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Conversion of levulinic acid and cellulose to c-valerolactone over Raney-Ni
catalyst using formic acid as a hydrogen donor

Q2 Ananda S. Amarasekara , Yen Maroney Lawrence, Anthony D. Fernandez, Tony Grady, and Bernard Wiredu

Department of Chemistry, Prairie View A&M University, Prairie View, Texas, USA

ABSTRACT

The present study aimed to investigate the conversion of levulinic acid (LA) and cellulose
(DP�450) to c-valerolactone (GVL) over Raney-Ni catalyst. In this process, hydrogenation was ful-
filled using formic acid (FA) as the hydrogen donor. The highest LA conversion (100%) and GVL
yield (68.5%) were obtained using LA:FA 1:4 ratio, Raney-Ni catalyst (20mg/mmol of LA) and heat-
ing at 200 �C for 48 h. Under similar reaction conditions cellulose (DP�450) was converted into
GVL in 23.3% yield in a single reactor process. The addition of acidic co-catalysts such as Br€onsted
acids: H2SO4, Amberlyst-15 (Hþ) or Dowex 50WX8 to the reaction mixture did not improve the GVL
yield. The SEM analysis of the Raney Ni-catalyst used in transformation of cellulose to GVL showed
that catalyst surface gets contaminated with carbon deposits in the single reactor process.
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Introduction

The development of efficient methods for the conversion

of lignocellulosic biomass into platform-chemicals is one of

the major thrust areas in the current biofuel research. The

platform chemicals such as furfural, 5-hydroxymethylfurfu-

ral (HMF), levulinic acid (LA) and its hydrogenation product

c-valerolactone (GVL) envisaged in future bio-refinery

schemes [1] and as sustainable alternatives to crude-oil

based feedstocks [2]. Among these, the GVL or 5-methyldi-

hydrofuran-2(3H)-one possesses potential applications as a

green fuel additive, excellent solvent and fine chemical

intermediate [3]. It can be directly used as a fuel as well as

transformed to fuel precursors or monomers in renewable

polymer industry [4,5]. Recently, GVL has been identified as

a potential octane number boosting fuel additive to gas-

oline. Horv�ath et al. have concluded that GVL is a better

alternative to ethanol as a fuel additive due to its lower

vapor pressure and relatively higher energy content [6].

Furthermore, GVL does not form an azeotrope with water

as compared with ethanol, which requires an energy-inten-

sive concentration process to remove water during the

ethanol production by fermentation [7]. In addition, GVL

can be upgraded to valuable chemicals such as: 2-methylte-

trahydrofuran [8], isooctane [9], 5-nonanone, 1,4-pentanediol,

methyl-THF, methylpentenoate, butenes, a-methylene-

c-valerolactone, aromatic hydrocarbons [6,10–13], pentyl-

valerate and pentane [14].

Generally, GVL is directly produced by selective hydro-

genation of commercial biomass-derived LA and its esters

under external hydrogen sources using various homogen-

ous or heterogeneous catalysts [15]. Ruthenium-based

homogenous catalysts were widely used in the hydrogen-

ation process of LA into GVL; however, poor stability, weak

resistance to water and mineral acids restricted their appli-

cation [1]. A number of other noble metal heterogeneous

catalysts including Pd [16,17], Ru [18], Ir nanoparticles [19],

Ru on hydroxyapatite [20], and Ru on polyethersulfone [21]

have been widely used for this process. To date, Ru/Ir-

based supported catalysts have shown the highest activity

among the heterogeneous catalytic systems for the reduc-

tion of LA to GVL [7,22]. However, the use of expensive

metal catalysts is unfavorable for a cost-effective industrial

process [23]. On the other hand, use of non-noble metals

has also been explored for the conversion of LA to GVL

[24]. Nevertheless, only a few examples are known in the

use of inexpensive metal catalysts such as Ni for the hydro-

genation of LA; in one example, Raney-Ni was used as the

catalyst under elevated temperature and H2 pressure, giv-

ing GVL in 90% yield [25,26]. In another example, Mohan

et al. has used a series of Ni catalysts with 30wt% Ni con-

tent prepared by a conventional wet impregnation method

using different supports such as Al2O3, SiO2, ZnO, ZrO2,

TiO2 and MgO. The best activity was found in the 30wt%

Ni/SiO2 catalyst (0.8506 kg GVL kg catalyst�1 h�1 at 250 �C),

which is probably due to the presence of a greater number

of surface Ni species in this preparation [27]. The use of a

mixed catalyst with formula: Ni(20)Cu(60)-SiO2 (3:1 weight

ratio of Cu to Ni, 80% metal content) is also known for this

reduction process [27]. The use of acidic co-catalysts and

catalyst supports are known to promote the catalytic activ-

ity of the metal in LA to GVL conversion reaction [28]. For

example, a 99.9% yield of GVL was reported in using Ru/C

catalyst with Amberlyst 70 as a co-catalyst in water;

whereas the absence of acid co-catalyst under the same

reaction conditions resulted only 13% conversion of LA

[28]. Furthermore, some acidic supports are known to cata-

lyze ring opening of the resulting GVL to form over-

reduced compounds as well [29].

External molecular H2 under high pressure conditions is

the most common hydrogen source used in catalytic

hydrogenation systems for GVL production [30], which

requires special equipment for the safe handling of H2 at
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high pressure [24]. The catalytic transfer of hydrogenation

(CTH) has been attempted using various internal H-donors

like alcohols [31] and formic acid [32] for safe handling and

an environment friendly process. In the CTH method, Raney-

Ni has shown catalytic performance for the conversion of

ethyl levulinate to GVL using 2-propanaol as the H-donor

[33]. The nickel catalysts have shown activity in vapor-phase

reduction of LA to GVL as well, while using formic acid as

the hydrogen source [34]. In a more recent example Ni/SiO2

catalysts with NiO nanoparticles prepared by a variety of

methods including impregnation, co-precipitation, depos-

ition precipitation and citric acid assisted impregnation are

shown as effective catalysts for the reduction of LA using

formic acid as the hydrogen source [35]. In a mechanistic

study, Feng et al. has suggested that formic acid decom-

poses into molecular H2 and CO2 in these metal catalyzed

transfer hydrogenation reactions [32]. To the best of our

knowledge, there is no report on the conversion of LA to

GVL over Raney-Ni using formic acid as a hydrogen donor.

We report here the Raney-Ni catalyzed reduction of LA to

GVL in the presence of FA as sole source of hydrogen under

mild conditions as shown in Figure 1. In addition we have

studied the possibility of in situ generation of LA using cellu-

lose as the feedstock and development of a single reactor

transformation of cellulose to GVL in acidic mediums using

inexpensive Raney-Ni as the catalyst (Figure 2).

Experimental

Materials and methods

W.R. Grace and Co. RaneyVR -Ni 2400, slurry, in water, active

catalyst (No. 510033) from Aldrich Chemical Co. Milwaukee,

USA was used as received without any modification. The

physical and chemical analysis data for the catalyst are avail-

able at the supplier’s website. LA (99.9%), H2SO4 (99.9%),

Amberlyst-15 hydrogen form dry, Dowex 50WX8 and

Sigmacell cellulose—type 101 (DP�450, from cotton linters)

were also purchased from Aldrich Chemical Co. All heating

experiments were carried out in 25mL stainless steel solvo-

thermal reaction kettles with Teflon inner sleeves, purchased

from Lonsino Medical Products Co. Ltd., Jingsu, China. These

reaction kettles were heated in a preheated Cole-Palmer

WU-52402-91 microprocessor controlled convention oven

with ±1 �C accuracy. The products were identified using

Varian Saturn 2100T GC-MS and confirmed by co-injection

of authentic samples. The quantitative analysis was carried

out on a Varian 3900 GC, with a WCOT fused silica capillary

column (15 m� 0.25mm), VF-1ms stationary phase and FID

detector, injector 250 �C, detector 300 �C. The oven tempera-

ture was set at 200 �C with a flow rate 2.0mL/minute. In the

quantitative analysis, a standard curve was generated for

each compound using Varian Star 6.2 Chromatographic

Workstation software with the total ion current (TIC) peak

area being correlated to the concentration of the compound

in solution. Scanning electron microscopy (SEM) analysis was

carried out using JEOL 6010A SEM instrument at 10 kV.

General procedure for the Raney-Ni catalyzed

reduction of LA to GVL

A mixture of LA (116mg, 1.0mmol), formic acid (1.0–4.0mmol)

and Raney-Ni (20mg) was prepared in a 25-mL stainless steel

solvothermal reaction kettle with a Teflon inner sleeve and

then 2.0mL of de-ionized water was added. The reaction ket-

tle was firmly closed and heated in a thermostated convection

oven maintained at 200 �C for 24–48h. At the end of the

heating period, the kettle was removed from the oven and

cooled to room temperature. The resulting product was

diluted with 10mL of de-ionized water and transferred into a

glass centrifuge tube. The liquid fraction was separated from

the solid residues by centrifuging at 1700X g for 5min. Then

liquid fraction was transferred into a vial and analyzed for

products by injecting 2lL samples to the gas chromatograph.

The amounts of products formed were calculated using a

standard curve generated for GVL using Varian Star 6.2

Chromatographic Workstation software. All the experiments

were carried out in duplicate and average percent yields of

GVL in reactions carried out for 24–48h are shown in Table 1.

General procedure for the one-pot conversion of

cellulose to GVL

A mixture of Sigmacell cellulose—type 101 (50mg, 0.31mmol

glucose equivalent), formic acid (71mg, 1.54mmol), Raney-Ni

(20mg) with or without additional acid catalyst (0.20mmol

Hþ) was prepared in a 25-mL stainless steel solvothermal

reaction kettle with a Teflon inner sleeve and then 2.0mL of

distilled water was added. The reaction kettle was firmly

closed and heated in a thermostated convection oven

maintained at 200 �C for 24–48h. At the end of the heating

period, the kettle was removed from the oven and cooled to

room temperature. The resulting product was diluted with

10mL of de-ionized water and transferred into a glass centri-

fuge tube. The liquid fraction was separated from the solid

residues by centrifuging at 1700X g for 5min and the liquid

fraction was analyzed for products as in ‘General procedure

for the Raney-Ni catalyzed reduction of LA to GVL’ section.

These experiments were carried out in duplicate and average

percent yields of GVL in reactions carried out for 24–48h are

shown in Table 2.

SEM analysis of Raney-Ni catalyst

The Raney-Ni catalyst remained after centrifuging and

separation of the product from entry 2 in Table 2 was

washed with de-ionized water (10mL) and dried under

vacuum at 90 �C for 3 h, and analyzed using SEM. A fresh

Raney-Ni catalyst sample dried under similar conditions

was used as the reference sample. The SEM images and

surface analysis data of fresh and used Raney-Ni catalyst

samples are shown in Figure 3(a,b), respectively.

Results and discussion

Raney-Ni catalyzed reduction of LA to GVL

The initial experiments on Raney-Ni catalyzed reduction of

LA to GVL were carried out with LA:formic acid 1:1 ratio
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Figure 1. Raney-Ni catalyzed transfer hydrogenation of levulinic acid (1) to
c-valerolactone (2).
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and these experiments showed only 52.6 and 62.6% con-

versions of levulinic acid after 24 and 48 h, respectively

(entry 1 and 2 in Table 1). The increase in the amount of

formic acid showed improvements in LA conversions as

well as GVL yields, as shown in entries 3 and 4. The 100%

conversion of LA and highest GVL yield was achieved with

LA:formic acid 1:4 ratio and 48 h reaction (entry 6).

Single reactor conversion of cellulose to GVL

All Raney-Ni catalyzed single reactor cellulose to GVL con-

version experiments were carried out using five equivalents

of formic acid per glucose unit of cellulose to ensure cellu-

lose depolymerization and conversion to LA as well as

transfer reduction to GVL. In the initial experiments, a mix-

ture of cellulose, formic acid and Raney-Ni catalyst in water

was heated at 200 �C; these runs produced 22.2 and 23.3%

GVL after 24 and 48 h, respectively as shown in entries 1

and 2 in Table 2. The proposed reaction pathway for the

Raney-Ni catalyzed single reactor transformation of cellu-

lose to GVL in aqueous formic acid is shown in Figure 2,

where cellulose is first depolymerized to glucose and then

dehydrated to 5-hydroxymethylfurfural (HMF). Then, rehy-

dration of HMF gives LA, which undergoes the transfer

reduction and lactonization, producing GVL. In an attempt

to improve the GVL yield, we have tested the addition

of homogeneous (H2SO4) as well as heterogeneous

(Amberlyst-15(Hþ)) and Dowex 50WX8) Br€onsted acids as

co-catalysts to the reaction mixture. However, addition of

these strong acids as co-catalysts failed to produce signifi-

cant improvements in GVL yields as shown in entries 3–8

in Table 2.

SEM analysis of Raney-Ni catalyst

In an attempt to study the changes on the nickel surface

in using Raney-Ni in single reactor conversion of cellulose

to GVL in aqueous formic acid medium we have analyzed

the used Raney-Ni from experiment in entry 2 of Table 2

and a fresh Raney-Ni sample using SEM. The SEM images

and surface analysis data are shown in Figure 3. The SEM

image of used Raney-Ni showed a carbon deposited dull

surface as in image b in Figure 3, whereas the fresh Raney-

Ni sample showed a sharp crystalline surface of Ni particles.

The elemental analysis of the surface further supports this

conclusion as the used Raney-Ni showed 49.79% carbon

and 37.15% oxygen by mass on the surface, whereas the

fresh surface showed only nickel, aluminum and oxygen on

the catalytic surface (Figure 3(a)).

Conclusion

We have shown that LA can be converted to GVL in

57.7–68.5% yield by using four equivalents of formic acid

and Raney-Ni as the catalyst in water at 200 �C for 24–48 h.

Under similar reaction conditions cellulose (DP�450) was

converted GVL in 22.2–23.3% yield in a single reactor pro-

cess. The addition of strong Br€onsted acids H2SO4,

Amberlyst or Dowex as co-catalysts to the reaction mixture

showed no significant effect on the GVL yield. This tech-

nique provides a simple single reactor process to produce

GVL from LA and cellulosic biomass without the use of an

external hydrogen source. In addition, the current methods

for the preparation of GVL require the use of expensive

noble metal catalysts such as Pd [16,17], Ru [18,20,21], and

Ir [19]; whereas the new method presented uses inexpen-

sive Raney-Ni as the catalyst. However, the Raney-Ni cata-

lyst surface gets contaminated with carbon deposits when

cellulose is used as the renewable feedstock. We are cur-

rently working on methods for cleaning the Raney-Ni cata-

lyst surface and regeneration of the catalysts, so that the

catalyst can be reused in single reactor production of GVL

from cellulosic biomass.
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Table 1. Raney-Ni catalyzed transfer hydrogenation of levulinic acid (1) to
c-valerolactone (2).

Entry LA: FA
Heating
time (h)

Conversion of
LA (%)

c-Valerolactone
Yield (%)

1 1:1 24 52.6 20.4
2 1:1 48 62.6 24.4
3 1:2 24 86.6 56.6
4 1:2 48 90.9 60.5
5 1:4 24 100.00 57.7
6 1:4 48 100.00 68.5

Levulinic acid (116mg, 1.0mmol), formic acid (1.0–4.0mmol), and Raney-Ni
(20mg), in 2.00mL of water, 200 �C. Averages from duplicate experiments.

Table 2. Raney-Ni catalyzed single reactor transformation of cellulose to
c-valerolactone (2).

Entry Additional acid co-catalyst
Heating
time (h)

c-Valerolactone
yield (%)

1 – 24 22.2
2 – 48 23.3
3 H2SO4 24 20.6
4 H2SO4 48 23.4
5 Amberlyst-15(Hþ) 24 20.9
6 Amberlyst-15(Hþ) 48 22.9
7 Dowex 50WX8 24 21.4
8 Dowex 50WX8 48 20.5

Sigmacell cellulose—type 101 (50mg, 0.31mmol glucose equivalent), formic
acid (71mg, 1.54mmol), Raney-Ni (20mg), with or without additional acid
co-catalyst (0.20mmol Hþ) in 2.00mL of water, 200 �C. Averages from
duplicate experiments.
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