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ABSTRACT

We consider a wireless network with a base station serving multiple
traffic streams to different destinations. Packets from each stream
arrive to the base station according to a stochastic process and are
enqueued in a separate (per stream) queue. The queueing discipline
controls which packet within each queue is available for transmis-
sion. The base station decides, at every time t, which stream to serve
to the corresponding destination. The goal of scheduling decisions
is to keep the information at the destinations fresh. Information
freshness is captured by the Age of Information (Aol) metric.

In this paper, we derive a lower bound on the Aol performance
achievable by any given network operating under any queueing
discipline. Then, we consider three common queueing disciplines
and develop both an Optimal Stationary Randomized policy and a
Max-Weight policy under each discipline. Our approach allows us
to evaluate the combined impact of the stochastic arrivals, queue-
ing discipline and scheduling policy on Aol. We evaluate the Aol
performance both analytically and using simulations. Numerical
results show that the performance of the Max-Weight policy is close
to the analytical lower bound.
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1 INTRODUCTION

Traditionally, networks have been designed to maximize through-
put and minimize packet latency. With the emergence of new types
of networks such as vehicular networks, UAV networks and sensor
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networks, other performance requirements are increasingly rele-
vant. In particular, the Age of Information (Aol) is a performance
metric that was recently proposed in [26, 27] and has been receiving
attention in the literature [1, 2, 5-7, 12-18, 20-22, 24, 27-31, 33—
37, 39-43] for its application in communication systems that carry
time-sensitive data. The Aol captures how fresh the information is
from the perspective of the destination.

Consider a system in which packets are time-stamped upon
arrival. Naturally, the higher the time-stamp of a packet, the fresher
its information. Let 7°(¢) be the time-stamp of the freshest packet
received by the destination by time t. Then, the Aol is defined as
h(t) := t — 7P (t). The Aol measures the time that elapsed since the
generation of the freshest packet received by the destination. The
value of A(t) increases linearly over time while no fresher packet is
received, representing the information getting older. At the moment
a fresher packet is received, the time-stamp at the destination r(t)
is updated and the Aol is reduced.

In this paper, we study a wireless network with a Base Station
(BS) serving multiple traffic streams to different destinations over
unreliable channels, as illustrated in Fig. 1. Packets from each stream
arrive to the BS according to a stochastic process and are enqueued
in a separate (per stream) queue. The queueing discipline controls
which packet within each queue is available for transmission. The
BS decides, at every time ¢, which stream to serve to the correspond-
ing destination. Our goal is to develop scheduling policies that keep
the information fresh at every destination, i.e. that minimize the
average Aol in the network.

In [22], it was shown that when the BS always has fresh packets
available for transmission, the optimal scheduling policy serves
the stream associated with the largest Aol. This policy is optimal®
for it gives the largest reduction in Aol over all streams. However,
when packet arrivals are random, the BS may not have a fresh
packet available for every stream. Thus, a scheduling policy must
account both for the Aol at the destinations and the time-stamps of
the packets available for transmission in each queue. For example,
consider a simple network with two streams and two destinations.
Assume that at time t, each stream has a single packet in its queue.
The packet from stream 1 was generated 30 msecs ago and the
packet from stream 2 was generated 10 msecs ago. Assume that
the current Aol at destinations 1 and 2 are h;(t) = 50 msecs and
ha(t) = 40 msecs, respectively. A policy that serves the stream
associated with the largest Aol would select stream 1 and yield an
Aol reduction of 50 — 30 = 20 msecs. Alternatively, serving stream
2 would result in a reduction of 40 — 10 = 30 msecs. Hence, to
minimize the average Aol, it is optimal to schedule stream 2. In
this simple example, the optimal scheduling decision was easily

!This policy was shown to minimize the average Aol of symmetric networks, i.e.
networks in which all destinations have identical features.
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determined. In general, designing a transmission scheduling policy
that keeps information fresh over time is a challenging task that
needs to take into account the packet arrival process, the queueing
discipline, and the conditions of the wireless channels.

In recent years, the problem of minimizing the Aol has been
addressed in a variety of contexts. Queueing Theory is used in [6, 7,
16, 24, 27, 29, 31, 43] for finding the optimal server utilization with
respect to Aol. The authors in [1, 2, 35, 41] consider the problem of
optimizing the times in which packets are generated at the source
in networks with energy-harvesting or maximum update frequency
constraints. Applications of Aol are studied in [3, 9, 23, 25, 26].
Link scheduling optimization with respect to Aol has been recently
considered in [4, 5, 8, 12-15, 18, 20-22, 28, 30, 33, 34, 36—40, 42].
Next, we describe the mentioned related work on link scheduling
optimization.

The authors in [5, 8, 37] studied multi-hop networks, while other
works addressed single-hop networks. Deterministic packet arrivals
were considered in [8, 20-22, 28, 36—40, 42], arbitrary arrivals in
[4, 5, 12, 13, 34] and stochastic arrivals in [14, 15, 18, 30, 33, 39].
Networks with no queueing, i.e. when packets are discarded if
not scheduled immediately upon arrival, were considered in [14,
15], First-In First-Out (FIFO) queues were considered in [12, 13,
18, 39] and other works considered Last-Generated First-Served
queues, which are often equivalent to the simpler Last-In First-Out
(LIFO) queues. Reliable links over which transmissions are always
successful are considered in [4, 5, 8, 12-15, 18, 33, 34, 37, 42] and
other works considered unreliable links.

Most relevant to this paper are [14, 18, 20, 21, 34, 39]. In [39], the
authors consider a network with stochastic packet arrivals, FIFO
queues and link scheduling following a Stationary Randomized
policy. An expression for the Aol in a discrete time G/Ber/1 queue
is derived and used to develop a method of jointly tunning arrival
and service rates of all links in order to minimize Aol In [34], the
authors develop scheduling policies for multi-server queueng sys-
tems in which streams have synchronized packet arrivals. In [14],
the authors develop scheduling policies based on the Whittle’s In-
dex for networks with stochastic arrivals, no queues and reliable
broadcast channels. The authors in [18] utilize an alternative def-
inition of Aol to develop an Age-Based Max-Weight policy for a
network with stochastic arrivals, FIFO queues and unreliable links.
In [20, 21], the authors consider a network with deterministic ar-
rivals, LIFO queues and unreliable broadcast channels, and develop
three policies: Optimal Stationary Randomized, Whittle’s Index and
Age-Based Max-Weight.

In this paper, we develop a framework for addressing link
scheduling optimization in networks with stochastic packet
arrivals and unreliable links operating under three common
queueing disciplines. Our main contributions include: i) deriving
a lower bound on the Aol performance achievable by any given
network operating under any queueing discipline; ii) developing
both an Optimal Stationary Randomized policy and an Age-Based
Max-Weight policy under three common queueing disciplines; and
iii) evaluating the combined impact of the stochastic arrivals, queue-
ing discipline and scheduling policy on Aol. We show that, contrary
to intuition, the Optimal Stationary Randomized policy for LIFO
queues is insensitive to packet arrival rates. Simulation results show
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that the performance of the Age-Based Max-Weight policy for LIFO
queues is close to the analytical lower bound.

This paper generalizes our earlier results in [20, 21]. The main
difference is that in [20, 21] we assume that when the BS selects a
stream, a new packet with fresh information is generated and then
transmitted to the corresponding destination in the same time-slot.
It follows that in [20, 21] the packet delay is always 1 slot and the Aol
is reduced to h(t) = 1 slot after every packet delivery. In contrast, in
this paper, we consider a network in which packets are generated
according to a stochastic process and are enqueued before being
transmitted. This seemingly modest distinction affects the packet
delay and the evolution of Aol over time, which in turn affects the
results and proofs throughout the paper significantly. For example,
consider the analysis of Stationary Randomized policies. Under the
assumptions in [20, 21], the Aol evolution is stochastically renewed
after every packet delivery, since h(t) = 1, and thus the Aol can be
analyzed by directly applying the elementary renewal theorem for
renewal-reward processes. In contrast, in this paper, the evolution
of Aol may be dependent across consecutive inter-delivery intervals
and, thus, the same approach is not applicable. To analyze the Aol,
we obtain the stationary distribution of a two-dimensional Markov
Chain in Proposition 4.

The remainder of this paper is organized as follows. In Sec. 2, we
describe the network model. In Sec. 3 we derive an analytical lower
bound on the Aol minimization problem. In Sec. 4, we develop the
Optimal Stationary Randomized policy for each queueing discipline
and characterize their Aol performance. In Sec. 5, we develop the
Max-Weight policy and obtain performance guarantees in terms of
Aol. In Sec. 6, we provide numerical results. The paper is concluded
in Sec. 7. Due to the space constraint, some of the technical proofs
are provided in the report in [19].

2 SYSTEM MODEL

Consider a wireless network with a BS serving packets from N
streams to N destinations, as illustrated in Fig. 1. Time is slotted
with slotindex t € {1,2,---, T}, where T is the time-horizon of this
discrete-time system. At the beginning of every slot ¢, a new packet
from stream i € {1,2,---, N} arrives to the system with probability
Ai € (0,1],Vi. Let a;(t) € {0, 1} be the indicator function that is
equal to 1 when a packet from stream i arrives in slot t, and a;(¢) = 0
otherwise. This Bernoulli arrival process is i.i.d. over time and
independent across different streams, with P(a;(t) = 1) = A;, Vi, t.

Queueing Scheduling
Discipline Policy

«@_] 2O
Packet P4 Packet
arrivals 1, C_, | __G__pz,a transmissions
from each to the
R S .
\

-,
stream : S FlN : destinations
W] O

Figure 1: Illustration of the wireless network.

Packets from stream i are enqueued in queue i. Denote by Head-
of-Line (HoL) packets the set of packets from all queues that are
available to the BS for transmission in a given slot ¢. Depending on
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the queueing discipline employed by the network, queues can be
of three types:

(i) FIFO queues: packets are served in order of arrival. The HoL
packets in slot t are the oldest packets in each queue. This is a
standard queueing discipline, widely deployed in communica-
tion systems. However, only a few works on link scheduling
optimization [12, 13, 18, 39] consider this queueing discipline;

(i) Single packet queues: when a new packet arrives, older packets
from the same stream are dropped from the queue. The HoL
packets in slot ¢ are the freshest (i.e. most recently generated)
packets in each queue. This queueing discipline is known to
minimize the Aol in a variety of contexts. From the perspective
of the Aol, Single packet queues are equivalent to LIFO queues;

(iii) No queues: packets can be transmitted only duing the slot in
which they arrive. The HoL packets in slot ¢ are given by the
set {ila;(t) = 1}. This queueing discipline is considered in
[14, 15] for its ease of analysis.

Let z;(t) represent the system time of the HoL packet in queue
i at the beginning of slot t. By definition, we have z;(t) := t —
Tl-A(t), where rlA(t) is the arrival time of the HoL packet in queue i.
Naturally, the value of TiA(t) changes only when the HoL packet
changes, namely when the current HoL packet is served or dropped
and there is another packet in the same queue; or when the queue
is empty and a new packet arrives. Notice that z;(t) is undefined
when queue i is empty.

We denote by ziF (1), zis(t) and le (t), the system times associated
with FIFO queues, Single packet queues and No queues, respectively.
For all three cases, whenever the system time is defined, it evolves
according to the definition z;(t) := t — fl.A(t). Moreover, it follows
from the description of the queueing disciplines that the evolution
of zis(t) can be written as

zfm:{ ‘

S
Z(t-1)+1

if a;(t) = 1;
otherwise,

1

and the evolution of zf] (t) is such that zf] (t) = 0 whenever an
arrival occurs, i.e. a;(t) = 1, and is undefined otherwise. In contrast,
the evolution of zf (t) cannot be simplified for it depends on both
the arrival times and service times of packets in the queue.

In each slot ¢, the BS either idles or selects a stream and transmits
its HoL packet to the corresponding destination over the wireless
channel. Let u;(t) € {0, 1} be the indicator function that is equal to
1 when the BS transmits the HoL packet from stream i during slot
t, and u;(t) = 0 otherwise. The BS can transmit at most one packet
at any given time-slot ¢. Hence, we have

SN uit) <1Vt . ()

The transmission scheduling policy governs the sequence of deci-
sions {ui(t)}fil of the BS.

Let ¢;j(¢) € {0, 1} represent the channel state associated with
destination i during slot t. When the channel is ON, we have c;(t) =
1, and when the channel is OFF, we have c;(t) = 0. The channel
state process is i.i.d. over time and independent across different
destinations, with P(c;(¢) = 1) = p;, Vi, t.

Let d;i(t) € {0,1} be the indicator function that is equal to 1
when destination i successfully receives a packet during slot ¢, and
di(t) = 0 otherwise. A successful reception occurs when the HoL
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packet is transmitted and the associated channel is ON, implying
that d;(t) = ¢;j(t)u;(t), Vi, t. Moreover, since the BS does not know
the channel states prior to making scheduling decisions, u;(t) and
ci(t) are independent, and E[d;(t)] = p;E[u;(t)], Vi, t.

The transmission scheduling policies considered in this paper are
non-anticipative, i.e. policies that do not use future information in
making scheduling decisions. Let IT be the class of non-anticipative
policies and let 7 € II be an arbitrary admissible policy. Our goal is
to develop scheduling policies 7 that minimize the average Aol in
the network. Next, we formulate the Aol minimization problem.

2.1 Age of Information

The Aol depicts how old the information is from the perspective of
the destination. Let h;(t) be the Aol associated with destination i
at the beginning of slot ¢. By definition, we have h;(t) :=t — riD(t),
where Tl.D (t) is the arrival time of the freshest packet delivered to
destination i before slot t. If during slot t destination i receives a
packet with system time z;(t) = ¢ — ‘[lfA(l') such that fl.A(t) > ‘[l.D(t),
then in the next slot we have h;(t + 1) = z;(t) + 1. Alternatively, if
during slot ¢ destination i does not receive a fresher packet, then the
information gets one slot older, which is represented by h;(t + 1) =
hi(t) + 1. Notice that the three queueing disciplines considered in
this paper select HoL packets with increasing freshness, implying
that TiA(t) > riD (¢) holds? for every received packet. Hence, the
Aol evolves as follows:

zi(t) +1

hi(t+1) = { hi(t) + 1

for simplicity, and without loss of generality, we assume that h;(1) =

1 and z;(0) = 0, Vi. Substituting zf(t), zl.s(t) and zf\](t) into (3) we

obtain the Aol associated with FIFO queues, Single packet queues

and No queues, respectively. In Fig. 2 we illustrate the evolution of
hi(t) and z;(¢) in a network employing Single packet queues.

if dj(t) = 1;
otherwise,

©)

A h; (t), Zis(t)

I arrival

I delivery

Iy
T

=] time

—

Figure 2: The blue and orange rectangles represent a packet
arrival to queue i and a successful packet delivery to desti-
nation i, respectively. The blue curve shows the evolution of
zi(t) for the Single packet queue and the orange curve shows
the Aol associated with destination i.

The time-average Aol associated with destination i is given by
E [Zthl h,-(t)] /T. For capturing the freshness of the information
of a network employing scheduling policy 7 € II, we define the

20ne example of a queueing discipline that can violate TL-A(I‘) > z’iD(t) is the Last-
In First-Out (LIFO) queue. When an older packet with riA(t) < TiD () is delivered, the
associated Aol does not decrease and the network runs as if no packet was delivered.
It follows that, from the perspective of the Aol, LIFO queues are equivalent to Single
packet queues.
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Expected Weighted Sum Aol (EWSAOoI) in the limit as the time-
horizon grows to infinity as

2[77] —Tlgnmmzzl [rF )] @

where w; is a positive real number that represents the priority of
stream i. We denote by Aol-optimal, the scheduling policy 7* € II
that achieves minimum EWSAoI, namely

E[J*] = minE [J7]| , 5
7] = minE [J7] ()
where the expectation is with respect to the randomness in the
channel state c¢;(t), scheduling decisions u;(t) and arrival process

a;i(t). Next, we introduce the long-term throughput and discuss the
stability of FIFO queues.

2.2 Long-term Throughput

Let DF(T) = ZtT:1 dT(t) be the total number of packets delivered
to destination i by the end of the time-horizon T when the admis-
sible policy 7 € II is employed. Then, the long-term throughput
associated with destination i is defined as

i = tm 201 ©
Throughout this paper, we assume that §7 > 0, Vi. Since packets
from stream i are generated at a rate A;, the long-term throughput
provided to destination i cannot be higher than A;. Hence, the
long-term throughput satisfies

G7 < AnVi. (7)

The shared and unreliable wireless channel further restricts the
set of achievable values of long-term throughput {g7 }f\i ;- By em-
ploying E[d;(t)] = piE[u;(t)] and (2) into the definition of long-
term throughput in (6), we obtain

E [DF(T)] _pi I
T

u” N 7
(t) Z % <1 ®)
i=1

Inequalities (7) and (8) are necessary conditions® for the long-
term throughput {¢7 } , of any admissible scheduling policy = €
I1, regardless of the queuemg discipline. Both inequalities are used
for deriving the lower bound in Sec. 3. Next, we discuss the stability
of FIFO queues and its impact on the Aol minimization problem.

2.3 Queue Stability

Let Q7 (¢) be the number of packets in queue i at the beginning
of slot t when policy 7 is employed. Then, we say that queue i is
stable if

TlgnwE [Q7(T)] < o0 )
A network is stable under policy 7 when all of its queues are stable.
For networks with Single packet queues and No queues, stability is
trivial since the backlogs are such that Q7 (t) € {0, 1}, V¢, regardless
of the scheduling policy. The discussion about queue stability that
follows is meaningful only for the case of FIFO queues.

3In [20, 30], the authors consider destinations with minimum timely-throughput
requirements. Notice that conditions (7) and (8) are not throughput requirements
enforced by the destinations. They are necessary conditions that follow naturally from
the stochastic arrivals and interference constraints of the network.
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DEFINITION 1 (STABILITY REGION). A set of arrival rates {Ai}f\il
is within the stability region of a given wireless network if there exists
an admissible scheduling policy rr € 1 that stabilizes all queues.

When the network is unstable under a policy n € II, then the
expected backlog of at least one of its queues grows indefinitely over
time. An infinitely large backlog leads to packets with infinitely
large system times, i.e. z;(t) — oo. It follows from the evolution
of h;(t) in (3) that the Aol also increases indefinitely and, as a
result, the Expected Weighted Sum Aol diverges, namely E[J7] —
0. Clearly, instability is a critical disadvantage for FIFO queues.
Hence, we are interested in scheduling policies that can stabilize the
network whenever the arrival rates {Ai}g\i , are within the stability
region. Prior to introducing the policies, we derive a lower bound
to the Aol minimization problem.

3 LOWER BOUND

In this section, we derive an alternative (and more insightful) ex-
pression for the Aol objective function J” in (4) in terms of packet
delay and inter-delivery times. Then, we use this expression to
obtain a lower bound to the Aol minimization problem, namely
Lg < E[J*], for any given network operating under an arbitrary
queueing discipline. Surprisingly, the lower bound Lg depends only
on the network’s long-term throughput.

3.1 Aol in terms of packet delay and
inter-delivery times

Consider a network employing policy 7 during the time-horizon
T. Let Q be the sample space associated with this network and
let w € Q be a sample path. For a given sample path o, let t;[m]
be the index of the time-slot in which the mth (fresher*) packet
was delivered to destination i, Vm € {1,- -, D;(T)}, where D;(T)
is the total number of packets delivered. Then, we define I;[m] :=
ti[m] — ti[m — 1] as the inter-delivery time, with I;[1] = ¢;[1] and
t;[0] = 0.

The packet delay associated with the mth packet delivery to
destination i is given by z;(t;[m]). Notice that z;(¢;[m]) is the system
time of the HoL packet at the time it is delivered to the destination,
which is the definition of packet delay. To simplify notation, we
use z;[m] instead of z;(t;[m]).

Define the operator M[x] that calculates the sample mean of a
set of values x. Using this operator, the sample mean of I;[m] for a
fixed destination i is given by

Dy(T)

Ii[m] . (10)

m=1

Will) = 5o

For simplicity of notation, the time-horizon T is omitted in the
sample mean operator M.

PROPOSITION 2. The infinite-horizon Aol objective function J™
can be expressed as follows

N - _
ey S | VAL 2]
T—c0 4 1 2N M[Il] M[Il]

i=

—

wpd, (1)

“4Recall that the delivery of an older packet with ri“‘(t) < TiD(t) does not change
the associated Aol and, thus, should not be counted.
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where I;|m] is the inter-delivery time, z;[m] is the packet delay and
D;(T)

= 5o D @ilm=1lilm] . (12)
=1

ProoF. Provided in the technical report [19, Appendix A]. W

Equation (11) is valid for networks operating under an arbitrary
queueing discipline and employing any scheduling policy & € II. A
similar result for the case of a single stream, N = 1, was derived
in [17]. This equation provides useful insights into the Aol mini-
mization. The first term on the RHS of (11), namely M[I7]/2M([I;],
depends only on the service regularity provided by the scheduling
policy. The second term on the RHS of (11) depends on both the
packet delay z;[m — 1] and the inter-delivery time I;[m], as follows

v Di(T)

Mz;I;] Z Ii[m]

ML s P )
Notice that (13) is a weighted sample mean of the packet delays.
Intuitively, for minimizing this term, both the queueing discipline
and the scheduling policy should attempt to deliver packets with
low delay z;[m — 1] and, when the delay is high, they should deliver
the next packet as soon as possible in order to reduce the weight
I;[m] on the weighted mean (13).

The expression in (11) provides intuition on how the scheduling
policy should manage the packet delays z;[m] and the inter-delivery
times I;[m] in order to minimize Aol. Moreover, it shows that by
utilizing the simplifying assumption of queues always having fresh
packets available for transmission, the scheduling policy disregards
zi[m] and fails to address the term in (13). Next, we use (11) to
obtain a lower bound to the Aol minimization problem and, in
upcoming sections, we consider scheduling policies that take into
account both I;[m] and z;[m].

zilm—-1]. (13)

3.2 Lower Bound

A lower bound on Aol is obtained from the expression in Propo-
sition 2. By applying Jensen’s inequality M[Ilz] > (M[L;])? to (11),
manipulating the resulting expression and then employing a mini-
mization over policies in II, we obtain

Lower Bound

1 & 1
Lg =7r:1€1¥11{m2w1 (¥+1)} (14a)

i=1
st. XN GT fpi <1 (14b)
G7 < AiVi, (14c)

where (14b) and (14c) are the necessary conditions for the long-term
throughput in (8) and (7), respectively. Notice that the optimization
problem in (14a)-(14c) depends only on the network’s long-term
throughput {¢7 }f\i , and that the condition ¢7 < A; limits the
throughput to the packet arrival rate of the respective stream. To
find the unique solution to (14a)-(14c), we analyze the associated
KKT Conditions.

THEOREM 3 (LOWER BOUND). For any given network with param-
eters (N, pi, Ai, w;) and an arbitrary queueing discipline, the opti-
mization problem in (14a)-(14c) provides a lower bound on the Aol
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minimization problem, namely Lg < E[J*]. The unique solution to
(14a)-(14c) is given by

X . | Wipi .
qll_‘B = min {/11', _Zj\lfil* },Vl , (15)

where y* yields from Algorithm 1. The lower bound is given by

N
1
Lg=— wi (E + 1) . (16)

Algorithm 1 Solution to the Lower Bound

1y« (Zfil \/wi/pi)z/(ZN) and y; « wipl-/ZN).lZ.,Vi
2 y « max{y;yi}

2 qi — A min{l;M},Vz’

S 3N qi/pi

: while S <1andy > 0do

decrease y slightly

repeat steps 4 and 5 to update g; and S
: end while

v o N U W

: return y* =y and c}{.“B =q;,Vi

ProoF. Provided in the technical report [19, Appendix B]. W

Next, we develop the Optimal Stationary Randomized policy for
different queueing disciplines and derive the closed-form expression
for their Aol performance.

4 STATIONARY RANDOMIZED POLICIES

Denote by IIg the class of Stationary Randomized policies. Let R €
IIR be a scheduling policy that, in each slot ¢, selects stream i with
probability y; € (0, 1] or selects no stream with probability pg. If
the selected stream i has a non-empty queue, then u;(¢) = 1 and the
HoL packet is transmitted by the BS to destination i. Alternatively,
if the selected stream i has an empty queue or policy R selected
no stream, then u;(t) = 0,Vi and the BS idles. The scheduling
probabilities y; are fixed over time and satisfy Zf\i (M =1-po.

Randomized policies R € Il are as simple as possible. Each
policy in IIg is fully characterized by the set {,ui}lg\i 1 They select
streams at random, without taking into account h;(t), z;(t) or queue
backlogs Q;(t). Notice that policies in ITg are not work-conserving,
since they allow the BS to idle during slots in which HoL packets
are available for transmission.

Despite their simplicity, we show that by properly tuning the
scheduling probabilities ji; according to the network parameters
(N, pi, Ai, wi), policies in IIg can achieve performances within a
factor of 4 from the Aol-optimal. On the other hand, we also show
that naive choices of y; can lead to poor Aol performances. Next,
we develop and analyze scheduling policies for different queueing
disciplines which are optimal over the class IIg. In Secs. 4.1, 4.2
and 4.3 we consider networks employing Single packet queues, No
queues and FIFO queues, respectively. Then, in Sec. 4.4 we compare
their Aol performances.
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4.1 Randomized Policy for Single packet queue

Consider a network employing the Single packet queue discipline
on N streams with packet arrival rates A;, priorities w; and channel
reliabilities p;. Recall that for the Single packet queue, when a new
packet arrives, older packets from the same stream are dropped.
The BS selects streams according to R € IIg with scheduling proba-
bilities ;. Following a successful packet transmission from stream
i, its queue remains empty or a new packet arrives. The expected
number of (consecutive) slots that queue i remains empty is 1/4; — 1.
When a new packet arrives, the BS transmits this packet with prob-
ability p;. The expected number of slots necessary to successfully
deliver this packet is 1/p;p;. Under policy R € IIg and for the case
of Single packet queues, the sequence of packet deliveries is a re-
newal process. It follows from the elementary renewal theorem
[10] that

1 I 1

Tlgnoo T ; E[di(t)] = W,Vl,t . (17)
For the particular case of A; = 1, the Aol process h;(t) is also
stochastically renewed after every packet delivery and the long-
term time-average E[h;(t)] can be easily obtained using the elemen-
tary renewal theorem for renewal-reward processes. In contrast,
for the general case of A; € (0, 1], the evolution of h;(t) may be
dependent across consecutive inter-delivery intervals due to its
relationship with the system time zf(t) given in (3). To find an
expression for the long-term time-average E[h;(t)] we formulate
the problem as a two-dimensional Markov Chain with countably-
infinite state space represented by (h;(t), z;(¢)) and obtain its sta-
tionary distribution. Proposition 4 follows from substituting the

expression for E[A;(t)] into the objective function in (5).

PROPOSITION 4. The optimal EWSAol achieved by a network with
Single packet queues over the class I1g is given by

Optimal Randomized policy for Single packet queues

N
RS| _ . 1 N BN
E[] ]_RHEI%IIL{N;WI(Ai 1+Pilli)} (18a)

stZ  Hi S 15 (18b)

where RS denotes the Optimal Stationary Randomized Policy for the
Single packet queue discipline.

ProOF. Provided in the technical report [19, Appendix C]. W

Next, we solve the optimization problem in (18a)-(18b) and obtain
the optimal scheduling probabilities { ,uf }f\i 1

THEOREM 5. Consider a network with parameters (N, p;, Aj, w;)
operating under the Single packet queues discipline. The optimal
scheduling probabilities are given by

S = VWi /pi
l Zj}\il Vwi/pj

and the performance of the Optimal Stationary Randomized policy

ST S L P D

Vi, (19)
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Then, it follows that
* S *
Bl <B[/F| <aB (1] (21)
where E[J*] = min, ey E [J7] is the minimum Aol over the class of

all admissible policies I1.

Proor. The scheduling probabilities { pl.S }fi 1
(18b) also minimize this equivalent problem

1 ol wi N

1
min { — — ¢ st i <1. (22)
REHR{N ;Pl#l} ;Hl

Consider the Cauchy-Schwarz inequality

(i‘ \/Z:) (Z”) (Zl o ) (23)

The LHS is a lower bound on the objective function i 1n (22) Notice
that Cauchy-Schwarz holds with equality when {; } ; Is given
by (19), implying that (19) is a solution to both (22) and (lSa)-(le).
Substituting the solution® { ,uf }f\i 1
(18a) gives (20).

For deriving the upper bound in (21), consider the Randomized
policy R with ji; = q B /pi, Vi. Substitute ji; into the RHS of (18a)

and denote the result as E[]R] Comparing Lp in (16) with E[]R]
and noting from (15) that §; Lb < ;. gives that

that minimize (18a)-

into the objective function in

R 1 ol 2
E[]]SN;wi(ﬁ—l)<4L3. (24)
By definition, we know that
Lp < E[J*] < EJR°] < E[JR] . (25)
Inequality (21) follows directly from (24) and (25). |

Intuitively, the optimal probabilities { ,ui}%i1 should vary
with the packet arrival rates {/li}ilil. For example, consider a
Single packet queue with low arrival rate and high scheduling prob-
ability. This queue is often offered service while empty, thus wasting
resources. Hence, it seems natural that the optimal p; should vary
with A;. In Secs. 4.2 and 4.3, we show that this is the case for No
queues and FIFO queues. However, Theorem 5 shows that for Single
packet queues the optimal pis depends only on w; and p;. This
result is important for it simplifies the design of networked
systems that attempt to minimize Aol, as discussed in Sec. 4.4.

4.2 Randomized Policy for No queue

Consider a network with parameters (N, p;, A;, w;) employing the
No queue discipline and a Stationary Randomized policy R € IIg
with scheduling probabilities y;. Recall that R is oblivious to packet
arrivals and that, under the No queue discipline, packets are avail-
able for transmission only during the slot in which they arrive to
the system. Hence, if R selects stream i during slot ¢, a success-
ful packet delivery occurs only if a packet from stream i arrived
at the beginning of slot t, i.e. a;(t) = 1, and the channel is ON,

5The expression in (19) was obtained in previous work [21] under the simplifying
assumption of all streams always having fresh packets available for transmission. In
Theorem 5 we show that (19) is in fact optimal for streams with stochastic packet
arrivals and for any set of arrival rates {A; } l’i 1
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i.e. ¢j(t) = 1. Therefore, for the No queue discipline, we have that
di(t) = ai(t)ci(t)u;(t), Vi, t. This is equivalent to a network with
a virtual channel that is ON with probability p;A; and OFF with
probability 1 — p;A;. We use this equivalence to derive the results
that follow.

PROPOSITION 6. The optimal EWSAol achieved by a network with
No queues over the class IR is given by

Optimal Randomized policy for No queues

st SN st (26b)

where RN denotes the Optimal Stationary Randomized policy for
the No queues discipline.

Proor. Under the No queues discipline, all packets are delivered
with system time zﬁ\] (t) = 0 and the Aol process h;(t) is renewed
after every packet delivery. Hence, it follows from the elementary
renewal theorem for renewal-reward processes that

hm = > E[hi(t)] = (27)
Z Plllz i

Substituting (27) into (5) gives (26a). |
THEOREM 7. Consider a network with parameters (N, p;, Ai, w;)

operating under the No queues discipline. The optimal scheduling
probabilities are given by

HN \lwt/PlAz
l Z] | VWi /PjA;

and the performance of the Optimal Stationary Randomized policy

(28)

RN is
1 (Y ’
N wj
E [ JR ] - [ 29
N ; pii )
Proor. The proof is similar to Theorem 5. |

As expected, the similarities between the Optimal Stationary
Randomized policies for the No queue and Single packet queue
disciplines increase as the packet arrival rates {Ai}l{i , increase.
In particular, notice from (19) and (28) that ,ulN = /,1?,\7’1', when
Ai = 1,Vi, and, as a result, their Aol performance is also identical,
namely E []RN] =E []RS] when A; = 1,Vi. Recall that /,1? does

not change with A;.

4.3 Randomized Policy for FIFO queue

Consider a network with parameters (N, p;, A;, w;) employing FIFO
queues and a Stationary Randomized policy R € IIg with scheduling
probabilities y;. In this setting, each FIFO queue behaves as a discrete-
time Ber/Ber/1 queue with arrival rate A; and service rate p; ;. From
[11, Sec. 8.10], we know that the FIFO queue is stable when p;ji; > A;
and that its steady-state expected backlog is given by

Ai(1 = pipi)

lim E[Qi(T)] =
Jim BIOi(D)] = ==t

(30)
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From [39, Theorem 5]°, we know that the Aol associated with a
stable FIFO queue is given by

2
pipi A Lpipi ] pipi =i

Notice the similarities between (31), the expected backlog in (30)
and the Aol associated with a Single packet queue in (18a). Under
light load, i.e. when A; << p;p;, the third term on the RHS of (31)
is small when compared to the other terms. Hence, the Aol of the
FIFO queue in (31) is similar to the Aol of the Single packet queue
in (18a). On the other hand, under heavy load, as A; — p;u;, the
third term on the RHS of (31) dominates. Both the backlog and
the Aol of the FIFO queue, in (30) and (31), respectively, increase
sharply. Recall that when the backlog is large, packets have to wait
for a long time in the queue before being served, what makes their
information stale and, as a result, the Aol large. The Single packet
queue discipline avoids this issue by keeping only the freshest
packet in the queue.

Denote by RF' the Optimal Stationary Randomized policy for the
case of FIFO queues and let {/1%E }f\i ; be the associated scheduling
probabilities. Substituting (31) into the expression for the EWSAoI
in (5) gives

Optimal Randomized policy for FIFO queues

[J ]—mm{ W’[l L
Rellg piti A
} (32a)

N [L] 1= pifi

piki | pipi — Ai
st XN pi<1; (32b)
pipi > A, Vi (32¢)

Jim —ZEh )] =

where (32b) is the constraint on scheduling decisions and (32c)
is the condition for network stability.

REMARK 8. A sufficient condition for {Ai}f\il to be within the
stability region of the network is given by Zﬁ.\il Ailpi < 1.

THEOREM 9. The optimal scheduling probabilities for the case of
FIFO queues ,uf are given by Algorithm 2 when 6 — 0.

Proor. The auxiliary parameter § > 0 is used to enforce a closed
feasible set to the optimization problem in (32a)-(32c). We exchange
(32c) by pipi = A; + 8, Vi, to ensure that Algorithm 2 always finds
a unique solution to the KKT Conditions associated with (32a)-
(32¢) for any fixed (and arbitrarily small) value of §. Recall that
when p;p; ~ A; the Aol performance is poor. Hence, in most cases,
the optimal scheduling probabilities {/,tF }N are such that p; ,uf
and A; are not close, meaning that small changes in § should not
affect the solution. Algorithm 2 finds the unique solution to the
KKT Conditions and is developed using a similar method as in
Theorem 3. |

The authors in [39] obtain the minimum value of (32a) by Jomtly optimizing
over scheduling probabilities {¢f } N, and packet arrival rates {A; }, . Theorem 9
generalizes this result, by providing the optimal {p } Y, for any given {A; } Y
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As part of Algorithm 2, we use the partial derivative of (31) with
respect to y; multiplied by w; /N, which is denoted as

gi(x) = wi _ M} (33)
X=Hj

A2
N | pip? | pipi (pipi — Ai)?

Algorithm 2 Randomized policy for FIFO queue
cyi — (i +8)/pi Vie{1,2,--- ,N}

oy < max;{~gi(y:)}

s pi e max{ yi ; g7 (=y) }
S+ +UN

: while S < 1do

decrease y slightly

=

> where g;(.) is given in (33)

repeat steps 3 and 4 to update y; and S
. end while

N BN B~ ST T SRS I )

. return /,tf = p;, Vi

4.4 Comparison of Queueing Disciplines

Next, we compare the performance of four different Stationary
Randomized Policies: 1) Optimal Policy for Single packet queues,
RS 2) Optimal Policy for No queues, RN ; 3) Optimal Policy for FIFO
queues, RT; and 4) Naive Policy for FIFO queues. The EWSAol of
the first three policies is computed using (20), (29) and the solu-
tion to (32a)-(32c), respectively. The Naive Policy shares resources
evenly between streams by assigning p; = 1/N, Vi. The EWSAoI
of the Naive Policy is computed using the expression inside the
minimization in (32a).

We consider a network with two streams, w; = wy = 1, p; =
1/3, po = 1, &1 = A, A2 = A/3 and varying arrival rates 1 €
{0.01,0.02,--- ,1}. In Fig. 3, we show the EWSAoI of Random-
ized Policies under different queueing disciplines and display the
Lower Bound Lp for comparison. The policy with Single packet
queues outperforms the policies with other queueing disciplines for
every arrival rate A, as expected.

1 T
200 & Y 1 * Naive with FIFO queues |
1 ! Randomized with FIFO queues
E Y ! % Randomized with No queues
€ 1! : © Random. with Single pkt queues
3 150 II % ] —Lower Bound
3 \ 1
2 !
g v 1
6] L 3 ! J
2100H¥ X ,
° U
2 b
5]
(]
& 50+ 1
L
, 006000 BB

0 0.1 0.2 0.3 0.4 0.5
Arrival Rate, A

Figure 3: Comparison of Stationary Randomized Policies.

The Optimal Policy for FIFO queues leverages its knowledge

of p; and A; to stabilize the network whenever {/li}fi 1 is within

the stability region. In contrast, the Naive Policy shares channel
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resources evenly between streams, disregarding queue stability.
From Remark 8, we know that the network can be stabilized for
A < 3/10. However, in Fig. 3, we observe that the Naive Policy is
unable to stabilize the network when A € (1/6, 3/10). By comparing
their performances, it becomes evident that stability is critical for
FIFO queues.

Both the Single packet queue and the No queue disciplines present
a natural relationship between the rate at which fresh information
is generated at the source A; and the resulting Aol at the destina-
tion, namely a higher arrival rate (always) leads to a lower Aol
Furthermore, Theorem 5 shows that the optimal scheduling prob-
abilities /1;.9 for Single packet queues are independent of A;. This
result allows us to isolate the design of the arrival rate A;
from the design of the scheduling probability ;. In particular,
to minimize the EWSAoI in the network, the arrival rates {4 i}f\i 1
should be set as high as possible, while the scheduling probabilities
{,ul.s}fi1 should be proportional to y/w; /p; according to (19). Since
arrival rates and scheduling policies are often defined by dif-
ferent layers of the network stack, this isolation simplifies
the design of networked systems. It is important to empha-
size that this isolation only holds for networks employing
Single packet queues. For FIFO queues and No queues the op-
timal value of ;; changes for different values of 1;. Next, we
develop Age-Based Max-Weight Policies that use the knowledge
of h;(t) and z;(t) for making scheduling decisions in an adaptive
manner.

5 AGE-BASED MAX-WEIGHT POLICIES

In this section, we use Lyapunov Optimization [32] to develop Age-
Based Max-Weight policies for each of the queueing disciplines.
The Max-Weight policy is designed to reduce the expected drift of
the Lyapunov Function at every slot ¢. In doing so, the Max-Weight
policy attempts to minimize the Aol of the network.

We use the following linear Lyapunov Function

N
L{imons) =10 = 5 X it (9

where f; is a positive hyperparameter that can be used to tune
the Max-Weight policy to different network configurations and
queueing disciplines. The Lyapunov Drift is defined as
A(S(t)) :=E[L(t +1) - L()| S()] , (35)
where S(t) = ({hi(t)}f\il, {zi(t)}f\il) is the network state at the
beginning of time slot ¢. The Lyapunov Function L(t) increases with
the Aol of the network and the Lyapunov Drift A(S(t)) represents
the expected increase of L(t) in one slot. Hence, by minimizing the
drift in (35) at every slot ¢, the Max-Weight policy is attempting to
keep both L(t) and the network’s Aol small.
To develop the Max-Weight policy, we analyze the expression
for the drift in (35). Substituting the evolution of h;(¢ + 1) from (3)
into (35) and then manipulating the resulting expression, we obtain

1< 1<
M) = 55 D B = D Fipi (hi(t) = zi(D) B ()] S(1)] -
i=1 i=1

(36)
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The scheduling decision in slot ¢ affects only the second term on
the RHS of (36). For minimizing A(S(t)), the Max-Weight policy
selects, in each slot t, the stream i with a HoL packet and the highest
value of Bipi (hi(t) — zi(t)), with ties being broken arbitrarily. The
Max-Weight policy is work-conserving since it idles only when all
queues are empty.

Substituting zf(t), zf\](t) and zf(t) into Sip; (hi(t) — z;i(t)) gives
the Max-Weight policy associated with the Single packet queue,
M WS, the No queue, MWN , and the FIFO queue, MWFE, respectively.
Notice that the difference h;(t) — z;(t) represents the Aol reduction
accrued from a successful packet delivery to destination i. Hence,
it makes sense that the Max-Weight policy prioritizes queues with
high potential reward h;(t) — z;(t).

THEOREM 10 (PERFORMANCE BoUuNDs FOR MWS). Consider a
network employing Single packet queues. The performance of the
Max-Weight policy with f; = wi/pi,uf, Vi, is such that

E[]MWS] SE[]RS] , (37)

where ,uf and E[]RS] are the optimal scheduling probability for the
case of Single packet queues and the associated EWSAol attained by
RS, respectively.

THEOREM 11 (PERFORMANCE BounDs ForR MWN). Consider a
network employing the No queues discipline. The performance of the
Max-Weight Policy with p; = wi/pipf\], Vi, is such that

E[]MWN] SE[]RN] , (38)

N RN . . .
where yi;' and E[J* '] are the optimal scheduling probability for
the case of No queues and the associated EWSAol attained by RN,
respectively.

The proofs of Theorems 10 and 11 are provided in the technical
report [19, Appendices D and E], respectively. Both proofs rely on
the construction of equivalent systems that facilitate the analysis
of the expression of the drift in (36). The performance of MW is
evaluated next using simulations.

Stationary Randomized policies select streams randomly, accord-
ing to a fixed set of scheduling probabilities {yi}f\i ;- In contrast,
Max-Weight policies leverage the knowledge of h;(t) and z;(t) to
select which stream to serve. Therefore, it is not surprising that
Max-Weight policies outperform Randomized policies. However, es-
tablishing a performance guarantee as in (37) and (38) is challenging
for it depends on finding a tight upper bound for the performance
of Max-Weight policies, which often do not have properties such
as renewal intervals that simplify the analysis. Next, we provide
numerical results that further validate the superior performance of
the Max-Weight policies.

6 NUMERICAL RESULTS

In this section, we evaluate the performance of scheduling policies
in terms of the EWSAol. We compare: i) the Optimal Stationary
Randomized Policy for the case of Single packet queues RS, No queues
RN and FIFO queues RT'; ii) the Max-Weight Policy” for the case of

For the Max-Weight Policies MWS, MWN and MW, we employ f; =
w; /[pi ,ulX , Vi, where pIX is the optimal scheduling probability for the associated
queueing discipline.
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Single packet queues MWS, No queues MWN and FIFO queues MW T ;
and iii) the Whittle’s Index Policy under the No queues discipline.
The first two policies were developed in Secs. 4 and 5, respectively,
and the last policy was proposed in [14]. The Lower Bound Lp
derived in Sec. 3 is displayed for comparison.

In Figs. 4 and 5, we simulate networks with time-horizon T =
2 x 10° slots and N = 4 traffic streams with priorities wy; = 4,
wy = 4, w3 = 1, wg = 1, channel reliabilities p; = i/N, Vi and
arrival rates A; = (N —i+ 1)/N x A for A € {0.01,0.02,---,0.35}.
The results are separated in two figures for clarity. The performance
of the Randomized policies is computed using the expressions in
Sec. 4 while the performance of the Max-Weight and Whittle’s Index
policies are averages over 10 simulation runs.

300 1 T @ i ! ! !
1 \ 1 Randomized with FIFO queues
1 Q 1| | Randomized with No queues
2501 b\ I | Random. with Single pkt queues |
; Qs : * Max-Weight with FIFO queues
200 o ® * Max-Weight with Single pkt queues
| ¥—Lower Bound
1
X
1

Expected Weighted Sum Aol
o
o

50 [

L

0 . } ! T
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Arrival Rate, A

Figure 4: Simulation of networks with an increasing 1.

300 W T T ® T T T
\ -© Randomized with No queues

n Q “© Random. with Single pkt queues
2507 b % Max-Weight with No queues

! “ k o‘s * Max-Weight with Single pkt queues
200 - : R © |4 Whittle with No queues H

WX A —Lower Bound
b2

Expected Weighted Sum Aol
o
o

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Arrival Rate, A

Figure 5: Simulation of networks with an increasing 1.

The results in Figs. 4 and 5 suggest that the Max-Weight policy
outperforms the corresponding Randomized and Whittle’s Index
policies with the same queueing discipline for every value of A. The
results also show that under the same class of scheduling policies,
Single packet queues outperforms other queueing disciplines for
every value of A, as expected. It is evident from Fig. 4 that network
instability, which occurs when A > 12/77, is a major disadvantage
of employing FIFO queues.



Mobihoc ’19, July 2-5, 2019, Catania, Italy

7 CONCLUDING REMARKS

This paper considers a wireless network with a base station serving
multiple traffic streams to different destinations. Packets from each
stream arrive to the base station according to a Bernoulli process
and are enqueued in separate (per stream) queues that could be of
three types, namely FIFO queue, Single packet queue or No queue,
depending on the queueing discipline. Notice that, from the per-
spective of Aol, Single packet queues are equivalent to LIFO queues.
We studied the problem of optimizing scheduling decisions with
respect to the Expected Weighted Sum Aol of the network. Our
main contributions include i) deriving a lower bound on the Aol
performance achievable by any given network operating under
any queueing discipline; ii) developing both an Optimal Stationary
Randomized policy and a Max-Weight policy under each queueing
discipline; and iii) evaluating the combined impact of the stochastic
arrivals, queueing discipline and scheduling policy on the Aol using
analytical and numerical results. We show that, contrary to intu-
ition, the Optimal Stationary Randomized policy for Single packet
queues is insensitive to packet arrival rates. Simulation results show
that the performance of the Age-Based Max-Weight policy for Single
packet queues is close to the analytical lower bound. Interesting ex-
tensions of this work include consideration of multi-hop networks
and channels with unknown or time-varying statistics.
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