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Conversion of levulinic acid and cellulose to y-valerolactone over Raney-Ni
catalyst using formic acid as a hydrogen donor
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ABSTRACT

The present study aimed to investigate the conversion of levulinic acid (LA) and cellulose
(DP~450) to y-valerolactone (GVL) over Raney-Ni catalyst. In this process, hydrogenation was ful-
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filled using formic acid (FA) as the hydrogen donor. The highest LA conversion (100%) and GVL

yield (68.5%) were obtained using LA:FA 1:4 ratio, Raney-Ni catalyst (20 mg/mmol of LA) and heat-
ing at 200°C for 48h. Under similar reaction conditions cellulose (DP~450) was converted into
GVL in 23.3% yield in a single reactor process. The addition of acidic co-catalysts such as Bronsted
acids: H,504, Amberlyst-15 (H*) or Dowex 50WX8 to the reaction mixture did not improve the GVL
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yield. The SEM analysis of the Raney Ni-catalyst used in transformation of cellulose to GVL showed
that catalyst surface gets contaminated with carbon deposits in the single reactor process.

Introduction

The development of efficient methods for the conversion
of lignocellulosic biomass into platform-chemicals is one of
the major thrust areas in the current biofuel research. The
platform chemicals such as furfural, 5-hydroxymethylfurfu-
ral (HMF), levulinic acid (LA) and its hydrogenation product
v-valerolactone (GVL) envisaged in future bio-refinery
schemes [1] and as sustainable alternatives to crude-oil
based feedstocks [2]. Among these, the GVL or 5-methyldi-
hydrofuran-2(3H)-one possesses potential applications as a
green fuel additive, excellent solvent and fine  chemical
intermediate [3]. It can be directly used as a fuel as well as
transformed to fuel precursors or monomers in renewable
polymer industry [4,5]. Recently, GVL has been identified as
a potential octane number boosting fuel additive to gas-
oline. Horvath et al. have concluded that GVL is a better
alternative to ethanol as a fuel additive due to its lower
vapor pressure and relatively higher energy content [6].
Furthermore, GVL does not form an azeotrope with water
as compared with ethanol, which requires an energy-inten-
sive concentration process to remove water during the
ethanol production by fermentation [7]. In addition, GVL
can be upgraded to valuable chemicals such as: 2-methylte-
trahydrofuran [8], isooctane [9], 5-nonanone, 1,4-pentanediol,
methyl-THF, methylpentenoate, butenes, a-methylene-
v-valerolactone, aromatic hydrocarbons [6,10-13], pentyl-
valerate and pentane [14].

Generally, GVL is directly produced by selective hydro-
genation of commercial biomass-derived LA and its esters
under external hydrogen sources using various homogen-
ous or heterogeneous catalysts [15]. Ruthenium-based
homogenous catalysts were widely used in the hydrogen-
ation process of LA into GVL; however, poor stability, weak
resistance to water and mineral acids restricted their appli-
cation [1]. A number of other noble metal heterogeneous
catalysts including Pd [16,17], Ru [18], Ir nanoparticles [19],

Ru on hydroxyapatite [20], and Ru on polyethersulfone [21]
have been widely used for this process. To date, Ru/lr-
based supported catalysts have shown the highest activity
among the heterogeneous catalytic systems for the reduc-
tion of LA to GVL [7,22]. However, the use of expensive
metal catalysts is unfavorable for a cost-effective industrial
process [23]. On the other hand, use of non-noble metals
has also been explored for the conversion of LA to GVL
[24]. Nevertheless, only a few examples are known in the
use of inexpensive metal catalysts such as Ni for the hydro-
genation of LA; in one example, Raney-Ni was used as the
catalyst under elevated temperature and H, pressure, giv-
ing GVL in 90% vyield [25,26]. In another example, Mohan
et al. has used a series of Ni catalysts with 30 wt% Ni con-
tent prepared by a conventional wet impregnation method
using different supports such as Al,Os3, SiO,, ZnO, ZrO,,
TiO, and MgO. The best activity was found in the 30 wt%
Ni/SiO, catalyst (0.8506 kg GVL kg catalyst™' h™' at 250°C),
which is probably due to the presence of a greater number
of surface Ni species in this preparation [27]. The use of a
mixed catalyst with formula: Ni(20)Cu(60)-SiO, (3:1 weight
ratio of Cu to Ni, 80% metal content) is also known for this
reduction process [27]. The use of acidic co-catalysts and
catalyst supports are known to promote the catalytic activ-
ity of the metal in LA to GVL conversion reaction [28]. For
example, a 99.9% yield of GVL was reported in using Ru/C
catalyst with Amberlyst 70 as a co-catalyst in water;
whereas the absence of acid co-catalyst under the same
reaction conditions resulted only 13% conversion of LA
[28]. Furthermore, some acidic supports are known to cata-
lyze ring opening of the resulting GVL to form over-
reduced compounds as well [29].

External molecular H, under high pressure conditions is
the most common hydrogen source used in catalytic
hydrogenation systems for GVL production [30], which
requires special equipment for the safe handling of H, at
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high pressure [24]. The catalytic transfer of hydrogenation
(CTH) has been attempted using various internal H-donors
like alcohols [31] and formic acid [32] for safe handling and
an environment friendly process. In the CTH method, Raney-
Ni has shown catalytic performance for the conversion of
ethyl levulinate to GVL using 2-propanaol as the H-donor
[33]. The nickel catalysts have shown activity in vapor-phase
reduction of LA to GVL as well, while using formic acid as
the hydrogen source [34]. In a more recent example Ni/SiO,
catalysts with NiO nanoparticles prepared by a variety of
methods including impregnation, co-precipitation, depos-
ition precipitation and citric acid assisted impregnation are
shown as effective catalysts for the reduction of LA using
formic acid as the hydrogen source [35]. In a mechanistic
study, Feng et al. has suggested that formic acid decom-
poses into molecular H, and CO, in these metal catalyzed
transfer hydrogenation reactions [32]. To the best of our
knowledge, there is no report on the conversion of LA to
GVL over Raney-Ni using formic acid as a hydrogen donor.

We report here the Raney-Ni catalyzed reduction of LA to
GVL in the presence of FA as sole source of hydrogen under
mild conditions as shown in Figure 1. In addition we have
studied the possibility of in situ generation of LA using cellu-
lose as the feedstock and development of a single reactor
transformation of cellulose to GVL in acidic mediums using
inexpensive Raney-Ni as the catalyst (Figure 2).

Experimental
Materials and methods

W.R. Grace and Co. Raney®-Ni 2400, slurry, in water, active
catalyst (No. 510033) from Aldrich Chemical Co. Milwaukee,
USA was used as received without any modification. The
physical and chemical analysis data for the catalyst are avail-
able at the supplier's website. LA (99.9%), H5SO,4 (99.9%),
Amberlyst-15 hydrogen form dry, Dowex -50WX8 -and
Sigmacell cellulose—type 101 (DP~450, from cotton linters)
were also purchased from Aldrich Chemical Co. All heating
experiments were carried outin 25 mL stainless steel solvo-
thermal reaction kettles with Teflon inner sleeves, purchased
from Lonsino Medical Products-Co. Ltd., Jingsu, China. These
reaction kettles were heated in“a preheated Cole-Palmer
WU-52402-91 microprocessor controlled convention oven
with +1°C accuracy. The products were identified using
Varian Saturn 2100T GC-MS and confirmed by co-injection
of authentic samples. The quantitative analysis was carried
out on a Varian 3900 GC, with a WCOT fused silica capillary
column (15 m x 0.25mm), VF-Tms stationary phase and FID
detector, injector 250 °C, detector 300 °C. The oven tempera-
ture was set at 200 °C with a flow rate 2.0 mL/minute. In the
quantitative analysis, a standard curve was generated for
each compound using Varian Star 6.2 Chromatographic
Workstation software with the total ion current (TIC) peak
area being correlated to the concentration of the compound
in solution. Scanning electron microscopy (SEM) analysis was
carried out using JEOL 6010A SEM instrument at 10 kV.

General procedure for the Raney-Ni catalyzed
reduction of LA to GVL

A mixture of LA (116 mg, 1.0 mmol), formic acid (1.0-4.0 mmol)
and Raney-Ni (20 mg) was prepared in a 25-mL stainless steel

O
HCO2H - H,0 /\/ \
OH —m— O o

O 1 Raney - Ni 2

Figure 1. Raney-Ni catalyzed transfer hydrogenation of levulinic acid (1) to
v-valerolactone (2).

solvothermal reaction kettle with a Teflon inner sleeve and
then 2.0 mL of de-ionized water was added. The reaction ket-
tle was firmly closed and heated in a thermostated convection
oven maintained at 200°C for 24-48h. At the end of the
heating period, the kettle was removed from the oven and
cooled to room temperature. The resulting product was
diluted with 10 mL of de-ionized water and transferred into a
glass centrifuge tube. The liquid fraction was separated from
the solid residues by centrifuging at 1700X g for 5min. Then
liquid fraction was transferred into.-a vial and analyzed for
products by injecting 2 pL samples to the gas chromatograph.
The amounts of products formed were calculated using a
standard curve generated - for- GVL using Varian Star 6.2
Chromatographic Workstation “software.. All the experiments
were carried out in duplicate. and average percent yields of
GVL in reactions carried out for 24-48 h are shown in Table 1.

General procedure for the one-pot conversion of
cellulose to GVL

A mixture of Sigmacell cellulose—type 101 (50 mg, 0.31 mmol
glucose equivalent), formic acid (71 mg, 1.54 mmol), Raney-Ni
(20mg) with or without additional acid catalyst (0.20 mmol
H*) was prepared in a 25-mL stainless steel solvothermal
reaction kettle with a Teflon inner sleeve and then 2.0 mL of
distilled water was added. The reaction kettle was firmly
closed and heated in a thermostated convection oven
maintained at 200°C for 24-48 h. At the end of the heating
period, the kettle was removed from the oven and cooled to
room temperature. The resulting product was diluted with
10mL of de-ionized water and transferred into a glass centri-
fuge tube. The liquid fraction was separated from the solid
residues by centrifuging at 1700X g for 5min and the liquid
fraction was analyzed for products as in ‘General procedure
for the Raney-Ni catalyzed reduction of LA to GVL' section.
These experiments were carried out in duplicate and average
percent yields of GVL in reactions carried out for 24-48h are
shown in Table 2.

SEM analysis of Raney-Ni catalyst

The Raney-Ni catalyst remained after centrifuging and
separation of the product from entry 2 in Table 2 was
washed with de-ionized water (10mL) and dried under
vacuum at 90°C for 3 h, and analyzed using SEM. A fresh
Raney-Ni catalyst sample dried under similar conditions
was used as the reference sample. The SEM images and
surface analysis data of fresh and used Raney-Ni catalyst
samples are shown in Figure 3(a,b), respectively.

Results and discussion
Raney-Ni catalyzed reduction of LA to GVL

The initial experiments on Raney-Ni catalyzed reduction of
LA to GVL were carried out with LA:formic acid 1:1 ratio
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Figure 2. Proposed reaction pathway for the Raney-Ni catalyzed single reactor transformation of cellulose to y-valerolactone (2) in aqueous formic acid at

200°C. (a) Fresh Raney-Ni catalyst. (b) Used Raney-Ni catalyst.

Table 1. Raney-Ni catalyzed transfer hydrogenation of levulinic acid (1) to
y-valerolactone (2).

Heating Conversion of y-Valerolactone
Entry LA: FA time (h) LA (%) Yield (%)
1 111 24 526 204
2 1:1 48 62.6 244
3 1:2 24 86.6 56.6
4 1:2 48 90.9 60.5
5 1:4 24 100.00 57.7
6 1:4 48 100.00 68.5

Levulinic acid (116 mg, 1.0mmol), formic acid (1.0-4.0mmol), and Raney-Ni
(20 mg), in 2.00 mL of water, 200 °C. Averages from duplicate experiments.

Table 2. Raney-Ni catalyzed single reactor transformation of cellulose to
y-valerolactone (2).

Heating y-Valerolactone
Entry Additional acid co-catalyst time (h) yield (%)
1 - 24 222
2 - 48 233
3 H,S0, 24 20.6
4 H,50, 48 234
5 Amberlyst-15(H™) 24 209
6 Amberlyst-15(H™) 48 229
7 Dowex 50WX8 24 21.4
8 Dowex 50WX8 48 20.5

Sigmacell cellulose—type 101 (50 mg, 0.31 mmol glucose equivalent), formic
acid (71 mg, 1.54 mmol), Raney-Ni (20 mg), with or without additional acid
co-catalyst (0.20mmol H") in 2.00mL of water, 200°C. Averages from
duplicate experiments.

and these experiments showed-only 52.6 and 62.6% con-
versions of levulinic acid after 24 and 48h, respectively
(entry 1 and 2 in Table 1). The increase. in the amount of
formic acid showed improvements in- LA" conversions as
well as GVL yields, as shown in entries 3 and 4. The 100%
conversion of LA and highest GVL yield was achieved with
LA:formic acid 1:4 ratio and 48 h reaction (entry 6).

Single reactor conversion of cellulose to GVL

All Raney-Ni catalyzed single reactor cellulose to GVL con-
version experiments were carried out using five equivalents
of formic acid per glucose unit of cellulose to ensure cellu-
lose depolymerization and conversion to LA as well as
transfer reduction to GVL. In the initial experiments, a mix-
ture of cellulose, formic acid and Raney-Ni catalyst in water
was heated at 200 °C; these runs produced 22.2 and 23.3%
GVL after 24 and 48h, respectively as shown in entries 1
and 2 in Table 2. The proposed reaction pathway for the
Raney-Ni catalyzed single reactor transformation of cellu-
lose to GVL in aqueous formic acid is shown in Figure 2,
where cellulose is first depolymerized to glucose and then
dehydrated to 5-hydroxymethylfurfural (HMF). Then, rehy-
dration of HMF gives LA, which undergoes the transfer

reduction and lactonization, producing GVL. In an attempt
to improve the GVL yield, we have tested the addition
of homogeneous (H,SO,) as well as heterogeneous
(Amberlyst-15(H+)) and Dowex 50WX8) Bronsted acids as
co-catalysts to the reaction mixture. However, addition of
these strong acids as co-catalysts failed to produce signifi-
cant improvements in GVL yields as. shown .in entries 3-8
in Table 2.

SEM analysis of Raney-Ni catalyst

In an attempt to study the changes on the nickel surface
in using Raney-Ni in single reactor conversion of cellulose
to GVL in aqueous formic acid medium we have analyzed
the used Raney-Ni from experiment in entry 2 of Table 2
and a fresh Raney-Ni sample using SEM. The SEM images
and 'surface analysis data are shown in Figure 3. The SEM
image of used Raney-Ni showed a carbon deposited dull
surface as in image b in Figure 3, whereas the fresh Raney-
Ni'sample showed a sharp crystalline surface of Ni particles.
The elemental analysis of the surface further supports this
conclusion as the used Raney-Ni showed 49.79% carbon
and 37.15% oxygen by mass on the surface, whereas the
fresh surface showed only nickel, aluminum and oxygen on
the catalytic surface (Figure 3(a)).

Conclusion

We have shown that LA can be converted to GVL in
57.7-68.5% yield by using four equivalents of formic acid
and Raney-Ni as the catalyst in water at 200 °C for 24-48 h.
Under similar reaction conditions cellulose (DP~450) was
converted GVL in 22.2-23.3% vyield in a single reactor pro-
cess. The addition of strong Bronsted acids H,SO,,
Amberlyst or Dowex as co-catalysts to the reaction mixture
showed no significant effect on the GVL yield. This tech-
nique provides a simple single reactor process to produce
GVL from LA and cellulosic biomass without the use of an
external hydrogen source. In addition, the current methods
for the preparation of GVL require the use of expensive
noble metal catalysts such as Pd [16,17], Ru [18,20,21], and
Ir [19]; whereas the new method presented uses inexpen-
sive Raney-Ni as the catalyst. However, the Raney-Ni cata-
lyst surface gets contaminated with carbon deposits when
cellulose is used as the renewable feedstock. We are cur-
rently working on methods for cleaning the Raney-Ni cata-
lyst surface and regeneration of the catalysts, so that the
catalyst can be reused in single reactor production of GVL
from cellulosic biomass.
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Figure 3. SEM images and analysis of fresh and used Raney-Ni catalyst from experiment in entry 2, Table 2, in the Raney-Ni catalyzed single reactor transform-
ation of cellulose to y-valerolactone in aqueous formic acid at 200 °C.
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