unimodularity follows triv-
ially; powers of a single translation applied to any vertex generates an infinite ray,
so infinite accessibility also holds. Hence Theorem 2.1 applies to Z¢ and Tg"m
with uniform kernel. See Figure 3 for simulation results for the symmetric park-
ing process on Z>. For this case, the bound for E,V < o0 in Theorem 1.1(ii) is
p <2142~ 8.2602 x 1075,

EXAMPLE 3.2 (Oriented lattices). Let G be the d-dimensional integer lattice
74 with nearest neighbor edges. Let (¢; )l‘f':1 be the standard basis for Z¢, and define
a kernel K on Z4 by K(x,x —e;) =1/d foreach 1 <i <d and K = 0 otherwise.
Since usual translations on Z¢ preserve this oriented kernel K, we let I'g be the
group of all translations of Z¢ as before. As in the previous example, it is easy
to see that (Z4, K, k) is transitive, unimodular and infinitely accessible, hence
Theorem 2.1 applies. For this case, the bound for E,V < oo in Theorem 2.1(ii) is
p<2710e7221.3216 x 1074,

ExAMPLE 3.3 (Directed d-ary trees). Let G = (V,E) be ’]I‘g"m (see Exam-
ple 3.1). To define an oriented kernel K on Tg"m, identify a bi-infinite path =,
choose one of the two orientations of 7, and oriented every edge of ']I‘gom toward
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F1G. 3. (Left) Simulation of the dynamics on the two-dimensional oriented lattice, which is ap-
proximated by an L x L square A with periodic boundary and L = 10,000. The expectation EV;
is approximated by V; = L2 2xen; Vi(x), where Vi (x) is the number of car-visits to x in the time
interval [0, t]. The (red) plot of log V¢ versus logt up to time t = L is consistent with a power law;
the (blue) regression line is obtained by the data in the time interval [L/2, L] and has slope 0.2528.
This suggests that EVy might increase as 1174 The oriented case is difficult to simulate due to slow
convergence and early onset of finite-size effects (which make simulations past time t = L question-
able), so we do not have a definite statistical support for the 1174 conjecture. (Right) Simulation of
the dynamics on the two-dimensional unoriented lattice. The notation and the value of L is as in left,
but now the simulation is run up to time t = 4L (the larger time is justified by much slower symmetric
random walks), and the regression line is obtained by the data in the time interval [2L,4L] and has
slope 0.4854. This suggests that EV; increases as 1172, and that the density of blockades decreases
as t— Y2 which would agree with annihilating walk systems in [5].

7. For each oriented edge (u, v) of Tg"m, let K(u,v) =1, so each car follows a
deterministic path toward infinity. If K (u, v) = 1, we call v the parent of # and u a
child of v. Assume that I'g < Autg (G) is such that (G, K, I'k) is transitive. Then
we claim that the triple must not be unimodular for d > 2.

To see this, fix anode x € V and let x1, ..., x4 be its children. Observe that if an
automorphism ¢ € I'g fixes a node y € V, then it must also fix its parent. Hence
[Tk (x1, x1)x| = 1. On the other hand, by transitivity, there exists ¢; € I'x such that
@i(x1) = x; for each 1 <i <d. Since ¢; preserves graph distance as well as the
oriented kernel K, it follows that each ¢; fixes x and permutes its children. Hence
[Tk (x,x)x1| >d > 2, as claimed. Thus Theorem 2.1 does not apply when d > 2.
As mentioned previously, [16], Proposition 3.5, shows that P(V = oo) > 0 for
p > 1/4 when d = 2. Indeed, observe that if there is an infinite ray containing more
than a 1/2 density of initial cars, then P(V = oco) > 0. In fact, a quasi-Bernoulli
percolation argument then shows that this occurs when p > 0.038. Thus in this
case p. €[0.02,0.038], contrary to the transitive unimodular case in Theorem 2.1.

For d = 1, the pair (G, K) becomes the directed one-dimensional lattice where
all edges are directed from right to left. So by Example 3.2, if we take 'k to
be the group of one-dimensional translations, then the triple (G, K, I'k) satisfies
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the assumption of our theorems. Hence Theorem 2.1 applies. Further information
about the process can be obtained at criticality p = 1/2 due to the simple topology
and kernel. Namely, we have

(4) EV[ ~ 2I/JT.

To see this, note that by counting the number of cars against parking spots from
right to left, the lifespan of a car until parking equals the first hitting time of 0 of
an associated simple symmetric random walk (S;,),>0, and

Vi iM, = max S Vr>1.
0<k<t
Therefore, (4) follows from the well-known asymptotic of the expected running
maximum for simple symmetric random walk.

EXAMPLE 3.4 (Cayley graphs and infinite accessibility). Let H be a finitely
generated infinite group with set of generators S. Recall that the Cayley graph of
H (with generating set S) is defined by the graph G = (V, £) where V = H and
(a,b) € € if and only if ga = b or a = gb for some g € S. Then G is an infinite
and locally finite simple graph with common degree |S|. The group action of H on
H itself gives a natural subgroup of automorphisms I' < Aut(G), which consists
of all left multiplications a — ga. If we endow G with the uniform kernel K and
if welet 'y =T, then (G, K, I'k) is transitive and unimodular.

Observe that (G, K, ') is infinitely accessible if and only if H has some ele-
ment of infinite order. This leads to the famous question in group theory that Burn-
side asked in 1902 [8]: Is every finitely generated group, whose every element has
finite order, a finite group ? In 1964, Golod and Shafarevich [17] resolved this ques-
tion negatively, and since then various counterexamples with additional properties
were found (e.g., [25, 29]). Therefore, (G, K, ') is transitive and unimodular but
not infinitely accessible whenever we choose H to be any such counterexample to
Burnside’s problem.

When p = 1/2, EV; grows sublinearly. As we have seen in (4), we sus-
pect a polynomial growth EV; ~ Ct® for some constants C > 0 and « € (0, 1),
which may depend on the underlying graph. On the oriented and unoriented two-
dimensional lattices, simulations are given in Figure 3.

OPEN QUESTION 1. For the parking process on (G, K) as before, at what
rate does EV; increase to infinity when p = 1/2? On the oriented and unoriented
72, is it true that EV, ~ Cit'* and EV, ~ Cot1/2 for some constants C1, Co > 0,
respectively?

In [16], Theorem 1.2, the authors observe a discontinuous phase transition for
EX (where X is the total number of cars that never find a spot), and find that it is
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FIG. 4. Estimation of EV for subcritical density p € [0, 0.49] on the two-dimensional oriented
(left) and unoriented (right) two-dimensional lattice. The dynamics are run on a square A with
L = 2000, until time t when all blockades are eliminated. Then EV is approximated by V.=V, as
defined in the caption of Figure 3. We conjecture that EV diverges as (1/2 — p)~Y as p /' 1/2, for
some critical exponent y . In the unoriented case, y appears to be near 1, while in the oriented case,
it appears to be somewhat less than 1/2.

bounded by 1 for « < 1/2, and infinite for o > 1/2. This abrupt transition comes
from the fact that a critical Galton—Watson tree is a.s. finite. On infinite graphs this
does not occur. Indeed, the function p — E,V is left-continuous on any (G, K)
because it is monotone nondecreasing (Proposition 4.6) and lower semicontinuous
(being an increasing limit of the continuous functions p — E,V;). In particular,
we have lim, »12E,V =E;;V = 0o, where the second equality follows from
Theorem 2.1(i). We conjecture that there is a critical exponent y > 0 such that
E,V ~(1/2—p)7" as p /' 1/2 (see Figure 4). Of course, one must first prove
that E,V is finite for all p < 1/2. Our current argument for the second part of
Theorem 2.1(ii) only shows E,V < oo for sufficiently small p.

OPEN QUESTION 2. For (G, K,Tk) as in Theorem 2.1, is E,V < o0 for
p <1/22 Also, is E,V ~ (1/2 — p)™" as p /' 1/2, for some critical exponent
y >0?

Our final open question concerns a more precise understanding of the evolution
of the parking process, and is inspired by the simulations in Figure 2.
OPEN QUESTION 3. [fp=1/2,is

tlim P(0 is closer to a spot than to a car) = 07?
— 00

If so, how fast does this probability decay to 0?
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4. Proof of Theorems 2.1 and 2.2. For the entire section, we assume that
G = (V, &) is alocally finite infinite graph with a kernel K and subgroup 'k of K -
preserving automorphisms of G such that (G, K, I') is transitive and unimodular,
and that the infinite accessibility condition holds. We start by recalling the mass-
transport principle, which we will use heavily in many proofs. We state our version
in the following lemma, which is a minor modification of Theorem 8.7 in Lyons
and Peres [24].

LEMMA 4.1 (The mass-transport principle). Let Z: V x V — [0, 00) be a
collection of random variables such that EZ (x,y) = EZ(¢(x), ¢(y)) for all ¢ €
"'k whenever y is accessible from x or x is accessible from y, and EZ (x,y) =0
otherwise. Then we have

E[Z Z(0, y)] = E[Z Z(y, 0)]

yey yey
Next, we establish a 0—1 law for V.
LEMMA 4.2. Forall p €10, 1], we have P[V = 0] € {0, 1}.

PROOF. Assume that P(V = o0) > 0; we will show it must then be 1. Since
(G, K) is infinitely accessible, there exist ¢ € 'x and x € V such that {¢" (x) :
n > 0} is infinite and x is accessible from ¢(x). As noted before the statement of
Theorem 2.1, ¢ is ergodic. Therefore, since we have assumed that P(V = oo) > 0,
we can a.s. find a (random) integer ng such that z := ¢"0(x) satisfies V@ = 0.
Because x is accessible from z, it suffices to show that if x, z € V satisfy K (z, x) >
0, then a.s., if V@ = oo, then V™) = 0o. This follows as usual from the Markov
property. [J

The next proposition provides a sufficient condition for V to be infinite. Namely,
if EV; grows linearly and EVT2 grows at most quadratically, then V' is almost surely
infinite. Under our assumptions on (G, K, '), we will then show that this is the
case for all p > 1/2, and use a more nuanced argument in the critical case p = 1/2.

PROPOSITION 4.3.  [f there exist ¢, C > 0 such that EV, > ct and EV? < Ct?
forallt > 1, then V is infinite almost surely.

PROOF. The Paley—Zygmund inequality yields

1 (EV;)? - c?
4 EV? ~4C

PV, >EV;/2] =

Since EV; — oo it follows that P[V = o0] > c2/4C. Lemma 4.2 implies that V is
almost surely infinite. [J
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In fact, the quadratic upper bound on EVt2 in Proposition 4.3 holds for all p €
[0, 1].

PROPOSITION 4.4. EV? < p(p + 1)t2.

PROOF. We dominate the parking process by a system of independent random
walks with no parking. Namely, put a particle on each site if and only if there is
a car initially; particles perform independent random walks indefinitely with the
transition kernel K used for the parking process. We couple this new process with
the original parking process by letting each car follow the path of its matched
particle. Let V/ be the number of visits to the origin up to time 7 in this system
(counting multiple visits by the same particle multiple times). Then by the coupling
we have
) Vi < V,/;

that is, V; is stochastically dominated by V; in the usual sense: P[V; > z] <P[V/ >
z] forall z > 0.
Now for each x,y € V and ¢ > 0, let W;(x, y) be the number of visits of a
particle at x to y up to time ¢. That is,
t
Wi (x,y) = Z 1{a particle starts at x and is at y at time s}.
s=1
Then we can write
V=" Wi(y,0).
yey
A key observation is
Z W; (0, y) = t1{0 has a particle initially}.
yevy
Hence Lemma 4.1 yields

EV/ = E[Z Wi (y, 0)} = E[Z W (0, y)] = pt

yevy yeV
and

2
SEWA0.0) = S W00 <E| (X wion) | =pr
yey yey yev

Now using the independence between random walk trajectories of particles starting
at different sites, we have

E[(V})*] = Var(V)) + (EV;)*
< Y E[WA(y, 0]+ (EV))* < pr® + (p)*.
yeVy
Hence the assertion follows from (5). [
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The foundation of our analysis is a recursive formula satisfied by EV;. In the
next result, we write “y has a car” for “a car initially starts at y.”

PROPOSITION 4.5. Forallt >0,

(6) EV,.1 —EV,=2p—14P[0isaspotand V" =0].
PROOF. First, we write
t+1
(7) EVI(_?)1 = Z Z E#{cars that visit 0 at time s through y}.
yeN(0)s=1

By conditioning on the “information up until time s — 1" and partitioning the space
according to whether y is an available spot at time s — 1, we see that each unparked
car at y at time s — 1 visits 0 independently with probability K (y, 0). This gives
(recall that “spot” is short for “parking spot™)

t+1

Z ZE[K(y, 0)#{cars visiting y at time s — 1}
YEN(0) s=1

x 1{y has a car or occupied spot at time s — 1}]

141
+ Z ZE[K(y, 0) (#{cars visiting y at time s — 1} — 1)
yeN(0) s=1

x 1{y is parked in at time s — 1}]

= Z K (y, 0)[E#{cars visiting y at times <7}
YEN ()
— P(y is parked in at a time <7)]

= ( > K, 0)> E(V,” + 1)1{0 has a car}
yeN(0)

+EV,Y1{0is a spot} — P(Vt(o) >0, 0 is a spot))

= ( > K, 0)>(EV, +2p —1+P(V” =0,0is a spot)).
yeN()

In the second equality, we have used transitivity.
Note that by the transitivity of (G, K,'x) and Lemma 4.1, the sum of in-
probabilities at 0 equals 1:

YK=Y Ky,0=) K0,y=1.
yeN(0) yey yevy

Combining this with the above identity yields the desired recursion. [
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For the following discussions, it is convenient to introduce a quantity which
describes the lifespan of an initial car until parking. Namely, for each v € V, define
()
% by

o
(8) .= Z 1{a car starts at v and is unparked at time s}.

s=1

By translation invariance of the process, the law of T does not depend on v, so
we may drop the dependence on v.

In the parking process adding more cars can only increase the lifespan of cars
and the number of visits to a fixed site. While this is intuitively obvious, a possible
concern is that introducing a new car may change the manner in which we break
ties at a spot. This could potentially cause different cars to park in different places,
thus shortening the paths of some cars. Of course this is not the case. We explain
why in the following proposition.

PROPOSITION 4.6. Write an arbitrary element of our probability space 2 =
(=1, 1) x V%) x ([0, 11%))V as

® = (@1, 02, ®3)yey = (M), (Xo(1)),215 (€0(1)) 12 1) yer-

Let w, ' € Q be such that w1 (v) < | (v), w2(v) = @, (v), and w3(v) = w5 (v) for

allv e V. Then forallv eV and t > 0, we have T (w) < T (&) and V,(U) (w) <
(v) /

Vi (o).

PROOF. Observe that the second assertion is implied by the first. Namely, sup-
pose a site y % x has a car initially which visits v € V at some time ¢ > 1 in the
w-trajectory. Then 7 (w) > 1, and by the first assertion, this yields (@) > t.
Since the trajectory of the car started at y is shared in both w- and w'- trajectories,
this implies that the car started at y still visits v at time 7 in the ’-trajectory. Hence
VW (w) < V¥ (o)), as desired.

Now we show ) (w) < 1™ (@) for all v € V. For a contradiction, let r >
1 be the smallest time for which there is a y such that r = 1) (') < T (w).
Let z be the site that the car (y, unparked) visits at time ¢. Since z is a spot
and (y, unparked) does not park at time ¢ in the w-trajectory, some other car
(u, unparked) parks at z at some time s < ¢. If s <t — 1, then by the minimality
of t, T™(0) > 1™ (w) = s, s0 (u, unparked) visits site z at time s in the o'-
trajectory. Since s <t — 1, this means that the spot at site z is already occupied
before time ¢ in the w’-trajectory, which is a contradiction. Hence we may assume
s = t, which means that z is an open spot at time ¢ in the w-trajectory as well. Since
(y, unparked) parks at z at time ¢ in the w’-trajectory, €,(¢) must be minimum
among all cars at site z at time ¢ in the w’-trajectory. But adding more cars only
adds more tie-breaking variables to be compared at site z at time ¢, which would
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imply that the car (y, unparked) also parks at site z at time ¢ in the w-trajectory,
which is a contradiction. This shows 7 (w) < ) («') for all v € V, as desired.
O

A consequence of monotonicity is that if at least one car parks at a fixed site
with probability one, then infinitely many do so with probability one.

LEMMA 4.7. IfP[V =0] =0, then V is almost surely infinite.

PROOF. We prove the contrapositive. By Lemma 4.2 we may assume that
P[V < oo] = 1. Let T be the smallest time after which no car visits 0, so that
P[T < oo] = 1. Accordingly, let 79 be such that P[T < f9] > 1/2. Let A be the
event that the initial configuration has no cars in B(0, #p) = {x: dist(0, x) < to}.
The event {T < o} implies that no car initially outside of B(0, #) ever visits 0, so
{T <tp} N A C {V =0}. Write an arbitrary element w in €2 as in the statement of
Proposition 4.6. By the same proposition, for every fixed realization of the random
walk paths (X, (n)) and tie breakers (€, (n)) for all v € V, the variables 1{T < #p}
and 1{A} are nonincreasing functions of the variables (1(v)) (which determine the
vertices initially occupied by cars), so

P(V =0) > P({T <1} N A)
=E[P({T <10} N A|((Xo ()21 (€0(1)121)yey)]
> E[P(T < tol(Xy (1)) P(A|((Xo (1)) ,21+ (€0()) 12 1) yery)]
=P(AE[P(T < 10|((Xo(1),=1, (€(1)),=1)pep)]
=P(A)P(T < t9) > (1/2)(1 — p)/BOOI

where we have used the FKG inequality (see [19]) and the fact that A is indepen-
dent of the random walk paths. [

The last ingredient is another monotonicity statement that relates the probability
of no visits to 0 conditioned on different starting configurations.

PROPOSITION 4.8. Forallt >0and p € (0, 1), we have
P(Vt(o) = 0|0 has a car initially) <P(V; =0) < P(Vt(o) = 0|0 is a spot)
and
P(V©® =00 has a car initially) < P(V =0) < P(V® =0]0 is a spor).
PROOF. It suffices to show the first part. By Proposition 4.6,

P(V " =0]0 is a spot) > P(V,”) = 0]0 has a car initially).
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Hence the assertion follows from
P(V” =0) =P(V,¥ =0]0 is a spot) (1 — p)
+ P(V,(O) = 0|0 has a car initially) p. O
We now have what we need to prove Theorem 2.1(i).
PROOF OF THEOREM 2.1(i). Note that (6) with p € [1/2,1) and Proposi-
tion 4.8 give
9) EVip1 ZEV, + (1 — p)P(V; =0).

If P(V; =0) - 0, then P(V =0) =0 and V is almost surely infinite by
Lemma 4.7. If P(V; =0) — § > 0, then (9) implies that EV; > §(1 — p)t for
all # > 1. Thus, Proposition 4.3 implies V is infinite almost surely.
To show the second part, let p > 1/2. Then
P(V” =0,0is a spot) < P(V, =0)

—-P(V=0)<1-P(V=0c0)=0.

(10)
The recursion in (6) gives

t—1
EV,=@2p— Dt +EVo+ > PV =0,0is aspot),
s=0

and (10) implies that the last summation is of order o(¢). [
Before we prove Theorem 2.1(ii) we use unimodularity to relate the probability
a car eventually parks to the probability a parking spot is eventually parked in.
LEMMA 4.9. Forany p € (0, 1),
Pla car initially at 0 parks] = Pla spot at 0 is parked in].

PROOF. For any two sites x, y € V, let
Z(x,y)=1{acar starts at x and it parks at y}.
Then by Lemma 4.1

E[Z Z(0, y):| = E[Z Z(y, 0)]

veG veG

Since at most one car parks in each spot, the left-hand side equals the probability
that a car starts at 0 and it eventually parks. On the other hand, the right-hand side
equals the probability that 0 is a parking spot and some car parks there. This proves
the assertion. [



PARKING ON TRANSITIVE UNIMODULAR GRAPHS 2107

The formulas for the probability that a car parks and the probability that V =0
are quick consequences of Lemma 4.9 and Theorem 2.1.

PROOF OF THEOREM 2.2. First let p € [1/2,1). Then Theorem 2.1(i) im-
plies P[V = oo] = 1, and so P(V® =0,0isa spot) < P(V =0) = 0. This implies
P(V® > 0] 0is aspot) = 1, which is the first part of (3). Moreover, applying this
to the relation in Lemma 4.9 gives

1—
P[car at 0 parks|0 has a car initially] = iy
p

for 1/2 < p <1, which is the first part of (2). Note that this probability is 1 at
p = 1/2. Monotonicity of the process ensures that the probability remains 1 for
p < 1/2. This establishes the second part of (2). It remains to show (3) for p €
(0, 1/2]. In this case, (2) and Lemma 4.9 yields

. p
P[V > 0]0 t]= ——.
[V > 0]0 is a spot] - n

Now we turn our attention to Theorem 2.1(ii). An easy application of the mass-
transport principle allows us to write EV; in terms of survival probabilities P(t >
s) of a car.

PROPOSITION 4.10. Foranyt > 1,

t
EV,=) P[r>s].
s=0

PROOF. For each x, y € V, define a random variable Z;(x, y) by
Z:(x,y) =1l{acaris at x initially and visits y at time ¢}.
Fix 0 € V. Observe that

Z Z:(y, 0) = #{cars visiting 0 at time 7} = VT(O) - Vt(i))l.
yey

On the other hand, since each car parks at at most one spot,

Z Z:(0, y) = 1{a car starts at 0 and is unparked at time ¢}.
yey

Hence by Lemma 4.1, for all r > 1,
EV; — EV;_| = P[a car starts at 0 and is unparked at time t] = P[t > 1].

Thus the assertion follows. [
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Next, we need an estimate of the expected time that a random walk spends in a
ball of fixed radius. Given a transitive triple (G, K, ') and v € V, let (X ,(v)) >0 €
V be arandom walk trajectory given by the kernel K of a particle initially at v € V.
For each j > 1, define

(11) £® () =inf{t > 0: dist(x{”, X") > jl,

the first exit time of B(v, j). Since (G, K, I'k) is transitive, the law of £ (j) does
not depend on v. Define the following generating function:

(o)
(12) F(s)=Y E[t™ ()]s’

j=0
Finally, define K, to be the minimum (non-zero) transition probability over all
of G:

Kmin =min{K (x, y) :x,y € Vand K (x, y) > 0}.

Note that since (G, K, ') is transitive, and G is locally finite, we have K, =
min{K (0, y) : K(0, y) > 0} > 0.

PROPOSITION 4.11.  F(s) < 00 for all |s| < (Kmin)>.

PROOF. For each k, j > 0, define the hitting probability

ag,j = P[ max dist(X(()U), Xl-(v)) = j]

0<i<k

and its generating function

O(u,s)= Z ak,juksj.

k,j=0

Note that Q is well-defined on (—1, 1)2.

We next claim that there exists a sequence (u;,)m>0 such u, is accessible
from ug and dist(ug, u,,) = m for every m. To see why this holds, let ¢ € I'x
be such that {¢" (1g) : n > 0} is infinite and uq is accessible from ¢(ug). Here,
we have used the definition of infinite accessibility along with transitivity. Then
the set {¢ ™" (ug) : n > 0} is also infinite, and ¢ " (ug) is accessible from uy.
For a given m, pick n such that dist(ug, 9 " (ug)) > m. Then there exists a se-
quence ug = vg, v1, ..., vk = ¢ "(ug) such that K (v;, v;+1) > 0 for each i. Since
|dist(vj4+1, ug) — dist(v;, ug)| < 1, we can then select v; such that dist(v;, ug) =m
and we set u,;, = v;.

Using the Markov property of the random walk X, = X ,(”0) on (G, K) it holds
for any o € I'k that

P[X 00D = o (u,) ]| = P[X,, = ] = (Kinin)".
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By the triangle inequality and the Markov property, this yields

k/(2j+1D)]-1 ® ®
. v v .
acj= [T PlASUX (3500 X)) <27]
¢=0
) K (Kmi )2j+1k
< (1 = (K. )2t 25 1<3ex <_L)
<(1—(Kmin)”™) <3exp 2+

for any k, j > 0. Hence by dominated convergence

00 00 ) 00 Sj
o=, (Zak’j)sj =32 K71

j=0 \k=0 j=01-— eXP(—T)

The power series on the right converges whenever |s| < (K min)z. Now observe that

i E(tY(j)s! = fj (fj P(t™(j) > k))sf

=0 =0 \k=0
00 j oo ) 00 00 '
(P3RS 3 3( 0% %)
=0 \i=0k=0 =0 k=0 =i
X (& st 0(l,s)
:Z ak,i 1—: 1 .
i=0 \k=0 —s (-9

This shows F(s) < oo whenever s € (—(Kmin)%, (Kmin)?). O

Before the proof of Theorem 2.1(ii), we need one last deterministic lemma that
gives a necessary condition for a car to survive up to time ¢. We call a finite set
H CV busy if H is connected and there are at least as many cars as spots initially
on H.

LEMMA 4.12. Lett > 1. For each w € {‘c(”) > t}, there is a busy set H =
H (w) such that H C B(v, 2t) and H contains the trajectory of the car started at
v up to time't.

PROOF. For this proof, we consider an extension of our space of outcomes
(defined in (1)) in which the initial configuration, w;, consists of cars, parking
spots, and initially parked-in spots. Namely, we use the space ({—1, 0, 1} x (VN) x
([0, 11N))Y, where the second and third coordinates are the same as before (random
walks and tie-breaking variables), but the first coordinate has an additional state O,
which indicates an initially parked-in spot. The dynamics of the process are similar
to those from before: cars follow their random walk trajectories and attempt to park
in empty spots, but now they never park in initially parked-in spots.
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Fix an outcome (w1, wy, w3) = (w1, w2, W3)yey € {r(“) > t} with the property
that wy(x) € {—1, 1} for all x. For a set B C V, let wf agree with w; on B and
contain only parking spots on B¢. Let Hy C V be an inclusion-minimal set of
vertices that initially contain cars which causes the event to occur; that is:

e every x € Hy is initially occupied by a car (w1 (x) = 1),
o (0w, w3) € {r™ =1}, but

o (", w1, w3) ¢ {t™ > 1} forall H)S Ho.

Let H> € Hyp be an inclusion-maximal set of vertices that initially contain cars
in a)flo such that {t™) > ¢} occurs even if the states (in wflo) of all vertices in Hj
are replaced by state O (initially parked-in). Let Hy = Hp \ (Hz U {v}). Last, we
define the configuration @, which has cars at sites in Hj, initially parked-in spots
at sites in H», and parking spots elsewhere. We will now argue that H is busy in
@1; this will complete the proof of the lemma, since @; < w.

For any z € H, the car at z must park at some site o (z) by time # (by maximality
of H»), and its trajectory from z to o (z) cannot leave B (v, 2¢). The last assertion
follows because the configuration inside B(v, ¢) up to time ¢ is unaffected by any
changes (at any time) to the configuration outside B(v, 2¢), and so the initial lo-
cation of any car that exits B(v, 2¢) before time ¢ can be replaced by an initially
parked-in spot. This violates maximality of Hj.

Define H = Hy Uo (Hy) U H> U {v}. Then, for z € Hy, all sites on the trajectory
from z to o (z) are in H. Indeed, every site u on this trajectory must in @; either
contain a car (so # € Hp), an initially parked-in spot (so u € Hj), or a parking
spot (so u € o0 (Hy)). The same argument shows that all sites on the (r — 1)-step
trajectory of the car initially at v are in H. By minimality of Hy, H must be a
connected set that includes this trajectory. Because H, contains no vertices which
are initially cars or parking spots, and for each vertex in o (H1) (initially a parking
spot), there is a unique corresponding vertex in H; (initially a car), H is busy in
1. O

We are now ready to show Theorem 2.1(ii).

PROOF OF THEOREM 2.1(ii). Suppose 0 < p < 1/2. Rewrite the relation in
Lemma 4.9 as

pP[car at v parks|v has a car] __P
I—p T l=p
So the complementary event has positive probability:

P[V > 0O|v is a spot] = < 1.

P[V =0]v is a spot] > 0.

By Proposition 4.8, this implies P[V = 0] > 0. The 0-1 law in Lemma 4.2 then
requires that P[V = oco] = 0.



PARKING ON TRANSITIVE UNIMODULAR GRAPHS 2111

Next, we show EV < co when p is small. Recall that G has at most (eA)/
connected subgraphs of size j containing v, where A is the maximum degree of
the graph, and by a Chernoff bound for Binomial(j, p) variable, the probability
of a connected subgraph of size j being busy is at most (2/p(I — p))/ when
p < 1/2.Indeed, if Zy, ..., Z; are i.i.d. random variables with P[Z; = 1] = p =
1 —P[Z; = —1], then this probability is equal to

j .
P(Z 4+ Z; >0 :P[Heaz" > 1} < (Ee*#1)/

= (pe® + (1 — p)e™®)/,

for any o > 0. Putting o« = %log I_Tp, we obtain the bound (2/p(1 — p))/. In ad-

dition to this inequality, we note that [B(v, r)| < (A — 1)’ 1. Let (X:)r>0 be an in-
dependent random walk trajectory on (G, K) with Xo = v. Applying Lemma 4.12
and a union bound gives

P[c™ >1]

A2[+1

<Y Y (@/p-p)PXcisinH forall 0 <k <1]

j=1 H connected

|H|=j.veH
A2t+l
< Z (2eA\/p(1 — p))’P[ Xy is in B(v, j) forall 0 <k <1].
j=1

Let t®)( j) and F(¢) be as defined in (11) and (12), respectively. Then Proposi-
tion 4.10 and the above bound on P[t) > 7] yield

A2t+l
EV® < Z > (2eA\/ p(1 — p))’P[Xy € B(v, j) forall 0 <k <1]
=0 j=l1

=2 QeApa=p) 3 PXieB(.j)V0<k<i]
j=1

t J'SAZtJr]

(2eA\/p(1 = p)) E[£ V()] = F(s),
J

where s, = 2eA/p(I — p). Hence by Proposition 4.11, EV® < co whenever
lspl < (Kmin)?. Observe that for Z¢ with simple symmetric random walks, it is
sufficient to have p < (256d%¢%)~!. On the oriented lattice Zd, p< (64d%e%)~1
yields E,V <oo. U
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