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1. Introduction
Pathogen spillover is the process by which a pathogen is transmitted from a

reservoir host species to a recipient host species [1,2]. The term is sometimes

used more broadly, particularly in public discourse, blending in elements of

onward transmission in the novel host species or even pathogen adaptation

to the novel host [3,4]. This theme issue focuses on pathogen spillover sensu
stricto, except where explicitly noted. Many of the examples considered pertain

to zoonotic spillover (i.e. from wildlife or domestic animals to humans), given

recent epidemics (e.g. Ebola virus [5]) and pandemics (e.g. H1N1 influenza

virus [6]); however, we emphasize the general methods and mechanisms

involved in understanding spillover between any two species, such as those

that threaten wildlife conservation (e.g. Mycoplasma ovipneumoniae from dom-

estic sheep to bighorn sheep [7]) and the agricultural sector (e.g. Brucella
abortus from elk to cattle [8]).

Spillover requires the spatial and temporal alignment of several hierarchical

factors that must occur for a pathogen to be transmitted from a reservoir or

source host to a recipient host of a different species [9]. These factors include

reservoir host distribution and abundance, pathogen prevalence and shedding

from reservoir hosts; pathogen survival in the environment or arthropod vector;

recipient host contact with the infectious agent, reservoir host or arthropod

vector; and susceptibility of the recipient host. Following spillover, another

suite of factors determines whether a pathogen is transmitted within the recipi-

ent host population (e.g. [10]). Research on pathogen spillover is often focused

on a single component of this process through the lens of a particular discipline.

For example, the distribution of reservoir hosts is often studied through

ecology, contact between reservoirs and humans is often studied via epidemiol-

ogy or anthropology, and the pathogenesis of zoonoses in humans is often

studied with medical microbiology and immunology. While each factor must

be studied and quantified, spillover is the emergent property of these collective

processes. Studying each factor in isolation fails to account for the hierarchical

and often nonlinear dynamics of the spillover system [9]. Pathogen surveillance,

epidemic preparedness and management interventions would all benefit

from integrative approaches that consider multiple components of pathogen

spillover [1].

This theme issue stemmed from a 2018 workshop on cross-species trans-

mission of pathogens, where participants from interlinked fields including
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ecology, mathematical modelling, epidemiology, virology

and immunology discussed how to better understand and

predict pathogen spillover. Here, we bring together a diverse

set of perspectives—including empirical research, theory and

synthetic reviews—to highlight cutting-edge research and to

provide a roadmap for quantifying and integrating host–

pathogen dynamics at each step in the spillover process.

Manuscripts are organized around three approaches. The

first set of manuscripts focuses on integrating data streams

to understand spillover dynamics and predict risk. The

second set of manuscripts focuses on in-depth analysis of

each of the factors affecting cross-species transmission: infec-

tion dynamics in reservoir hosts, pathogen survival in the

environment, recipient host exposure, dose–response

relationships and establishment of infection in recipient

hosts. The final set of manuscripts focuses on applied per-

spectives, with an emphasis on surveillance and

interventions. Here, we summarize these contributions to

highlight key insights, methodologies and future directions

to improve our understanding of pathogen spillover.
74:20190014
2. Integrating data streams to understand
spillover dynamics

Because spillover is the outcome of multiple ecological,

epidemiological and immunological factors aligning in

space and time [9,10], predictive frameworks aim to integrate

data pertinent to these factors to quantify the relative impor-

tance of these processes and to estimate risk. Cross et al. [12]
review approaches for estimating spatio-temporal variation in

spillover risk, focusing on the wildlife–livestock interface.

The authors highlight the challenges inherent in either

correlating observed spillover events with relevant covariates

or integrating data on host density, distribution and pathogen

prevalence using mechanistic models. They highlight that

mechanistic approaches may be especially useful in systems

where spillovers are infrequent, rarely observed or hard to

differentiate from within-species transmission; however,

linking datasets on different factors in the spillover pathway

requires that such datasets be related to a common spatial

and temporal resolution. The authors use case studies of

brucellosis in the Greater Yellowstone Ecosystem [13] and

of avian influenza virus in China and North America [14]

to emphasize potential solutions to these challenges for

estimating spillover risk.

Emphasizing that statistical modelling efforts may struggle

to detect nonlinear and stochastic relationships inherent in

pathogen spillover, Childs et al. [15] provide a strong test of

theory governing how hierarchical barriers control cross-

species transmission [9]. The authors focus their case study

on yellow fever, a mosquito-borne viral disease of historical

importance in South America that persists in the region largely

in sylvatic cycles that occasionally spill over to infect humans

[16,17]. Specifically, they use mechanistic models that incor-

porate spatial ecological and immunological data from Brazil

across 16 years to predict yellow fever spillover in humans.

The authors show that a mechanistic model of spillover risk,

based on the ecology of mosquito vectors and non-human pri-

mate reservoirs, best predicts spillover events compared with

models that also include human population size and immu-

nity. This result arises because spillover occurs even in areas

with low human population density and high vaccination
coverage (e.g. parts of the Amazon), so population density

and vaccination coverage tend to inflate the predicted risk in

locations with low ecological suitability. This integrated

approach also highlights a key research gap—cyclical dynamics

of susceptible primate populations—that could further improve

prediction. This work illustrates that mechanistically modelling

the interactions among the environment, viruses, vectors, non-

human primates and humans can predict rare and seemingly

stochastic spillover events with high accuracy.

Washburne et al. [17] study the general statistical

problems that can arise when aiming to forecast spillover

risk. The authors highlight that any such statistical efforts

will compile a dataset of explanatory variables expected to

relate to pre-spillover processes (e.g., infection prevalence in

reservoirs, human vaccination coverage) that are aligned

with one of two response variables: the presence and absence

of spillover or the number of spillover events at some spatial

and temporal resolution (e.g., spatio-temporal counts of

yellow fever spillovers [15]). The authors show how model-

ling cross-species transmission as a percolation process, in

which pathogens move from infected reservoirs to recipient

hosts along a graph representing various spillover pathways

[18,19], reveals first principles for how such datasets will

behave and how common statistical tools can produce

misleading inferences and poor predictions. For example,

percolation theory reveals an inherent nonlinearity in model-

ling spillover counts, in which statistical inferences are driven

by the dominant reservoir sources of infection and the most

limiting barriers to cross-species transmission; this nonlinear-

ity can mask the influence of alternative reservoir species or

barriers, both of which could be modified through interven-

tions but whose sensitivity as a management tool will

appear reduced under linear models. Percolation models pro-

vide a conceptual framework to connect statistical and

mechanistic models with applications to limit risk by illumi-

nating unexpected statistical principles governing pathogen

spillover and the nonlinear impacts of management actions.
3. Individual factors affecting pathogen spillover
The theme issue’s second section uses empirical research,

theory and synthetic reviews to understand the processes

operating at each stage of pathogen spillover, from infection

dynamics within the reservoir hosts to susceptibility and

establishment of infection in the recipient host. For the

former, the distribution and intensity of infection in reservoir

hosts over space and time is the first determinant of spillover

risk [9]. Data on these spatio-temporal dynamics help eluci-

date how pathogens circulate in reservoir hosts and when

and where to expect pathogen excretion to be greatest [21].

However, such field data can be expensive and difficult to

collect, and researchers inevitably must tradeoff between

the extent and intensity of spatial versus temporal sampling.

Sampling is thus often opportunistic and fails to adequately

describe spillover. Plowright et al. [22] review factors that

influence spatial and temporal variation in infection in reser-

voirs and describe sampling designs that can increase the

quality and quantity of this information. Although the stan-

dard prescription from sampling theory is to sample

randomly in space and time [23], probabilistic sampling

designs are rare in the study of wildlife disease, given logis-

tical challenges and non-random distributions of hosts. The
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authors highlight how stratified random sampling designs or

adaptive sampling designs can help capture spatio-temporal

pulses of infection when researchers have little a priori data
on concentrations of infection or spillover events in space

and time. These sampling designs can be integrated into

modelling approaches and used to better quantify pathogen

shedding from reservoirs. Accordingly, Glennon et al. [24]
present a case study for how to use mechanistic models to

differentiate among transmission processes for henipaviruses

in straw-coloured fruit bats (Eidolon helvum). Using this viru-

lent zoonosis as a case study, the authors generalize standard

frameworks common in epidemiological modelling [25].

Given that henipavirus infection dynamics in bats are

poorly understood, the authors study all possible transitions

among infection states in bats to produce 46 potential models.

Using likelihood-based methods, they fit these models to

longitudinal data from captive bats to show strong support

for reinfection after virus clearance and cycles of recurrent

latent infection: key areas for future empirical work. This

inclusive approach to confronting epidemiological models

with longitudinal data in poorly understood reservoir host

systems holds promise for elucidating spatio-temporal risk

of pathogen spillover.

Following pathogen shedding from reservoir hosts,

spillover risk is influenced by the duration of pathogen survi-

val and possible reproduction outside the host in the

environment [9]. For pathogens such as avian influenza

virus, persistence in the environment (e.g. ponds) can also

facilitate viral reassortment when strains co-occur, promoting

co-infections during environmental exposure [26,27]. Pepin

et al. [28] review and discuss how genomics, experimental

ecology and epidemiological modelling can be leveraged to

understand viral reassortment in environmental reservoirs.

Although no gold standard for capturing, isolating and

identifying avian influenza virus diversity from the environ-

ment exists, environmental metagenomics and field-based

viral diagnostics (e.g. field-based nucleic acid extraction,

PCR and sequencing) hold promise for characterizing this

context of viral reassortment [29,30]. The authors note how

standardizing such field protocols and coupling these

data streams with quantitative disease models and natural

transmission studies should dramatically improve our

understanding of viral co-occurrence and reassortment and

thus, this additional process in the pathway to spillover.

Exposure of recipient hosts to pathogens (e.g. those

persisting in the environment) can take a variety of forms;

however, in a more general sense, exposure often occurs at

elevated rates near boundaries between ecosystems [31].

Borremans et al. [32] review how ecosystem boundaries

can promote spillover by applying ecological theory to under-

stand landscape permeability across ecosystems. The authors

highlight that the traits of hosts and pathogens are critical

for determining effects of ecosystem boundaries on cross-

species transmission. Properties of ecosystem boundaries can

also promote or inhibit exposure; for example, edge effects

can affect species composition, diversity and population size

between ecosystems, as can features of landscape configur-

ation such as patch size and perimeter-to-area ratio [33]. By

considering the analogy between parasite flow and resource

flow and by applying concepts from movement ecology, Bor-

remans et al. [32] connect contact rates and spillover risk across

ecosystem boundaries to generalize between pathogens and

integrate into broader ecological theory.
Following the complex interactions between reservoir

hosts, vectors, pathogens, the environment and recipient

hosts, a crucial juncture in any potential spillover event is

the point when a recipient host is challenged with a given

dose of pathogen (through a particular route and sometimes

over a particular duration) and a successful infection does

or does not ensue [9]. Lunn et al. [34] describe how the

dose–response relationship, which quantifies the probability

of successful infection in the recipient host as a function of

challenge dose, can act as a filter on the aforementioned

upstream dynamics to shape pathogen spillover risk. The

authors integrate recent developments in the dose–response

literature, as well as re-analysing data from animal challenge

experiments with Nipah virus and Middle East respiratory

syndrome coronavirus [35,36], to highlight challenges and

opportunities arising at the intersection of infectious disease

ecology, microbial risk assessment and virology. Lunn et al.
[34] call for closer interactions between these fields and for

a new generation of pathogen transmission models that link

dose–response data to epidemiological dynamics. Gostic

et al. [37] next provide an example of the epidemiological

insights such an approach can yield. They present a model-

ling analysis of dose–response experiments for Leptospira
interrogans, a globally important bacterial zoonosis for

which environmental exposure to soil or water contaminated

by urine of infected reservoir hosts is the primary trans-

mission route [38]. By conducting well-designed challenge

experiments across a range of exposure routes, and then

developing a mechanistic model to identify and quantify

the key barriers to infection, Gostic et al. [37] show that

intact skin is the crucial defence against leptospiral infection

and that skin abrasions or wounds can increase recipient

host infection risk by at least a million-fold. This close inte-

gration of experimental and modelling approaches isolates

a potent and well-defined risk factor for infection with Leptos-
pira, opening the door to targeted interventions to reduce

spillover risk.

Once a pathogen has crossed these within-host barriers to

replicate and disseminate in the recipient host, the outcome of

infection may range from subclinical illness to death and

from dead-end spillover to sustained onward transmission

[9]. Bonneaud et al. [39] focus on the conditions favouring

pathogen emergence, from the initial jump into the recipient

host to adaption in the novel host environment [40]. The

authors highlight that our current understanding of host

shifts stems primarily from viral infections, limiting general-

izations to other pathogen taxa, given substantial differences

in ecology and life history [41]. They propose several

non-mutually exclusive hypotheses to explain why novel bac-

terial pathogens may be less likely to specialize on their novel

hosts and then test these with a mathematical model. The

authors demonstrate that high levels of phenotypic plasticity,

low rates of evolution and the ability to recombine should

reduce propensity to specialize, suggesting that novel

bacterial infections may be more likely to result in transient

spillovers or increased host ranges than in host shifts.

Wasik et al. [42] in turn describe the within-host barriers

that pathogens, and viruses in particular, must overcome to

replicate and spread in new host populations to cause

onward transmission. They present three well-documented

examples of viruses that have crossed these barriers to

cause epidemics or pandemics in the new host species: influ-

enza A viruses [43], human immunodeficiency virus [44] and
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canine parvovirus [45]. The authors emphasize the role of

integrated models that consider all the steps required to go

from exposure to spillover to epidemic or pandemic. Guth

et al. [46] expand upon these ideas through a comparative

study of host and viral traits that predict virulence and the

capacity for onward transmission in recipient hosts (i.e.

humans). By expanding a previous global dataset of viral

zoonoses [47], the authors show that increasing reservoir

host phylogenetic distance from humans positively correlates

with human mortality but negatively correlates with human-

to-human transmissibility, suggesting that the virulence

induced by reservoirs at high phylogenetic distance may

limit viral capacity for onward transmission [48]. In particu-

lar, distantly related reservoirs, such as bats, harbour highly

virulent zoonotic viruses with a lower capacity for onward

transmission in recipient human hosts, building upon prior

work describing bats as special reservoirs [49].
.Soc.B
374:20190014
4. Applications for management of spillover
The theme issue’s final section focuses on applied perspec-

tives to detect early spillover events (i.e. surveillance) and

the role of interventions focused upstream in the spillover

pathway. In particular, early detection is critical for minimiz-

ing the spread of zoonotic pathogens following an initial

spillover event [50]. A first series of manuscripts emphasize

different approaches to the surveillance of zoonoses. Schmidt

et al. [51] use machine learning tools (e.g. boosted regression

trees [52]) to predict which mammal species are more likely

to play roles in Ebola virus spillover events. The authors

show that large-bodied, frugivorous mammals with slow

life histories are likely host species, implicating some insecti-

vorous bats, Old World monkeys and forest antelopes as

possible Ebola virus reservoirs. Predictions such as these

can help prioritize future wildlife surveillance efforts (e.g.

[53]). Kuisma et al. [54] in turn describe a community-based

surveillance effort focused on wildlife mortality reporting

and oriented to early detection of Ebola virus disease out-

breaks. Spanning over a decade and covering 50 000 km2 of

challenging terrain in the Congo basin, this programme has

reached hundreds of villages and thousands of hunters and

forest gatherers. The programme has educated community

members in wildlife carcass reporting and behavioral risk

reduction as well as built capacity for safe carcass sampling

by trained local responders. This region was not confronted

with an Ebola virus outbreak during the period described

here, and all reported carcasses tested negative. Nevertheless,

given the well-recognized fact that early intervention can

avert massive human and economic costs of widespread

epidemics, the low-cost and scalable surveillance programme

described by the authors could provide key early detection

capability more generally.

Two other contributions focus on zoonotic pathogen

surveillance efforts in domestic animals and human popu-

lations. Mwangi et al. [55] present a real-time surveillance

system that leverages the existing mobile phone network

and shows immense potential to improve adaptive manage-

ment of spillover. This surveillance system has been

implemented in 1500 households across rural Kenya, where

participants are asked to report symptom syndromes in

their livestock. Zoonotic diseases such as Rift Valley fever

present with severe clinical signs in domestic animal
populations, but lack of active surveillance can miss these

sentinels [56]. The authors demonstrate that illnesses were

more likely to be reported on mobile phones compared

with standard routine household animal surveys. They also

show that more severe symptoms are likely to be reported,

highlighting the utility of this surveillance method for dis-

eases such as Rift Valley fever. Das et al. [57] similarly

describe the implementation of a surveillance system in hos-

pitals in Bangladesh that screens symptomatic patients for

potential zoonoses. Most patients did not have a laboratory

diagnosis for their illness, indicating that unidentified

pathogens are likely spilling over in human populations.

Broad-scale, sustainable human surveillance programmes

such as outlined by the authors can play a critical role in

early detection of zoonotic spillovers.

Following these approaches to surveillance, interventions

can accordingly focus upstream or downstream in the path-

way to spillover, given available data and resources, to limit

cross-species transmission. At the wildlife–livestock interface,

managing pathogen spillover is a main goal for animal hus-

bandry, conservation and food security [58]. Yet, managers

are often forced to make control decisions on the basis of lim-

ited evidence about intervention efficacy. Manlove et al. [59]
develop a spatially explicit, stochastic model of pathogen

transmission within and between wildlife reservoirs and

livestock recipient hosts to improve evidence-based decision-

making. By varying host movement patterns and epidemic

growth rates, the authors show that biosecurity, containment

and retroactive vaccination of the reservoir are the most effec-

tive for limiting the spatial spread and magnitude of spillover

risk for fast-moving epidemics in mobile hosts. By contrast,

prophylactic vaccination and depopulation of the reservoir

host were more successful for fast-moving epidemics with

low rates of host movement. This framework provides general

intuition for how to manage different pathogens at the wild-

life–livestock interface, and a flexible platform for more

rigorously investigating disease control strategies.

Ultimately, one of the primary goals of research focused

on pathogen spillover is to design interventions that can

reduce or eliminate disease burden in recipient hosts.

Sokolow et al. [60] explore how ecological interventions,

which target the ecological context in which cross-species

transmission occurs, can complement more traditional bio-

medical and veterinary interventions (e.g. vaccination,

culling). The authors provide case studies to illustrate the

potential for ecological interventions that target the reservoir

host (sometimes indirectly, such as through the restoration of

natural enemy populations [61]), pathogen survival in the

environment, contact between reservoir and recipient hosts,

or other aspects of risk in the recipient species. The authors

also present a simple mechanistic model, parameterized for

two example systems, that shows how nonlinear effects can

produce counterintuitive results when comparing potential

intervention strategies and highlights the importance of a

detailed understanding of underlying ecological dynamics

when designing and assessing interventions. Lastly, the

authors draw attention to the importance of social, economic

and political considerations to intervention success, as these

can derail even the most efficient or cost-effective interven-

tion. In particular, aligning the benefits of an intervention

with the costs incurred is crucial to motivate ecological inter-

ventions and may require working across sectors for

successful implementation.
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5. Future directions and conclusion
Pathogen spillover is the result of a complex series of events

that result in the successful establishment of infection in a

recipient host [9]. As highlighted in the final paper of this

theme issue, developing actionable forecasts of risk is further

complicated by the various phylogenetic, spatial and tem-

poral scales over which we study and predict spillover [62].

The authors here contextualize a diverse range of approaches

to pathogen spillover within these scales to illustrate critical

areas of pragmatic overlap. By focusing on an ecological

perspective, the authors outline a research pipeline that con-

nects pathogen discovery and macroecological analyses with

spatio-temporal surveillance in reservoir and recipient hosts.

Through several case studies (e.g. Lyme disease [63],

Hendra virus [64], Plasmodium knowlesi [65]), the authors

further demonstrate how ecologically focused research has

facilitated predicting spillover of particular pathogens in

space and time and facilitated design of intervention

strategies. This synthesis shows how greater integration of

macroecology, pathogen discovery and surveillance

could ultimately generate more actionable predictions and

interventions to limit spillover risks.

Recent epidemics, pandemics and disease emergence

events all underscore the need to improve approaches to pre-

dict and prevent pathogen spillover. This theme issue

highlights a range of methods and their commonalities

through diverse host–pathogen systems for which research-

ers are assessing factors driving spillover risk across

varying phylogenetic, spatial and temporal scales. Contribut-

ing manuscripts further emphasize how developing a

mechanistic understanding of the hierarchical factors affect-

ing spillover can facilitate quantifying the drivers of cross-

species transmission, deriving generalizable theory and

making robust predictions, even for seemingly rare and idio-

syncratic spillover events. Importantly, such insights can

improve our ability to deploy surveillance efforts, design
interventions at early stages of the pathway to spillover and

manage disease cases in recipient hosts, thereby limiting or

preventing further outbreaks. Continued study of pathogen

spillover as a repeated and hierarchical phenomenon will

only improve our ability to predict, prevent and manage

cross-species transmission risks.
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