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In this work, we generalize semi-supervised generative adversarial networks (GANs) from classification
problems to regression problems. In the last few years, the importance of improving the training of neural
networks using semi-supervised training has been demonstrated for classification problems. We present a
novel loss function, called feature contrasting, resulting in a discriminator which can distinguish between fake
and real data based on feature statistics. This method avoids potential biases and limitations of alternative
approaches. The generalization of semi-supervised GANs to the regime of regression problems of opens their
use to countless applications as well as providing an avenue for a deeper understanding of how GANs function.
We first demonstrate the capabilities of semi-supervised regression GANs on a toy dataset which allows for
a detailed understanding of how they operate in various circumstances. This toy dataset is used to provide a
theoretical basis of the semi-supervised regression GAN. We then apply the semi-supervised regression GANs
to a number of real-world computer vision applications: age estimation, driving steering angle prediction,
and crowd counting from single images. We perform extensive tests of what accuracy can be achieved with
significantly reduced annotated data. Through the combination of the theoretical example and real-world
scenarios, we demonstrate how semi-supervised GANs can be generalized to regression problems.

1. Introduction

Deep learning (LeCun et al., 2015), particularly deep neural net-
works (DNNs), has become the dominant focus in many areas of
computer science in recent years. This is especially true in computer
vision, where the advent of convolutional neural networks (CNNs) (Le-
Cun et al., 1999) has led to algorithms which can outperform humans
in many vision tasks (Dodge and Karam, 2017). Within the field of
deep learning, generative models have become popular for generating
data that simulates real datasets. A generative model is one which
learns how to produce samples from a data distribution. In the case
of computer vision, this is often a neural network which learns how
to generate images, possibly with specified characteristics. Generative
models are particularly interesting because for such a model to gen-
erate new examples of data from a distribution, the model must be
able to distinguish data which belongs to the distribution and that
which does not. In a sense, this distinguishing ability shows that the
network “understands” a data distribution. Arguably the most pow-
erful type of generative model is the generative adversarial network

(GAN) (Goodfellow, 2016; Goodfellow et al., 2014). GANs have been
shown to be capable of producing fake data that appears to be real
to human evaluators. For example, GANs can generate fake images of
real world objects which a human evaluator cannot distinguish from
true images (Elsayed et al., 2018). Beyond this, GANs have been shown
to produce better results in discriminative tasks using relatively small
amounts of data (Salimans et al., 2016), where equivalent DNNs/CNNs
would require significantly more training data to accomplish the same
level of accuracy. As one of the greatest obstacles in deep learning
is acquiring the large amount of labeled data to train such models,
the ability to train these powerful models with much less data is of
immense importance.

While GANs have already shown significant potential in semi-
supervised training, they have only been used for a limited number
of cases. In particular, they have almost exclusively been used for
classification problems thus far. In this work, we propose generalizing
semi-supervised GANSs to regression problems. Though this may initially
seem to be a trivial expansion, the nature of a GAN’s optimization
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goals makes the shift from classification to regression problems dif-
ficult. Specifically, the two parts of a GAN can be seen as playing a
minimax game. The discriminating portion of the GAN must have the
objective of labeling the fake data from generating portion as fake. In a
classification semi-supervise GAN, an additional “fake” class is added
to the possible list of classes. However, in regression, when the data
is labeled with real valued numbers, deciding on what constitutes a
“fake” labeling is not straight forward.

1.1. Contributions

In this work, we will present the following contributions:

1. A new algorithm with a novel loss function, feature contrasting,
which allows semi-supervised GANs to be applied to regression
problems, the Semi-supervised Regression GAN (SR-GAN).

2. A set of optimization rules which allows for stable, consis-
tent training when using the SR-GAN, including experiments
demonstrating the importance of these rules.

3. Systematic experiments using the SR-GAN on the real world
applications of age estimation, driving steering angle prediction,
and crowd counting from single images showing the benefits of
SR-GANSs over existing approaches.

The most important contribution is the introduction of the gen-
eralized semi-supervised regression GAN (SR-GAN) formulation using
feature contrasting. Nevertheless, while the theoretical solution for
applying semi-supervised GANs to regression is provided in the first
contribution, there are several factors that need to be addressed for this
approach to work in practice. Chiefly is the stability of training the two
competing networks in an SR-GAN. This is addressed by designing loss
functions for the SR-GAN whose gradients are well-behaved (neither
vanishing nor exploding) in as many situations as possible, and pre-
venting cyclical training between the generator and discriminator by
applying penalties and limitations in the training behavior.

We provide a number of real world applications where SR-GANs
are shown to improve the results over traditional CNNs and other
competing models. Specifically we will use the SR-GAN to predict the
age of an individual, estimate the angle a steering wheel should be
turned to given an image of the upcoming road segment, and count the
size of a crowd from a single image. The age estimation and steering
angle datasets provides relatively simple applications on which the SR-
GAN can be used to reduce the data requirements in a real world
situation, while still being challenging and general enough to merit
attention. The crowd counting application provides a more complex
scenario with a wide variety of conditions to show the method in more
difficult circumstances.

1.2. Outline

The remainder of the paper is laid out as follows. The work which
our method builds off of as a starting point and other related works are
examined in Section 2. Section 3 explains our methods and experimen-
tal setup. Section 4 displays the experimental results and discusses the
findings. Finally, we conclude in Section 5.

2. Background and related work
2.1. The value of regression problems

Regression problems encompass a large pool of applications which
cannot be solved — or would be poorly solved — by framing them as clas-
sification problems. The SR-GAN as we define it here can be generalized
to any such regression problem. Some examples include crowd counting
estimation (Zhang et al., 2015), weather prediction models (Xingjian
et al., 2015), stock index evaluation (Ding et al., 2015), object distance
estimation (Eigen et al.,, 2014), age estimation (Niu et al., 2016),
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Fig. 1. The structure of a basic GAN. Real and fake images are fed to a discriminator
network, which tries to determine whether the images are real or fake. The fake images
are produced by a generator network.

data hole filling (Pathak et al., 2016), curve coefficient estimation,
ecological biomass prediction (Ali et al., 2015), traffic flow density
prediction (Lv et al., 2015), orbital mechanics predictions (Hartikainen
et al.,, 2012), electrical grid load prediction (Marino et al., 2016),
stellar spectral analysis (Fabbro et al., 2017), network data load pre-
diction (Oliveira et al., 2016), object orientation estimation (Schwarz
et al., 2015), species population prediction (Bland et al., 2015), ocean
current prediction (Liu and Weisberg, 2005), and countless others.
While it is possible to frame each of these problems in terms of
classification, in practice, this presents several significant problems.
For example, the developer must decide on an arbitrary number of
classes for the application. However, more importantly, such a naive
classification approach results in each incorrect prediction being con-
sidered equally as erroneous. In regression applications, the true label
lies somewhere on a continuous scale, and the closer of two predictions
should always be considered better than the farther, even if both are
inaccurate. If the prediction of a real number from O to 10 was split
into 10 discrete classes, a prediction of 8 should be considered better
than a prediction of 2 for a true label of 10. Yet, a naive classification
network produces the same loss for each. Depending on the accuracy
required by the application, this approach may be acceptable, but these
problems are more naturally framed as regression problems.

2.2. Generative adversarial networks

A Generative Adversarial Network (GAN) consists of two neural
networks which compete against one another. One of the networks gen-
erates fake data; hence we will call it the generator. The other network
attempts to distinguish between real data and the fake generated data;
consequently, this network is called the discriminator. Both networks
are trained together, each continually working to outperform the other
and adapting in accordance to the other.

Though GANs are now fairly common, to provide the groundwork
for our SR-GAN, it is worth defining the details of a GAN from the
viewpoint of probability distributions. Although these methods work
for any prediction application, to give a concrete understanding, these
explanations are given in terms of computer vision problems, specifi-
cally where the datasets consist of images. This means an example of
real data (and thus the input of the discriminator) is an image, and the
output of the generator is also an image. The structure of a GAN can
be seen in Fig. 1.

The generator network takes random noise as input (usually sam-
pled from a normal distribution) and outputs the fake image data. The
discriminator takes as input images and outputs a binary classification
of either fake or real data. Images can be represented by a vector, with
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each element representing the value of a pixel in the image.! In any
image, each element of this vector has a value within a certain range
representing the intensity of that pixel. For this explanation, we will
state the minimum element value (pixel value) as being 0, and the
maximum as being 1. Of course, this vector can be represented as a
point in N dimensional space, where N is the number of elements in
the vector. The possible positions of an image’s point are restricted
to the N dimensional hypercube with a side length of 1. Here, it
is important to note that real-world images are not equally spread
throughout this cube. That is, most points in the cube correspond to
images that would look like random noise to a human. Images from the
real world usually have properties like local consistency in both texture
and color, logical relative positioning of shapes, etc. Real world images
lie on a manifold within the cube (Fefferman et al., 2016). Subsets
of real-world images, such as the set of all images containing a dog,
lie on yet a smaller manifold. This manifold represents a probability
distribution of the real world images. We can view the real world as
a data generating probability distribution, with each position on the
manifold having a certain probability based on how likely that image
is to exist in the real world.

The goal of the generator is then to produce images which match
the probability distribution of the manifold as closely as possible. Input
to the generator is a point sampled from the probability distribution of
(multidimensional) random normal noise, and the output is a point in
the hypercube—an image. The generator is then a function which trans-
forms a normal distribution into an image data distribution. Formally,

Prake(*) = GN) (€Y

where G represents the generator function, x is a random variable
representing an image, N is the normal distribution, and pg(x) is the
probability distribution of the images generated by the generator. The
desired goal of the generator is to minimize the difference between
the generated distribution and the true data distribution. One of the
most common metrics to minimize this difference is the Kullback-
Leibler (KL) divergence between the generator distribution and the true
data distribution using maximum likelihood estimation. This is done by
finding the parameters of the generator, 6, which produce the smallest
divergence,

0° = arg min Dy (pgarg(®) I p(x: 0). @

To find this set of parameters, each of the discriminator and the gen-
erator works toward minimizing a loss function. For the discriminator,
the loss function is given by

Lp=-EripwllogD@)] —Er,  xllog(l - D(x))] 3
and the generator’s loss function is given by
= —Erp 0 [108(D))]. O]

In the case of image data, this approach has led to generative models
which can produce realistic looking images reliably (Radford et al.,
2015).

Lfake

2.3. Semi-supervised GANs for classification

In this section, we will explain a subset of GANs which are used
to improve the training of ordinary networks for discrimination and
prediction tasks. In this case, both a labeled and an unlabeled dataset
is used, and in addition to distinguishing between real and fake, the
discriminator also tries to label a real input data sample into one of
the given classes. The primary goal of this type of GAN is to allow

1 One element per pixel is in the case of grayscale images. For RGB images,
there will be three elements in the vector for each pixel, one for each color
channel of the pixel.
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Fig. 2. The structure of a semi-supervised GAN. Both labeled and unlabeled real
images, as well as fake images, are fed to a discriminator network, which tries to
determine which class each image belongs to (K real classes and one fake class). The
discriminator wishes to label images from the generator as belonging to a special “fake”
class.

the discriminator’s prediction task to be trained with relatively small
amounts of labeled data using unlabeled data to provide the network
with additional information. As unlabeled data is usually much easier to
obtain than labeled data, this provides a powerful means to reduce the
requirements of training neural networks. This semi-supervised GAN
structure can be seen in Fig. 2.

Where in a simple GAN the discriminator would be passed true
examples and fake examples, in the semi-supervised GAN the discrimi-
nator is given true labeled examples, true unlabeled examples, and fake
examples. We can better understand why this is useful by considering
the case of image classification. In this case, the discriminator is being
trained to predict the correct class of a true image, which can be one
of the K classes that exist in the dataset. The discriminator is given the
additional goal of attempting to label any fake images with a K + 1th
class, which only exists to label fake data (i.e., does not exist in the
true label dataset). For the case of unlabeled, all we know is that it
must belong to one of the first K classes, as the K + 1th class does not
exist in the real data. The discriminator is then punished for labeling
true unlabeled data as the K + 1th class. This is useful because the
discriminator cannot simply overfit to the labeled data, as it still has
to accommodate for the unlabeled data. At the same time, the fake
data prevents the discriminator from allowing simple features to be the
deciding factor, as the generator is able to produce such simple features.

To understand what is happening in this semi-supervised learning
more intuitively, we can imagine the extreme case of an ideal discrim-
inator and generator. The generator would have to have learned to
produce data which exactly matches the true data distribution. For this
to happen, the discriminator must have forced the generator to learn
this (as the generator’s training is entirely dictated by backpropagation
from the discriminator), meaning the discriminator too “knows” exactly
the data distribution. If there were any difference between the true
and generated image distributions, the discriminator could use this to
distinguish between real and fake, and then the generator could still be
trained further toward producing a match of the true distribution.

Viewing this from the perspective of the manifold in data space
again, there are few labeled data points and many unlabeled data points
which must lie on the manifold. The manifold has different regions (or
even separate manifolds) for each class, but even the unlabeled data has
to lie somewhere on the manifold. As the discriminator trains, it learns
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how to segment the data points into categories. To do this, it creates
a mapping from a predictive manifold to a class, with the training
warping the manifold to contain each of the data points for that class.
At the same time, the generator prevents the manifold from warping
too severely to reach data points in arbitrary ways. Intuitively, this is
because severely warping the manifold to reach true data points can
result in the manifold stretching into the area which does not represent
true images. The generator acts a pressure on the manifold to reduce
this. By generating images near the manifold, the generator forces the
discriminator’s manifold not to wander into areas that do not contain
real images. In this sense, the generator is a form of regularization for
the discriminator, but one which is based on real-world data.

As originally formulated by Salimans et al. (2016), the discriminator
loss function is then defined by

LD = Lsuperui:ed + Lunsupervised (5)

L

supervised —

(6)
- EX,J'NP/a»e/ed(x,y)IOg[pmodel Olxy<K+D]

L

unsupervised =
= B puntarerca1O8I = Proaer (v = K + 11 x)] @
- Ex’“l’/akelog[pmodel(y =K+1 | x)].

As for the generator, the first option for a loss function is the straight
forward one which aims to have the discriminator label the fake images
as from real classes. Specifically,

Lo =By, 1081Pnoga(y < K+ 11 )], ©)

However, Salimans et al. (2016) found better results by trying to have
the output activations of an intermediate layer of the discriminator
have similar statistics in both the fake and real image cases. That is, the
generator should try to make its images produce similar features in an
intermediate layer as is produced when true images are input. This can
be intuitively understood as making the statistics of the image be the
same in both the fake and real cases, specifically, the feature statistics
that are used in deciding a classification. The simplest and most useful
statistic to try to match is the expected value for each feature. Formally
put, if we denote f(x) as the features output by an intermediate layer
in the discriminator, then the loss function for the generator becomes

2
EXNPre,uf(x) - Ex~pfa,“, f(x)uz . 9

Since their development, semi-supervised GANs have been used to
improve training in many areas of classification, including digit clas-
sification (Springenberg, 2015; Sricharan et al., 2017; Salimans et al.,
2016), object classification (Springenberg, 2015; Sricharan et al., 2017;
Salimans et al., 2016), facial attribute identification (Sricharan et al.,
2017), and image segmentation (per pixel object classification) (Souly
et al., 2017).

LG=|

2.4. Alternative semi-supervised regression GAN methods

For regression, Rezagholiradeh and Haidar (2018) provides two
semi-supervised GAN approaches. They have applied their methods to
the driving application, which we compare to in Section 4.

First, they present a dual goal GAN (DG-GAN) approach, which they
refer to as Reg-GAN Architecture 1. A DG-GAN outputs two labels: a
regression value prediction and a fake/real classification prediction.
The idea is that the network must learn both how to distinguish
between real and fake examples, and how to predict the correct value
for a labeled example. However, this approach does not enforce that
these two predictions be related. Part of the network may learn the task
of identifying real/fake images, while another portion of the network
learns the task of predicting regression values. A representation of this
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Fig. 3. A DG-GAN network splitting the network into solving the two objectives
independently, rather than using a shared representation. The dashed lines represent
connections which exist but have very low weights. The degree of this division of
learning can vary.

split learning can be seen in Fig. 3. If the objective of distinguish-
ing being real and fake examples is weighted strongly enough, the
network may devote larger portions of the network to the real/fake
classification task, thereby reducing its effectiveness in the regression
prediction. We show in our experiments that our proposed method
outperforms the DG-GAN, both in our own implementation and in that
of Rezagholiradeh and Haidar (2018).

They also present a second which method, Reg-GAN Architecture 2,
which only outputs the single driving angle regression value, and then
attempts to label this value as fake or real depending on if the value
lies within the range of real values from the dataset. This method has
two significant limitations. (1) If the full range of the unlabeled dataset
is unknown, a correct angle prediction will be incorrectly labeled as
fake data. Rezagholiradeh and Haidar (2018) assumes the range of
the unlabeled data is known. (2) A bias is introduced, as values near
the boundary between fake and real are preferred. This is because a
generator which can exactly duplicate unlabeled data will force the
discriminator to pick a value on the boundary between fake and real as
the best possible answer. Finally, a discrete classification method was
presented with each class being the central value of the class interval.

2.5. Regression in conditional GANs

Another distinct category of related work is that of regression in
conditional GANs. Conditional GANs are a type of GAN designed to
produce realistic examples which have specific desired properties in
the example. Bazrafkan and Corcoran (2018) provides an approach
to generate images with specific characteristics in a conditional GAN.
In particular, they use a regressor in parallel with the discriminator
network to provide more variation in the generated examples.

These works are attempting to produce realistic looking generated
examples. The produce is not a predictive network for real examples.
In contrast, our approach is designed to improve the predictive ca-
pabilities of the discriminator on real examples. Notably, we do not
expect our generator to produce realistic looking examples. On the contrary,
we expect the examples generated will not look realistic. As noted
by Salimans et al. (2016), the use of feature matching (which is also
used in our work) improves discriminator predictive accuracy while
reducing the realism of the generated examples. We expect our fea-
ture contrasting approach will further erode the realism. Furthermore,
works such as Dai et al. (2017) show how a generator which produces
examples that are too realistic may be less advantageous for improving
a discriminator’s predictive abilities.

3. Theory and design
3.1. SR-GAN formulation using feature contrasting

The semi-supervised regression GAN (SR-GAN) approaches regres-
sion estimation by comparing the types of available data (labeled,
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Fig. 4. The structure of an SR-GAN. Its structure is similar to the semi-supervised
GAN, with the major differences being in the objective functions and the output being
a regression value. In this network, the discriminator distinguishes between fake and
real images through feature statistics. No explicit real or fake label is assigned.

unlabeled, and fake) as probability distributions rather than individual
examples. In this method, the discriminator does not attempt to predict
a label for the unlabeled data or fake data. Instead, the statistics of
the features within the network for each type of data is compared.
Here is the key idea: We have the discriminator seek to make the
unlabeled examples have a similar feature distribution as the labeled
examples. The discriminator also works to have fake examples have a
feature distribution as divergent from the labeled examples distribution
as possible. This forces the discriminator to see both the labeled and
unlabeled examples as coming from the same distribution, and fake
data as coming from a different distribution. The generator, on the
other hand, will be trained to produce examples which match the
unlabeled example distribution, and because of this, the generator
and discriminator have opposing goals. How a label is assigned to an
example drawn from that distribution is still decided by based on the
labeled examples (as it is in ordinary DNN/CNN training), but the fact
that the unlabeled examples must lie in the true example distribution
forces the discriminator to more closely conform to the true underlying
data generating distribution. The SR-GAN structure can be seen in
Fig. 4 with age estimation as an example. For the case of training the
discriminator to have similar feature statistics for both real labeled and
real unlabeled data, this approach is related to the feature matching
proposed by Salimans et al. (2016), except that this is applied for
entirely different purposes than it was in their work. In the case of
training the discriminator with real data and fake data, we propose
a novel approach, feature contrasting, which is antithetical to feature
matching. In this case, the discriminator attempts to make the features
of the real and fake data as dissimilar as possible, while the generator
is attempting to make these features as similar as possible.
Specifically, the loss functions as defined for classification (Egs. (5)
to (7)) in the case of regression will become the following. First, we
separate the loss of the discriminator into several terms for clarity. This
is given by
LD = Lsupervised + Lunsupervised . (10)
= Llabeled + Lunlabeled + Lfake

What we refer to as the “labeled loss”, is given by
Ligbeted = Ex ypyg e (D) = )71, an

This loss is similar to an ordinary fully supervised loss (for regression
training). Next, the “unlabeled loss” causes the discriminator to attempt
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Fig. 5. A comparison of the losses used for feature matching and feature contrasting,
used in L and L,,;,..q respectively. The losses have been normalized for comparison.
Shown in the change in loss due to a single feature (due to the norms used in the
functions, multiple features changing together have a slightly different impact). Of
particular note, a decreased loss for one necessarily results in an increased loss for the
other.

to make the feature statistics of the real labeled data and the real
unlabeled data be as similar as possible. This unlabeled loss is given
by

2
Bt praperea ! ) = Bxmpiptaperea f(x)H2 : 12

In contrast, the “fake loss” causes to the discriminator to attempt to
make the feature statistics of the real data as dissimilar to the fake
data as possible. This feature contrasting is accomplished with the loss
function given by

log (

Finally, the generator attempts to make the feature statistics of the real
data match those of the fake data. This goal is accomplished by the
generator loss given by

Lunlabeled = ‘

Lfake ==

]Ex'v[’fake f(x) - EXNI’un/abcled f(x)) * 1)

' . 13)
1

LG = ”E"prake f&) = ]EprMn[abeled f(x)“i : a4

Here, L, japeica @0d L are identical except in which types of data are
being compared. Additionally, the feature contrasting in Eq. (13) is in
direct opposition to the feature matching in Eq. (14). Notably, there is
no possibility for the generator and discriminator to both benefit by a
change in these features; A decreased loss for one necessarily results
an increased loss for the other. A comparison of a change in the loss
from a single feature can be seen in Fig. 5. We briefly explore some
additional loss function options in Section 3.1.

We note that we choose a different norm function for Eq. (13) com-
pared to Egs. (11) and (14). The L2 norm in Egs. (11) and (14) causes
any non-matching feature to be the most heavily punished, resulting in
a network which tries to make all features similar. Conversely, an L1
norm is used for feature contrasting. This is because an L2 norm would
result in a discriminator which focuses on the already most dissimilar
feature while allowing all other features to become similar. The L1
norm puts an equal benefit on contrasting all features. To emphasize
this, the L2 norm for L, results in problematic backpropagation, as
zero distance feature differences should result in the largest gradients,
but are instead multiplied by zero.

To summarize, the SR-GAN uses feature matching for the discrim-
inator loss functions where in previous methods a separate “fake”
class is defined. Specifically this can be seen in the change from
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the unsupervised loss in Eq. (7) (which uses a “fake” class in the
discriminator) to Eqgs. (12) and (13) (which uses feature layer statistics).
This accomplishes two goals:

1. Regression problems have no classes and the previous methods
require a “fake” class definition, and the SR-GAN approach
allows regression problems to be approached.

2. The feature matching does not introduce any bias in the discrim-
inator label prediction, as the final label output is not used in the
unsupervised loss.

Additionally, the SR-GAN approach requires no prior information about
the data and requires no manual definition of goals beyond the original
loss function for labeled examples.

3.2. Gradient penalty

Of the challenges preventing the use of an SR-GAN, the greatest
is likely the difficulty of designing an objective which reliably and
consistently converges. GANs can easily fail to converge under various
circumstances (Barnett, 2018). To solve these general GAN instability
issues, we use the gradient penalty approach proposed by Arjovsky
et al. (2017) and Gulrajani et al. (2017).

The gradient penalty as defined by Gulrajani et al. (2017) is not
applicable to our situation, because their gradient penalty is based
on the final output of the discriminator. As the final output of the
discriminator is not used in producing the gradient to the generator,
we use a modified form of the gradient penalty. This gradient penalty
term is added to the rest of the loss function resulting in

L = Lygperea + Luniabetea + Lfake
2
# 2By [max (1900 - 1).0)] -

where Pinterpolate examples are generated by APyniabeled T a- a)pfake
for ¢ ~ U'. The last term basically provides a restriction on how
quickly the discriminator can change relative to the generator’s output.
Our version of the gradient penalty term is modified in multiple ways
from the original. First, as noted above, the final discriminator output
cannot be used, nor should it, as the discriminator’s interpretation of
the generated data only matter in regard to the feature vector, f(x).
Second, the gradient penalty is normally applied to a term similar to
the L;,, term using the interpolated values. However, our L, is
based on the average of a batch of fake examples whose difference is
then taken from a batch of real examples. As both the L, term and
interpolates are calculated based on the real data, the resulting gradient
penalty is negligible. Instead, we apply the gradient penalty directly to
the mean feature vector of a batch of interpolated examples and do
not apply the feature distance loss function compared to the mean real
feature vector. As this penalizes the gradient even for mean feature
vectors far from the mean real feature vector, it may slow training.
However, near the real feature vector, it approximates the original
gradient penalty formulation and works well in practice. Lastly, we use
the one-sided version of the gradient penalty described by Gulrajani
et al. (2017). As mentioned in their work, the one-sided penalty more
closely matches the desired discriminator training properties, and we
found this approach to produce higher accuracies than the two-sided
penalty.

(15)

4. Experiments and results

To demonstrate the capabilities of the semi-supervised regression
GANs, we use four experimental setups, each of which consists of
several individual trials and demonstrations.

The first experimental setup will be of a synthesized dataset prob-
lem. This will allow us to demonstrate the details of the theoretical
issues behind a semi-supervised regression GAN in a well controlled
and understood environment. These include: what is the right objective
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which reliably and consistently converges in training, and how little
data is needed to achieve different levels of prediction accuracy. We
will use a dataset of polynomials with sampled points on the polyno-
mial, whereas the goal of the network is to predict coefficients of the
polynomial given the sampled points. Using this simplistic problem, we
can show how the semi-supervised regression GAN works in details,
what variations can influence its capabilities, and what its limitations
are. Most importantly, this allows us to have complete control and
understanding of the underlying data generating distribution. This
is impossible in any real-world application, as the underlying data
generating distribution there is the real world itself.

The downside to the synthetic dataset is that because we have
complete control over the data generating distribution, we can define
the data such that our SR-GAN does arbitrarily well compared with a
normal DNN. As such, the remaining experimental setups are real-world
applications. The applications of age estimation, driving steering angle
prediction, and crowd counting have been chosen for this purpose. The
real world case provides an area we can show direct improvements in
compared to a non-adversarial CNN.

4.1. Coefficient estimation

The first experimental setup consists of a simple, well-controlled
mathematical model, whose problem can be easily solved with simple
neural networks when given enough examples. The example chosen
is a polynomial coefficient estimation problem. This problem allows
for an environment in which many properties of the semi-supervised
regression GAN can be shown and their limits tested. In particular, the
simple environment allows us to not only demonstrate the properties
of the semi-supervised regression GAN but also give a clear theoretic
understanding of why the network exhibits these behaviors. Five im-
portant aspects will be discussed: (1) the dataset; (2) the experiment
setup; (3) estimation with minimal data; (4) loss function analysis; and
(5) choices of gradient penalty.

4.1.1. Polynomial coefficient estimation dataset

For the data of the mathematical model to appropriately represent
the characteristics of a real aggression application, we seek to create a
data generating model that exhibits the following properties.

1. Able to produce any desired number of examples.

2. The distribution of the underlying data properties is selectable.

3. The relation between the raw data and the label is abstract,
where the label is a regression value instead of one of a finite
number of classes.

4. Able to contain latent properties that effect the relation between
the data and the labels.

5. Most of the data can be made to be irrelevant to the label.

Property 1 allows us to run any number of trials on new data,
and run trials where data is unlimited. Property 2 reveals the inner
workings of the data distribution. This is important, as we can monitor
how closely the generator’s examples match the true distribution and
examine what kinds of distributions lead to limitations or advantages
of the GAN model. Property 3 ensures the findings on the toy model
is relevant real deep learning applications for regression. That is, deep
learning is typically used in cases where input data is complex, and
an abstract, high-level meaning of that data is desired. When the
relationship between the data and the label (the regression value) is too
simple, more traditional prediction methods tend to be used. Property
4 is also important because of its relationship to real applications. Most
applications involve cases where a property which is not the value to be
predicted directly effects the data related to value to be predicted. For
example, in the case of age estimation, whether the image of the face
is lit from the front or lit from the side drastically changes the data and
what the CNN should be searching for. Finally, Property 5 requires that
our model is able to filter which pieces of information are important
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Fig. 6. An example of a polynomial as described in Eq. (16) with 10 points sampled.
In this case, a, =2, a; = —1, and a, = —1, but only a5 is the coefficient to be estimated.

and which are not. Again, in the case of age estimation, whether the
background behind the person is outdoors or indoors should have little
or no impact on the prediction of their age. In many, if not most, cases
of deep learning applications the majority of the input data has little
to no relevance for the task at hand. The network must learn which
information should be relied on and which data should be ignored.

An option of a simplistic mathematical model for this purpose would
be a data generating distribution which is defined as follows. First, we
define a polynomial,

y = ax* +a3x° + apx® + apx. (16)

We set a; = 1. With U'(ry,r,) representing a uniform distribution
over the range from r( to r|, a3 is randomly chosen from V'(-1,1). a,
and g, are randomly chosen from b - U'(-2,-1) + (1 — b) - U°(1,2) with
b being randomly chosen from a standard binomial distribution. Then
we sample y for 10 xs from linear space from —1 to 1. An example of
such a polynomial and the observed points are shown in Fig. 6. This
one polynomial and the observed points constitutes a single example
in our dataset. The label of this example we choose as a;. That is, our
network, when given the 10 observations, should be able to predict a;.

We can compare the pieces of this data generating distribution to
the standard image regression problem (think of age estimation from
images) to better understand what parts of the toy model represent
which parts in a real application model. The 10 observed values from
the toy model are analogous to the pixel values in image regression.
az is equivalent to the object label (e.g. age value). Finally, the set
of all polynomials obtainable from Eq. (16), given the restrictions on
how the coefficients are chosen, is the underlying data generating
distribution in the toy case, where this role is played by views of the
real world projected to an image plane in the regression case (such as
age estimation).

This model fulfills all but the last property defined above. To satisfy
Property 5, we simply make every example in the dataset consist of
5 different polynomials each chosen and observed as previously ex-
plained. However, for this single example (consisting of 5 polynomials)
on the a; coefficient of the first example is the label. Thus, each
example consists of 50 observations, only 10 of which are related to
the label. Lastly, we apply noise to every observation.

4.1.2. Coefficient estimation experimental setup

In the coefficient estimation experiments, both the discriminator
and generator each consisted of a 4 layer fully connected neural net-
work. Each layer contained 10 hidden units. All code and hyperpa-
rameters can be found at https://github.com/golmschenk/srgan. The
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Fig. 7. The resultant inference accuracy of the coefficient estimation network trained
with and without the SR-GAN for various quantities of labeled data.
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Fig. 8. The relative error of the GAN model over CNN model for various quantities of
labeled data for the coefficient model.

training dataset for each experiment was randomly chosen. The seed
for the random number generator is set to O for the first experiment,
1 for the second, and so on. The same seeds are used for each set of
experiments. That is, the SR-GAN compared with the DNN use the same
training data for each individual trial. Additionally, for experiments
over a changing hyperparameter, the same seeds are used for each
hyperparameter value.

In these experiments, we demonstrate the value of the SR-GAN
on polynomial coefficient estimation. Using a simple fully connected
neural network architecture, we have tested the DG-GAN and SR-GAN
methods compared to a plain DNN on various quantities of data from
the generation process described above. The results of these experi-
ments can be seen in Fig. 7. In each of these experiments an unlabeled
dataset of 50,000 examples was used, when various quantities (from 50
to 10,000) of labeled data were used. Each data point on the plots is
the average of three training runs randomly seeded to contain different
training and test sets on each experiment. The relative error between
the DNN and the GAN methods can be seen in Fig. 8. We see a signif-
icant accuracy improvement in lower labeled data cases for the GAN
methods. The SR-GAN error is 68% of what the DNN error is at with 50
labeled examples. With 50 examples, the DG-GAN also has a significant
advantage with 75% the error the DNN has. However, the DG-GAN
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Table 1

A comparison of the SR-GAN method using various loss functions for feature matching
and feature contrasting. Each experiment was run on the coefficient application with
500 labeled examples and 50,000 unlabeled examples.

Loss functions MAE

Lye == |log (d; + 1), Lunasetes = L = ”dfﬂi 0.0578
Lywe =~V FT|, Lusasres = Lo = || 0.0613
Lyae == ||ds|,  Eumaseres = Lo = /), 0.0672

quickly loses its advantage over the DNN as the data size increases.
As the amount of labeled data becomes very large, SR-GAN does not
perform better than the DNN. This diminishing return is expected, as
we can consider the case of infinite labeled data, where unlabeled data
could then provide no additional useful information. We note that for
the simple problem of coefficient estimation, 10,000 examples is a very
large dataset for training. In each of the real world applications we
tested our SR-GAN method in, we did not see a detriment in using the
SR-GAN with larger numbers of labeled examples.

4.1.3. Loss function analysis on coefficient estimation

As noted in Section 3.1 we primarily experimented with the loss
functions given in Egs. (11), (13) and (14). However, these are not the
only loss functions which could be used for the feature matching and
feature contrasting objectives.

We tested three sets of loss functions. We will refer to the feature
distance vector as

dy=|Exop fX)=Ey ), f(x) a7

where p, and p, are the appropriate labeled, unlabeled, or fake data
distributions depending on if the d, is being used in the L, pe1cqs
L4, or L terms. With this, we used the feature contrasting and
feature matching loss functions given in Table 1. The first is the
set of loss functions given previously, which we have already given
an explanation for. The second set keeps the same feature matching
function but uses a square root as the primary component of the
feature contrasting function. This provides a stronger incentive for the
discriminator to push features which are already far apart, even further
apart. This second approach did slightly worse than the first, likely
because focusing on contrasting those features which are most similar
between the fake and real examples provides a greater improvement.
The third approach uses linear losses. This is similar to the linear
fake/real losses used in the WGAN implementation by Arjovsky et al.
(2017). The reason for the decreased accuracy is likely the same as for
the second case, where features which are already dissimilar are still
given too much priority in the feature contrasting.

4.2. Driving steering angle prediction

This application works to predict the steering angle of a car given
an image from the front of a car. Such an approach allows for basic
partial self-driving/auto-pilot capabilities using a single image (Pan
et al., 2017). The dataset (Chen, 2017) consists of 45,567 images from a
dashboard-mounted camera, where for each image the current rotation
angle of the steering wheel was recorded. The goal of the network is
to predict this rotation angle given the front facing view image, whose
primary feature is the upcoming road segment.

Rezagholiradeh and Haidar (2018) provides two semi-supervised
GAN approaches to train for this application which are described in
Section 2.4. Additionally, they also provide a baseline discrete clas-
sification method with each class being the central value of the class
interval.

Here, we perform the experiments presented by Rezagholiradeh
and Haidar (2018) using our SR-GAN approach. In these experiments,
varying numbers of labeled images randomly selected from the entire
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Table 2
Steering angle prediction NAE compared to existing approaches for various amounts of
labeled training examples.

Method 100 500 1000 2000 4000 7200

Improved-GAN - - 4.38% 4.22% 4.07% 4.06%
Reg-GAN (Arch 1) - - 2.43% 2.40% 2.39% 2.36%
Reg-GAN (Arch 2) - - 3.81% 3.58% 2.23% 2.21%
SR-GAN 3.12% 2.32% 2.02% 1.89% 1.37% 1.16%
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Fig. 9. The DCGAN structure used for the age estimation experiments. The left network
is the generator and the right is the discriminator/CNN.

dataset are used for training (up to 7200 images) and testing (9000
images). The remaining images are used as the unlabeled data. We use
the DCGAN network architecture (Radford et al., 2015), which matches
the architecture presented by Rezagholiradeh and Haidar (2018). This
network structure (both generator and discriminator) is shown in Fig. 9.
All code and hyperparameters can be found at https://github.com/
golmschenk/srgan. We note that we cannot precisely duplicate the
experiments by Rezagholiradeh and Haidar (2018), as the images used
for training and testing were randomly chosen. We similarly randomly
selected our datasets. Our random selections were seeded for repro-
ducibility, and the code at our repository can be used to retrieve the
dataset selection for our experiments. Examples of the images, both real
and fake, used/generated during training are shown in Fig. 10.

We also note that an entirely random image selection has limited
evaluation value for this dataset. The images are part of a video se-
quence with each image have only minor differences from the previous
image. Even a small percentage of the images, when randomly chosen,
will contain the primary attributes of a large portion of the dataset.
However, for comparison purposes, we have followed the experimental
procedure used by Rezagholiradeh and Haidar (2018). We have ad-
ditionally provided results for significantly lower numbers of labeled
images.

The evaluation metric used is a normalized mean absolute error
(NAE) given by

N .
Nap= Ly Pioil

~ x 100%. 18)

i=1 Ymax ~ Ymin

The results of our method in comparison to the methods pre-
sented by Rezagholiradeh and Haidar (2018) are shown in Table 2.
In these experiments, we show that our SR-GAN method significantly
outperforms the Reg-GAN method for any number of labeled examples.
As Architecture 2 is the more generalized approach of Reg-GAN, it
provides the comparison of the most interest.

4.3. Age estimation

Age estimation is a well-known regression problem in computer
vision using deep learning. In particular, well-established datasets of
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(a) Fake steering angle images.

(a) Real steering angle images.

Fig. 10. Examples of real and fake images used/generated during training. We note
that our approach is not intended to produce realistic looking images, and the fake
images are only included for insight.

images of individuals with corresponding ages exist and are widely used
by the computer vision community. The most notable age estimation
database is currently the IMDB-WIKI Face Dataset (Rothe et al., 2016).

For our work, having such a well-known dataset is particularly
important as the deep learning community tends to focus on classifi-
cation problems and not regression problems. Due to this, well-known
regression datasets — ones known even outside their domain - tend to
be rare. The age estimation dataset is one of these rare cases. It provides
a standard which we can test our SR-GAN on which is widely tested on.

4.3.1. Age estimation dataset

The IMDB-WIKI dataset includes over 0.5 million annotated images
of faces and the corresponding ages of the people thus imaged. There
are 523,051 face images: from 20,284 celebrities, 460,723 face images
are from IMDb and 62,328 from Wikipedia. 5% of the celebrities have
more than 100 photos, and on average each celebrity has around 23
images.

There are likely many mislabeled images included in the dataset.
The image-label pairs were created by searching the top 100,000 actors
on IMDD (also known as the “Internet Movie Database”).The actors’
IMDb profile and Wikipedia page were scraped for images. Face detec-
tion was performed on these images, and if a single face detection is
found, the image is assumed to be of the correct individual. The image
timestamp along with the date of birth of the actor is used to label
the image with an age. The image is often a screen capture of a movie,
which may have taken years to produce or the screen capture may have
happened years later. Additionally, the actor may be purposely made
to look a different age in the movie. Despite these many areas of mis-
labeling, the dataset it thought to consist of overwhelmingly correctly
labeled images. To minimize the number of incorrectly labeled images
the database is filtered based on several criteria. The database includes
face detection scores (certainty of containing a face) and a secondary
face score (containing an additional face). If the first face score was
too low the image was excluded. If there was a secondary face detected
it is also excluded (since these are taken from the actor’s IMDb page,
it is only assumed to be a picture of the actor if there is only one
person in the image). Images labeled with an age below 10 or above 95
are also excluded. Primarily, the below 10 filter is important as many
images included an incorrect age of only a few years old. Finally, only
images of 256 x 256 resolution or higher are used. After this filtering,
we are left with ~90k images. Both the labeled and unlabeled data is
taken from these images (without overlap), and the labels were not
used for the unlabeled data. Data was selected randomly for each trial.
Though other face data could be used for the unlabeled data, for these
experiments, we wished to ensure that the labeled and unlabeled data
came from the same data distribution (see Figs. 11 and 12).
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(a) Fake age images. (a) Real age images.

Fig. 11. Examples of real and fake images used/generated during training. We note
that our approach is not intended to produce realistic looking images, and the fake
images are only included for insight.
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Fig. 12. The distribution of ages in the IMDB-WIKI database.

4.3.2. Age estimation experimental setup

In the age estimation experiments, the DCGAN network architec-
ture (Radford et al., 2015) is used. All code and hyperparameters can
be found at https://github.com/golmschenk/srgan. The discriminator
of the DCGAN was used alone as the CNN baseline model. The network
structure can be seen in Fig. 9. The training dataset for each experiment
was randomly chosen. The seed is set to O for the first experiment, 1
for the second, and so on. The same seeds are used for each set of
experiments. That is, the SR-GAN compared with the CNN use the same
training data for each individual trial. This set of experiments used the
second set of loss functions from Section 4.1.3.

The following experiments demonstrate the value of the SR-GAN
on age estimation. Using a DCGAN (Radford et al., 2015) network
architecture, we have tested the SR-GAN method on various quantities
of data from the IMDB-WIKI database. The results of these experiments
can be seen in Fig. 13. In each of these experiments, an unlabeled
dataset of 50,000 images was used, whereas the size of the labeled data
samples varies from 10 to 30,000. Each point on this plot is the result
of a single randomly seeded training dataset. For each labeled dataset
size, 5 trials were run. The relative error between the CNN and the GAN
can be seen in Fig. 14. We see a significant accuracy improvement in
every case tested. At 100 labeled examples, the GAN achieves a MAE of
10.6, an accuracy which is not achieved by the CNN until it has 5000
labeled examples available for training. At 100 labeled examples, the
GAN has 75% the error that the CNN does.
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Fig. 13. The resultant inference accuracy of the age estimation network trained with
and without the SR-GAN for various quantities of labeled data. Each dot represents a
trial with randomized training data, and the line represents the mean of the trials.
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Fig. 14. The relative error of the GAN model over CNN model for various quantities
of labeled data for age estimation. Each dot represents a trial with randomized training
data, and the line represents the mean of the trials.

The advantage of the SR-GAN drops to near zero as the number
of images approaches the number of unlabeled examples being used.
There seem to be two likely causes for this. Either, there are enough
training images that the network is at capacity (additional images will
not further improve the results), or the ratio of labeled to unlabeled
images is too small for the generator to be of more benefit to the
discriminator. Unfortunately, the number of images available in the
IMDB-WIKI dataset make it difficult to pursue a larger number of
training examples further.

4.4. Crowd counting

The fourth application we consider is the complex problem of dense
crowd counting. Every year, crowds of thousands to millions gather for
protests, marathons, pilgrimages, festivals, concerts, and sports events.
For each of these events, there is a myriad of reasons to desire to know
how many people are present. For those holding the event, both real-
time management and future event planning is determined by how
many people are present, their current locations, and the intervals at
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which people are present. For security purposes, evacuations planning
and where crowding might be a potential harm to individuals is de-
pendent on the size of the crowds. In journalistic pursuits, the size of a
crowd attending an event is often used to measure the significance of
the event.

We provide the mean absolute count error (MAE), normalized ab-
solute count error (NAE), and root mean squared count error (RMSE).
These are given by the following equations:

N
1 .
MAE = — ; ¢ - c,.| (19)
NAE = 1 i M (20)
N ~ G
RMSE = (21

Idrees et al. (2018) showed that a vanilla DenseNet (Huang et al.,
2017) outperformed many application-specific networks for crowd
counting. Though Idrees et al. (2018) then provides an application
specific version of DenseNet, we chose to use the vanilla version of
DenseNet201 as the discriminator in our experiments. This is done to
avoid application specific nuances that distract from the main focus
of our work, while still providing a network comparable to the state-
of-the-art in terms of accuracy. For the generator, we use the same
DCGAN generator architecture as was used in our age and steering
angle experiments.

The dataset we evaluated our approach on is the ShanghaiTech
dataset (Zhang et al., 2016) part A. The dataset is split into two parts, of
which we used Part A in our experiments. Part A contains 482 images,
300 for training and 182 for testing. It contains a total of 241,677
head labelings, with an average of 501.4, a maximum of 3139, and
a minimum of 33. This part contains a wide range of image sizes,
head counts, and perspectives. We used the training and testing images
as prescribed by the dataset provider, except we used limited labels
for training. A set of example images can be seen in Fig. 15. During
the training process, patches of the images are used. During testing,
a sliding window approach is used to calculate the count for each
patch with overlapping patches being averaged. A final summing of the
average values produces a count for the entire image. Examples of the
patches, both real and fake, used/generated during training are shown
in Fig. 16.

We compare a CNN with the SR-GAN model in our experiments.
These results can be seen in Table 3. From the experiments, we can
clearly see that the SR-GAN model outperforms the CNN model con-
sistently across various amounts of labeled training images (from 50
to 300), on all three measures. Overall, SR-GAN advantage increases
when more training examples are provided. For example, the decreases
of MAE of using the SR-GAN versus the CNN are 2.6%, 3.4%, 6.0% to
6.4% for 50, 100, 200 to 300, respectively. This is slightly contrary
to what we might expect, as we would assume the advantage of the
SR-GAN to diminish as the number of examples becomes very large.
However, the increase is small enough that it may simply be due to
chance from dataset selection. The percentage in error decreases are
small, but they are comparable to the decrease gained by increasing
the size of the labeled dataset. In many cases, the SR-GAN provides
an improved over the CNN even with smaller numbers of labeled
examples. For example, the SR-GAN with 200 images outperforms the
CNN with 300 images. Such improvements are also found in the RMSE
for the SR-GAN with 100 and 200 labeled examples compared to the
CNN with 200 and 300 examples.
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(a) Fake crowd counting images.

(b) Real crowd counting images.

Fig. 16. Examples of real and fake images used/generated during training. We note
that our approach is not intended to produce realistic looking images, and the fake
images are only included for insight.

Table 3

Crowd counting errors compared various amounts of labeled training examples.
Method 50 100 200 300
CNN MAE 136.9 127.5 119.2 118.0
SR-GAN MAE 133.3 123.2 112.0 110.5
CNN NAE 0.342 0.354 0.359 0.357
SR-GAN NAE 0.339 0.348 0.321 0.323
CNN RMSE 208.5 185.1 183.2 182.3
SR-GAN RMSE 205.9 178.3 178.2 169.5

5. Conclusions

Throughout this work, we have presented a means by which to
train semi-supervised GANs in a regression situation. The new SR-GAN
algorithm was explained in detail. A set of optimization rules which
allows for stable, consistent training when using the SR-GAN, including
experiments demonstrating the importance of these rules, were given.
We performed systematic experiments using the SR-GAN on the real
world applications of age estimation,driving steering angle prediction,
and crowd counting, all from single images, showing the benefits of
SR-GANs over existing approaches. Adding the SR-GAN generator and
objectives to a CNN when unlabeled data is available almost always
increases the predictive accuracy of the CNN.

We believe this work demonstrates a way in which semi-supervised
GANSs can be applied generally to a wide range of regression problems
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with little or no change to the algorithm presented here. This work al-
lows such problems to be solved using deep learning with significantly
less labeled training data than was previously required.
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