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Abstract

Brønsted acid catalyzed condensations of meso-erythritol with aldehyde/ketones were studied using meso-
erythritol:aldehyde/ketone 1:3 ratio in a Dean–Stark apparatus. The selectivity among bis-ketal and 1,3-dioxolane-ether 
formation can be achieved by choosing between homogeneous and heterogeneous catalysts. The catalysts could be 
reused without appreciable loss in activity.
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1 Introduction

The acid catalyzed conversion of aldehydes or ketones to 
their acetals and ketals is a well known reaction in syn-
thetic organic chemistry, widely applied as a protecting 
technique for carbonyl compounds as well as for 1,2 and 
1,3-diols [1]. The acetals and ketals are generally stable 
under basic and oxidative conditions and can be hydro-
lyzed under aqueous acidic conditions [1]. The suscepti-
bility of these functionalities to controlled acidic condi-
tions can be seen as an asset in biodegradable polymer 
applications. The renewed interest in this functionality in 
recent years may be due to numerous applications like 
synthesis of biodegradable smart polymer materials [2], 
oxygenated renewable fuel additives [3] as well as in cos-
metics [4]. In recent years a number of researchers have 
recognized the potential of incorporating the ketal/acetal 
function in two classes of biodegradable polymers, firstly 
in environmentally compatible biodegradable polymer 
materials and secondly in medical applications [5, 6]. For 
example, Miller and co-workers have shown favorable bio-
degradation properties in lignin derived ketal polymers 

[7, 8]. Furthermore, ketal functionalized chemicals are of 
interest as new biodegradable surfactants and polymer 
additives as well; especially levulinic acid ketals as well as 
esters have attracted interest as eco-friendly surfactants 
and polymer additives [9, 10]. In medical applications, 
Shenoi et al. [11] has recently demonstrated that hyper 
branched polyglycerols with ketal groups are highly bio-
compatible, with favorable in vivo degradation character-
istics with minimal tissue accumulation.

In the case of renewable energy and fuel applications, 
glycerol ketals/acetals are the most widely studied class 
of compounds and this may be due to the relative abun-
dance of this natural polyol as a byproduct in the bio-
diesel industry. The acetone ketal of glycerol, commonly 
known as solketal has been recognized as a potential 
replacement for the fuel additive methyl t-butyl ether [3, 
12, 13]. In addition numerous researchers have studied 
the potential of glycerol as a monomer for the renewable 
carbon based polymer industry. Recently we have shown 
that condensation of glycerol with renewable monomers 
such as levulinic, 4-ketopimelic and 2,5-furan dicarboxylic 
acids can be used to prepare novel renewable polymers 
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with ketal and ester functionalities [14–16]. However, the 
higher homolog of glycerol, erythritol has received little 
attention as a renewable feedstock in the chemical and 
polymer industry [7, 17, 18].

Since 1990s, erythritol has been produced in an indus-
trial scale and added to beverages and foods to give 
sweetness, as a flavor enhancer, humectants, formula-
tion support/stabilizer, sequestrant, thickener as well as 
a texture enhancer. In the US, the main use of erythritol 
are in chewing gum, baked sweets and in diet beverages 
[19]. Erythritol can be produced via numerous chemical 
methods such as halogenations followed by hydrolysis of 
2-butene-1,4-diol, hydrogenolysis of tartaric acid esters 
[20] or dialdehyde starch [21], and electrolytic decarboxy-
lation of arabinoic or ribonic acids [22]. Nevertheless, these 
chemical synthesis methods are not widely applied in the 
current industrial production of erythritol as biotechno-
logical methods are more economically feasible and cur-
rently most of the erythritol is produced by fermentation 
methods using yeast-like fungi genera [19, 23]. In addition 
a number of other common organisms such as: Moniliella 

pollinis, Trichosporonoides megachiliensis and Yarrowia lipo-

lytica have also being used in the industrial production of 
erythritol [23].

Erythritol with four hydroxyl groups has the potential 
of making a symmetrical 1,3-dioxolane bis-ketal system, 
which is more attractive as a polymer building block than 
glycerol since the triol can make only one ketal/acetal and 
leaves an unreacted primary alcohol group. However this 
acid catalyzed bis-ketal formation in meso-erythritol can 
get complicated by the possible cyclo-dehydration giving 
a favorable tetrahydrofuran system. Since there are many 
Brønsted acid catalysts that can be used in such ketal 
formation and cyclo-dehydration reactions, it would be 
interesting to compare different homogeneous and het-
erogeneous Brønsted acids under similar catalyst load-
ing conditions. The comparison studies of different acid 
catalysts in a one chemical process is rare in the literature 
[24, 25] and in one instance Yoon et al. [26] compared the 
trimerization of isobutene over cation exchange resins and 
acidic zeolites. In this study they found that zeolites are 
superior in recyclability in comparison to resin catalysts 
[26]. In another study Ozbay et al. [24] compared a series 
of solid acid catalysts including: Amberlyst-15, Amber-
lyst-16, Amberlyst-35, Amberlyst-36, Lewatit K2629, Relite 
EXC8D, Nafion SAC-13 and H-Mordenite in the etherifica-
tion reaction of glycerol using t-butanol. In these experi-
ments Amberlyst-15, with the highest Brønsted acidity, 
produced the highest yield of glycerol ethers at 90–100 °C. 
The Brønsted acidity and the rate of diffusion were found 
to be important properties of the acid catalysts in the glyc-
erol etherification process under the batch reactor con-
ditions used in the experiments [24]. In development of 

new renewable carbon based ketal functionalized polymer 
feedstocks we have recently compared the homogeneous 
and heterogeneous acid catalyzed esterification and ket-
alization of biomass derived levulinic acid with 1,2-ethane 
diol and 1,3-propane diol [27]. In these studies we have 
found that ketals and ketal-esters are formed in Amber-
lyst-15 catalyzed reactions; while esters and ketal-esters 
are produced in p-toluenesulfonic acid catalyzed reac-
tions [27]. In continuation of our efforts in the develop-
ment of new biomass derived feedstocks, monomers and 
polymeric materials [28–32] we have studied the effect of 
different homogeneous and heterogeneous catalysts on 
the bis-ketal formation as well as in the cyclo-dehydration 
reactions of meso-erythritol as shown in Fig. 1.

2  Results and discussion

The Brønsted acid catalyzed reactions of meso-erythritol 
with a series of aldehyde/ketones were studied by using 
p-toluenesulfonic acid, 1-(3-propylsulfonic)-3-methylimi-
dazolium chloride, Amberlyst-15, sulfonated-silica as cata-
lysts and meso-erythritol:aldehyde/ketone 1:3 mol ratio for 
24 h. The acidic ionic liquid catalyst, 1-(3-propylsulfonic)-
3-methylimidazolium chloride [(HSO3)3C3C1im][Cl] was 
prepared using our previously reported procedure as 
shown in Fig. 2 [33, 34]. The products were identified by 
comparison with published 1H and 13C NMR data [35–39]. 
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Fig. 1  The p-toluenesulfonic acid (p-TsOH), 1-(3-propylsulfonic)-
3-methylimidazolium chloride [(HSO3)3C3C1im][Cl], Amberlyst-15 
 H+ and sulfonated-silica  (SiO2–SO3H) catalyzed reactions of meso-
erythritol (1) with aldehyde/ketones (2a–g)
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Fig. 2  Synthesis of acidic ionic liquid catalyst, 1-(3-propylsulfonic)-
3-methylimidazolium chloride [(HSO3)3C3C1im][Cl] by reaction of 
1-methylimidazole with 1,3-propanesultone and acidification [33, 
34]
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A representative 1H NMR spectrum of the bis-ketal (3b), 
ketal-ether (4b) product mixture from the Amberlite-15 
catalyzed reaction of meso-erythritol (1), with acetone (2b) 
is shown in Fig. 3.

Th e  p re l i m i n a r y  ex p e r i m e nt s  w i t h  m e s o -
erythritol:aldehyde/ketone 1:2 ratio and shorter reaction 
times failed to give complete conversion of meso-erythritol 
to ketals or cyclic ether-ketals. Therefore all experiments 
were carried out with meso-erythritol:aldehyde/ketone 
1:3 ratio and 24 h, which gave complete conversions and 
presumably the thermodynamic products. Furthermore, 
symmetrical aldehyde/ketones were used in the study to 
stay away from the formation of stereoisomer mixtures. 
The results of total  % yields and mol  % compositions in 
using five aldehyde/ketones and four acid catalysts are 
shown in Table 1.

The mono-ketals and 1,3-dioxane type ketal formations 
were not observed in any of the reactions. The only prod-
ucts observed are 1,3-dioxolane type bis-ketals and ketal-
ethers with cis-2,4,7-trioxa [3.3.0] octane ring system. The 
cyclo-dehydration of 1,4-butanediol and meso-erythritol 
are known in acid catalyzed reactions [40]. In a recent 
study Takagaki has compared the cyclo-dehydration of 
erythritol using three Brønsted solid acids:  HNbMoO6, 
H-ZSM5 and Amberlyst-15. In this study  HNbMoO6 showed 
the highest activity for erythritol dehydration to 1,4-anhy-
droerythritol [40]. The only aldehyde used in our work, 
formaldehyde (2a) gave a mixtures of bis-acetal (3a) and 
cis-2,4,7-trioxa [3.3.0] octane (4a) with all homogeneous 
and heterogeneous catalysts tested. The best selectivity 
was found with the solid acid Amberlyst-15, which gave a 
mixture with 83% cis-2,4,7-trioxa [3.3.0] octane and only 
17% of bis-acetal. Out of the three acyclic ketones 2b, c 
and d, acetone showed 100% selectivity towards the 

bis-ketal with homogeneous catalysts; whereas the use of 
heterogeneous catalyst  SiO2–SO3H gave only the cyclo-
dehydration product cis-3,3-dimethyl-2,4,7-trioxa [3.3.0] 
octane. In comparison, acyclic ketones in reactions using 
homogeneous catalyst p-TsOH the percentage of bis-ketal 
decreases as: 100, 98 and 73 as the size of alkyl group in the 
symmetrical ketone increases, indicating the sensitivity of 
the reaction to the size of the alkyl group. Similar trend can 
be found with homogeneous acidic ionic liquid catalyst as 
well; where bis-ketal percent decreases as: 100, 96 and 90 
as the size of alkyl group increases. The preference towards 
the cyclo-dehydration of meso-erythritol under the hetero-
geneous catalysis conditions may be due to strong inter-
actions of hydroxyl groups of meso-erythritol with multi-
ple sulfonic acid groups on the surface of heterogeneous 
catalysts. Similar interactions between multiple hydroxyl 
and carboxylic acid groups are reported in the literature in 
carbohydrate systems [41]. In the case of 4-heptanone the 
change in homogenous catalyst from p-TsOH to Brønsted 
acidic ionic liquid [(HSO3)3C3C1im][Cl] showed an improve-
ment in selectivity towards the bis-ketal product and this 
type of selectivity as well as reaction product changes are 
known in the use of acidic ionic liquids in place of classical 
homogeneous acid catalysts [42]. The three cyclic ketones 
2e–g exclusively gave the bis-ketal products 3e–g with all 
catalysts tested. This is probably due to lower steric hin-
drance around the carbonyl group in cyclic ketones when 
compared to acyclic ketones as methylene groups held 
are away from C = O forming the ring. The poor selectivity 
observed with the only aldehyde used in the study, formal-
dehyde may be due to kinetic reasons. The reactive small 
aldehyde may react faster than ketones giving different 
product distributions and this is particularly noted when 
cyclic ketones are used, where only bis ketals are formed.

Fig. 3  The representative 1H NMR of a sample of Amberlyst-15  H+ 
catalyzed reaction of meso-erythritol (1) with acetone (2b) giv-
ing a mixture of 3b and 4b. meso-Erythritol (2.0  mmol), acetone 

(6.0 mmol), Amberlyst-15  H+ (0.094 mmol  H+) and 20 mL benzene, 
reflux using Dean-Stark water separator, 24 h
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We have studied the reuse of four acid catalysts: p-tol-
uene sulfonic acid (p-TsOH), 1-(3-propylsulfonic)-3-meth-
ylimidazolium chloride [(HSO3)3C3C1im][Cl], Amberlyst-15 
 H+ and sulfonated-silica. The reaction of meso-erythritol 
with cyclohexanone was selected for this study and all four 
catalysts gave only the bis-ketal product with the cyclic 
ketones, and the recovered catalyst was used for three 
more additional cycles in these experiments. The results 

of reusing the catalyst are shown in Fig. 4. All four catalysts 
could be reused without significant loss in catalytic activity 
and the solid acid Amberlyst-15 showed the best recycla-
bility as this catalyst is easy to recover by decantation and 
showed the minimum loss in activity after four cycles.

The proposed mechanism for formation of cis-2,4,7-
trioxa [3.3.0] octane ring system in the acid catalyzed 
condensation reaction of meso-erythritol with aldehyde/
ketones is shown in Fig. 5. First the protonation of a pri-
mary -OH group and intramolecular etherification gives 
the tetrahydrofuran ring, then a nucleophilic attack of 
–OH on a protonated carbonyl gives the next intermedi-
ate product. Since only a cis fusion is possible in a bicyclo 
[3.3.0] octane system, the 1,3-dioxolne ring closure occurs 
only by the protonation of the secondary –OH attached 
to the tetrahydrofuran ring. Finally, the  SN2 type nucleo-
philic attack with inversion gives the cis fused bicyclic ring 
system in 4.

The Hartree–Fock (HF) calculations were performed 
to identify energetically most stable product from the 
reaction of meso-erythritol with the aldehydes and the 
ketones. In all cases, the calculations show that the bis-
ketals products (3) are thermodynamically more stable 
than the ether products (4). In reactions using acyclic car-
bonyl compounds (a-d), the total energy of the products 
increased with the increase in the number of carbons and 
the difference in energy between product 3 and 4 (∆E) also 
increased with the number of carbon atoms (Table 2). With 

Table 1  The aldehyde/ketone used, catalyst, product yield (%) 
and composition (%) in the p-toluenesulfonic acid (p-TsOH), 
1-(3-propylsulfonic)-3-methylimidazolium chloride [(HSO3)3C3C1im]
[Cl], Amberlyst-15  H+ and sulfonated-silica  (SiO2–SO3H) catalyzed 
reactions of meso-erythritol (1) with aldehyde/ketone compounds 
(2a–g)

Entry Aldehyde/ketone Catalyst Yield (%) Compo-
sition 
(%)

3 4

1 Formaldehyde 
(2a)

p-TsOH 88 69 31

2 [(HSO3)3C3C1im]
[Cl]

84 43 57

3 Amberlyst-15 90 17 83

4 SiO2–SO3H 87 67 33

5 Acetone (2b) p-TsOH 95 100 –

6 [(HSO3)3C3C1im]
[Cl]

92 100 –

7 Amberlyst-15 96 56 44

8 SiO2–SO3H 94 – 100

9 3-Pentanone (2c) p-TsOH 97 98 2

10 [(HSO3)3C3C1im]
[Cl]

95 96 4

11 Amberlyst-15 98 46 54

12 SiO2–SO3H 92 – 100

13 4-Heptanone (2d) p-TsOH 91 73 27

14 [(HSO3)3C3C1im]
[Cl]

94 90 10

15 Amberlyst-15 93 2 98

16 SiO2–SO3H 97 8 91

17 Cyclopentanone 
(2e)

p-TsOH 90 100 –

18 [(HSO3)3C3C1im]
[Cl]

85 100 –

19 Amberlyst-15 84 100 –

20 SiO2–SO3H 82 100 –

21 Cyclohexanone 
(2f)

p-TsOH 93 100 –

22 [(HSO3)3C3C1im]
[Cl]

90 100 –

23 Amberlyst-15 95 100 –

24 SiO2–SO3H 92 100 –

25 Cycloheptanone 
(2g)

p-TsOH 83 100 –

26 [(HSO3)3C3C1im]
[Cl]

87 100 –

27 Amberlyst-15 91 100 –

28 SiO2–SO3H 90 100 –

Fig. 4  The percent yields of meso-erythritol-cyclohexanone bis-
ketal (3f) produced in reusing p-toluenesulfonic acid (p-TsOH), 
1-(3-propylsulfonic)-3-methylimidazolium chloride [(HSO3)3C3C1im]
[Cl], Amberlyst-15  H+ and  SiO2–SO3H catalysts in the reaction of 
meso-erythritol with cyclohexanone for four catalysis cycles. meso-
Erythritol:cyclohexanone 1:3 in benzene under Dean-Stark condi-
tions for 24 h, in all experiments
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acyclic ketone reactions, the homogeneous acid catalyzed 
reactions always gave the bis-ketal product as the major 
product, however with heterogeneous solid acid catalysts 
like  SiO2–SO3H, the ether product was formed as the major 
product, probably due to the steric effects of larger alkyl 
groups in the acyclic ketones.

2.1  X‑Ray structure of 2,2′‑bi‑1,4‑dioxaspiro[4.5]
decane, (R*,S*) (3f)

The X-ray structure of meso-erythritol-cyclohexanone 
bis ketal, 2,2′-bi-1,4-dioxaspiro[4.5]decane, (R*,S*) (3f) is 
shown in Fig. 6. The crystal packing of 3f and geometric 
data (bond distances, bond angles and torsion angles) 
are presented in supplementary material. In the crys-
tal structure the two dioxolane rings are positioned on 
the opposite sides of the central bond forming a linear 
molecule which allows the preparation of linear polymer 
chains via bis-ketal formation reactions. The resulting lin-
ear polymer chains may also be arranged in an ordered 
packed structure similar to the crystal packing structure 
of 3f (electronic supplementary material). Therefore, the 
bis-ketal formation using cyclic ketals could be a good 
polymerization technique for the application of erythritol 
as a renewable polymer building block.

3  Conclusion

The ketalization and 1,3-dioxolane ether formation are 
competing reactions in acid catalyzed condensations of 
meso-erythritol with aldehydes and ketones. In the reac-
tion using para-formaldehyde gave mixtures of bis-ketals 
and cis-2,4,7-trioxa [3.3.0] octane with all homogeneous 
and heterogeneous acid catalysts studied. We have found 
that excellent selectivity among bis-ketal and 1,3-diox-
olane ether formation can be achieved in reactions with 
acyclic symmetrical ketones by choosing between homo-
geneous and heterogeneous catalysts. For instance, 
homogeneous acid catalysts p-toluenesulfonic acid and 
1-(3-propylsulfonic)-3-methylimidazolium chloride gave 
meso-erythritol-acetone bis-ketal as the sole product in 
95 and 92% yields respectively. On the other hand the 
reaction using the heterogeneous catalyst sulfonated-
silica gave the 1,3-dioxolane ether product: cis-3,3-dime-
thyl-2,4,7-trioxa [3.3.0] octane as the sole product in 94% 
yield under similar catalyst loading and reaction condi-
tions. As far as we are aware this is the first example of 
achieving a complete selectivity among ketal and ether 
formation processes in Brønsted acid catalyzed reaction 
between a polyol and ketones.

4  Experimental

4.1  Materials and instrumentation

meso-Erythritol (> 99%), paraformaldehyde (> 99%), 
acetone (> 99%), 3-pentanone (> 99%), 4-heptanone 
(> 99%), cyclopentanone (> 99%), cyclohexanone 
(> 99%), cycloheptanone (> 99%), p-toluenesulfonic 
acid monohydrate (99%), Amberlyst-15 hydrogen 
form (4.7 mequv./g by dry weight), 1-methylimidazole 
(99%), 1,3-propanesultone (99%) and anhydrous ben-
zene were purchased from Aldrich Chemical Co. Mil-
waukee, USA. The Brønsted acidic ionic liquid catalyst, 

Fig. 5  The proposed mecha-
nism for formation of the 
cis-2,4,7-trioxa [3.3.0] octane 
ring system (4) in acid cata-
lyzed reactions of meso-eryth-
ritol with aldehyde/ketones H
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Table 2  The RHF 3-21G level calculated total energies of bis-ketal 3 
(E3), 1,3-dioxolane-ether 4 (E4) products and energy differences (∆E) 
in Hartree for Brønsted acid catalyzed reactions of meso-erythritol 
with aldehyde/ketones (2a–g)

Aldehyde/ketone E3 E4 ∆E (E3 − E4)

Formaldehyde (2a) − 529.49 − 416.19 − 113.30

Acetone (2b) − 684.80 − 493.85 − 190.95

3-Pentanone (2c) − 840.08 − 571.49 − 268.59

4-Heptanone (2d) − 995.35 − 649.12 − 346.23

Cyclopentanone (2e) − 837.73 − 570.29 − 267.44

Cyclohexanone (2f) − 940.40 − 609.10 − 331.30

Cycloheptanone (2g) − 993.03 − 647.96 − 345.07
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1-(3-propylsulfonic)-3-methylimidazolium chloride was 
prepared by condensation of 1,3-propanesultone and 
1-methylimidazole and then treatment of the imidazolium 
zwitterion with HCl as shown in Fig. 2, following the litera-
ture procedure [33, 34, 43]. Sulfonated-silica  (SiO2–SO3H) 
was prepared by using the standard published proce-
dure [44, 45]. The acid group density in  SiO2–SO3H was 
determined as 2.52 mmol/g by titration with aq. NaOH 
(5.05 × 10−2 M) and using phenolphthalein as the indi-
cator. The proton nuclear magnetic resonance spectra 
were recorded in chloroform-d (99%) on a 400 MHz Varian 
Mercury plus spectrometer and chemical shifts are given 
in ppm downfield from TMS (δ = 0.00). The carbon NMR 
were recorded in the same spectrometer at 100 MHz, and 
chemical shifts were measured relative to chloroform-d 
and converted to δ (TMS) using δ  (CDCl3) = 77.00.

4.2  General procedure for the acid catalyzed 
ketalization of meso‑erythritol with carbonyl 
compounds

A mixture of meso-erythritol (244 mg, 2.0 mmol), alde-
hyde/ketone (6.0  mmol), acid catalyst (p-toluenesul-
fonic acid, 1-(3-propylsulfonic)-3-methylimidazolium 

chloride, Amberlyst-15  H+ or  SiO2–SO3H; 0.094 mmol 
 H+) in 20.0 mL of benzene was heated under reflux in a 
Dean-Stark apparatus for 24 h. Then samples with p-tol-
uenesulfonic acid or 1-(3-propylsulfonic)-3-methylimida-
zolium chloride as the catalyst were washed with water 
(3 × 5 mL) and concentrated under reduced pressure. 
The concentrated product was weighed to measure the 
total product mass and analyzed by NMR spectroscopy. 
The samples with solid acid catalysts: Amberlyst-15  H+ 
or  SiO2–SO3H were decanted to remove the catalyst, 
concentrated, weighed and similarly analyzed by NMR 
spectroscopy. The percent composition of the two prod-
ucts was calculated by using proton NMR peak areas cor-
responding to 2H’s and the formula:

Similar equations were used in the calculation of bis-
ketal (3), ketal-ether (4) product compositions in the 

mole %bis-ketal (��)

=
peak area at 4.17 ppm

peak area at 4.17 ppm + peak area at 4.78 ppm

× 100%

mole%ketal-ether (��) = 100 − mole%bis-ketal (��)

Fig. 6  Molecular structure of 2,2′-bi-1,4-dioxaspiro[4.5]decane (R, 
S) 3f obtained by single crystal X-ray diffraction. Ellipsoids are pre-
sented at 50% probability. The crystal packing structure and geo-

metric parameters are given in the electronic supplementary mate-
rial. Crystallographic data for 3f is available from the Cambridge 
Crystallographic Data Center, CCDC 1845662
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reactions carried out with other aldehyde/ketones and 
acid catalysts. The results are shown in Table 1.

The   % yield was calculated using the for-
mula:   % yield = (moles of products) × 100/(moles of 
meso-erythritol).

4.3  Computational study

The geometry optimizations and total energy calculations 
were carried out at 3-21G level. When R was substituted 
with different alkyl/cyclic groups, in order to obtain the 
optimized structures of the products (3 and 4), the heavy 
atoms, hydrogen atoms, bond lengths and all angles of 
the first structure was kept constant while optimizing all 
substituent bond lengths as well as angles. The computa-
tional work was performed using GAUSSIAN 16 W program 
[46] on an Intel (R) Core (TM) i7-3740QM CPU @ 2.70 GHz, 
8.0 GB RAM 32 bit operating system. The total energies 
of bis-ketal 3 (E3), 1,3-dioxolane-ether 4 (E4) products and 
energy differences (∆E) are listed in Table 2.

4.4  General procedure for the reuse of acid 
catalysts in ketalization of meso‑erythritol 
with cyclohexanone

The reactions using cyclohexanone were carried out 
according to the general procedure 2.2. In homogeneous 
catalyst reactions the catalysts were recovered by evapo-
ration of the combined aqueous phase. In reactions using 
heterogeneous catalysts, the catalysts were recovered by 
decanting the organic phase. The recovered catalyst was 
reused in three subsequent catalytic cycles and the per-
centage yields in reuse experiments are given in Fig. 4.

4.5  X‑Ray structure determination of 3f

The crystals of meso-erythritol cyclohexanone bis-ketal 
product (3f) were obtained by slow evaporation of a con-
centrated methanol solution at room temperature over 
3 days, M.pt. 90–91 °C (Lit. 89–90 °C [37]). The crystal of 
3f  (C16H20O4, M = 282.37) is orthorhombic, space group 
Pbca, at T = 100  K: a = 8.3505(18)  Å, b = 7.5675(17)  Å, 
c = 23.461(5)  Å, α, β, γ = 90°, V = 1482.6(6)  Å3, Z = 4, 
dcalc = 1.265 g/cm3, F(000) = 616, μ = 0.089 mm−1. 22,612 
total reflections (2556 unique reflections) were meas-
ured on a three-circle Bruker APEX-II CCD diffractometer 
(λ(MoKα)-radiation, graphite monochromator, φ and ω 
scan mode, 2θmax = 64.4°) and corrected for absorption 
(Tmin = 0.661; Tmax = 0.746) [47]. The structure was deter-
mined by direct methods and refined by full-matrix least 
squares technique on F2 with anisotropic displacement 
parameters for non-hydrogen atoms. Hydrogen atoms 
were placed in calculated positions and refined within a 

riding model with fixed isotropic displacement param-
eters [Uiso(H) = 1.5Ueq(C) for the  CH3-groups and 1.2Ueq(C) 
for the other groups]. The final divergence factors were 
R1 = 0.0409 for 1983 independent reflections with I > 2σ(I) 
and wR2 = 0.1007 for all independent reflections, S = 1.043. 
All calculations were carried out using the SHELXTL 
program [48]. The X-ray structure of meso-erythritol - 
cyclohexanone bis ketal, 2,2′-bi-1,4-dioxaspiro[4.5]decane, 
(R*,S*) (3f) is shown in Fig. 6 and the crystal packing struc-
ture and geometric parameters are given in the electronic 
supplementary material. The crystallographic data for 3f 
have been deposited with the Cambridge Crystallographic 
Data Center with deposition number CCDC 1845662.
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