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Abstract

Our knowledge of sensory processing has advanced dramatically in the last few decades, but this understanding
remains far from complete, especially for stimuli with the large dynamic range and strong temporal and spatial
correlations characteristic of natural visual inputs. Here we describe some of the issues that make understanding
the encoding of natural image stimuli challenging. We highlight two broad strategies for approaching this
problem: a stimulus-oriented framework and a goal-oriented one. Different contexts can call for one or the other
framework. Looking forward, recent advances, particularly those based in machine learning, show promise in
borrowing key strengths of both frameworks and by doing so illuminating a path to a more comprehensive
understanding of the encoding of natural stimuli.

Introduction

The neural circuits that process sensory inputs are shaped by the properties of the stimuli they encounter as well
as the behavioral demands of the animal. Because of this, a deep understanding of sensory circuits and the
computations they support requires connecting what we know about sensory systems to properties of natural
stimuli. In this review, we discuss some of the progress and the challenges in describing the neural encoding of
complex stimuli such as those encountered in the real world; related issues extend to many areas beyond
neurophysiology. We refer to the encoding of visual scenes as a paradigmatic example, but many of the same
issues arise in other sensory modalities.

Studies of sensory coding have traditionally relied on parameterized, artificial stimuli designed to isolate and
characterize specific circuit mechanisms, such as nonlinearities in the integration of signals across space
(reviewed by "?) or adaptation to changes in particular stimulus properties such as intensity, contrast, or
orientation (reviewed by ). These approaches have revealed the mechanistic basis of many important circuit
computations. There is also a long history of studying the encoding of natural scenes in neurophysiology
experiments (e.g. "~'2), and recent years have seen this interest expand (e.g., "*'° and references therein).
However, the encoding of natural stimuli is incompletely understood.

Two issues make studying the encoding of natural stimuli challenging compared to typical artificial stimuli. First,
complex stimuli, such as natural visual inputs, engage a host of interacting circuit mechanisms rather than
individual mechanisms in isolation. These interactions can be difficult to capture with computational models. As
a result, many models do not generalize well to predict responses to stimuli other than those to which they were
fit'®. For example, many predictive neurobiological models for stimulus-response transformations in the early
visual system are based on a common architecture: linear filtering over space and time, followed by a nonlinear
step. Such models tend to suffer from an inability to generalize to novel stimuli, especially natural ones'’~°.
Alternative model architectures may generalize better, for example those that stack multiple linear-nonlinear



layers on top of one-another?®?'

sensitivities®? 2.

, or those that use multiple linear filters in parallel to capture diverse feature

A second challenge inherent in the study of natural stimulus encoding is the complex statistics of natural scenes
(reviewed by %*-*"). For example, across different visual scenes and even within a single scene, image statistics
(e.g. mean intensity, spatial contrast, and other, higher-order statistics) can vary widely but (fortunately) not
randomly®?~*°, Within a single visual scene, different image features are often strongly correlated, which makes
it difficult to relate a neural response to a particular feature of a scene (see ' for a computational approach to
this issue). One approach to managing this complexity is to develop generative models of natural images that
enable a low dimensional representation. Parametric models exist for naturalistic textures® -- i.e. semi-regular,
repeating patterns (see Figure 1) -- and recent advances in machine learning show promise in generating not
only textures®® but non-homogeneous naturalistic images (see 3 and references therein); for applications of
these approaches see “042,

Stimulus- and goal-oriented approaches to natural stimulus encoding

We will focus on two theoretical frameworks that are often appealed to in the study of natural stimulus encoding:
(i) A stimulus-oriented framework, A common approach is to identify transformations of sensory input signals
that optimize statistical and information theoretic metrics, such as reducing statistical redundancies present in
natural stimuli. Complementary approaches based on generative modeling seek to capture the statistical
dependencies of natural scenes, and by doing so also reveal how they can be reduced. Stimulus-oriented
approaches are closely related to unsupervised machine learning, for which learning is based only on properties
of the input and does not require a specific task goal such as object recognition.

(i) A goal-oriented framework, which appeals to the computational or behavioral goal of the circuit or animal.
Unlike stimulus-oriented approaches, goal-oriented approaches explicitly treat some features of the stimulus
differently than others, and which features are encoded depends on the desired behavioral output or goal. These
approaches include recent advances in Deep Convolutional Neural Networks, particularly those based on
supervised, discriminative learning from large databases of images with identified and labeled objects.

These two frameworks may appear to be at odds. For instance, a model focused solely on a high-level goal like
object recognition will not necessarily reduce redundancies or capture general statistical properties of the
stimulus. Conversely, models focusing on reducing redundancies are not likely to explain, at least not explicitly,
complex tasks such as object recognition. Historically, stimulus-oriented frameworks have largely been applied
to early visual areas and goal-oriented objectives to later cortical areas. But these boundaries are beginning to
blur. Indeed, in some cases the two approaches can be seen as complementary. For instance, even well-
established visual computations like lateral inhibition can be seen through both lenses: as a mechanism to
suppress responses to low spatial frequencies and eliminate some of the redundancies present in natural
images****, or as a way to facilitate the detection of specific features of a scene, namely edges*. In addition,
stimulus-oriented approaches can be relevant for pre-attentive selection and segmentation tasks, for instance
by creating a saliency map in primary visual cortex*®. We will discuss some modern computational approaches
that may facilitate the merger of stimulus- and goal-oriented frameworks, allowing one to inform the other and
vice-versa. In particular, deep neural networks provide a promising route for exploring how stimulus- and goal-
oriented constraints together shape sensory processing.

Stimulus-oriented approaches to natural vision

An influential hypothesis that undergirds much of the study of natural scene processing is the “efficient coding
hypothesis,” first proposed by Barlow*’ (see also *®), and influenced by Shannon's earlier work on information
theory*®. Barlow proposed that an efficient coding scheme should reduce the redundancy of natural inputs, but



without loss of the information that is encoded*’. Redundancy as defined by Barlow is the fraction of the total
information carrying capacity of a neuron or neural population that is not used to transmit information about the
stimulus. Approaches based on producing sparse representations of natural inputs also take advantage of the
redundancy in images®.

Redundancy reduction predicts that a single noiseless neuron should distribute its responses uniformly (e.g.,
subject to a constraint on the maximal firing rate), such that each possible response occurs with equal frequency;
to do otherwise would mean that the neuron is not making full use of its dynamic range. Examples of
approximately uniformly-distributed sensory representations can be found in a variety of sensory systems®'2,
Consideration of neural noise can substantially alter predictions of efficient coding because in that case efficiency
involves both using a cell’s full response range and mitigating the effect of noise®*>°.

Redundancy reduction in a population of neurons (i.e., multiple channels) relies on removing statistical
dependencies among their responses*’. Reducing redundancy for natural stimuli is particularly challenging
because natural visual inputs contain strong (nonlinear) statistical regularities across time and space (for a
review, see®). We start by describing the application of these ideas in early sensory areas (mainly the retina)
and then turn to efficient coding in visual cortex.

Efficient coding and second order statistics

Second-order spatial correlations in natural scenes have been a particular focus of efficient coding approaches.
Such correlations, on average, obey a power law scaling: the power spectrum of spatial frequencies falls as the
inverse of the square of the spatial frequency (Figure 2b)®. This is the result of the scale invariance of natural
images -- i.e. many statistical properties are unchanged by magnifying or demagnifying an image*®. Scale
invariance has been suggested to result from the fact that objects can appear at any distance from an observer®’.

The prevalence of low spatial frequencies in natural images produces correlated responses in nearby cells,
leading to a redundant population code. Receptive field surrounds of neurons in retina and LGN decorrelate
responses of nearby neurons by suppressing responses to low spatial frequencies**%® (but see *°*'). The
transformation that flattens the power spectrum is sometimes referred to as “whitening.” Whitening, however,
will increase high spatial frequency noise such as that in photoreceptor signals; consideration of noise predicts
that the suppressive surround should be minimal or absent when noise is high (for a review, see *"%?). Similar
principles of whitening without amplifying noise have also been proposed in other domains, such as stereo coding
in cortex®®.

Eye movements are another factor that can make important contributions to the statistics of visual inputs and
hence to efficient coding predictions. Human eye movements are characterized by small fixational movements
and occasional discrete and rapid saccades (Figure 2a,c). The spatial frequency spectrum of natural images,
subject to fixational eye movements, is roughly flat (i.e., whitened) at low spatial frequencies® (Figure 2b).
Natural inputs that simulate fixational eye movements indeed appear to decorrelate responses in populations of
salamander retinal ganglion cells®®. This whitening effect does not hold for large and rapid eye movements like
saccades®® (see Figure 2b). Thus, Rucci & colleagues (especially ®°) suggest that a single cell may use different
decorrelation strategies throughout the course of natural stimulation: classical surround-mediated decorrelation
or decorrelation via nonlinearities in spike generation® immediately following a saccade and eye-movement
generated whitening during the later parts of the fixational periods between saccades. Understanding the effects
of such self-generated motion on the encoding of natural scenes will require further experiments (e.g.,
manipulating the statistics of synthetic eye movements in experiments on primate retina).

Efficient coding beyond second order statistics




Much of the classical work on efficient coding considers only second-order statistics and their removal by
decorrelation. There is, however, much more to natural images than their spatial frequency spectra. This is
evident when viewing artificial stimuli with a “natural” distribution of energy across spatial frequencies but no
other statistical constraints; such images look highly unnatural (e.g Figure 3). This raises a concern that coding
algorithms focusing on decorrelation may miss essential features of what early visual neurons do.

Statistical independence provides a stronger constraint on efficient coding between channels (i.e. neurons or
neuron-like receptive fields) than decorrelation (for a comprehensive review, see book by ). Although achieving
independence in general is a difficult problem, it can be simplified by considering only linear transformations
followed by a point nonlinearity (i.e. a linear-nonlinear approach). Two such approaches applied to natural
images (Independent Component Analysis and Sparse Coding) yield filters that qualitatively resemble the
oriented and localized structure of receptive fields in primary visual cortex®®®°; for a review, see *°. More recent
work shows that optimizing for a form of hard sparseness in which only a limited number of neurons are active
can yield a better match to the full variety of cortical receptive fields in macaque’.

Different channels can also exhibit nonlinear statistical dependencies that cannot be fully removed by linear or
linear-nonlinear approaches (see "'"2 and references therein). This has prompted work on reducing statistical
dependencies via nonlinear transformations. These approaches have led to more direct comparisons between
models derived from scene statistics and nonlinear neural behaviors. One focus in primary visual cortex has
been on modeling nonlinear contextual phenomena, whereby the responses of neurons to a target stimulus are
influenced by stimuli that spatially surround the target, or by stimuli that have been observed in the past. Such
effects can be modeled by reducing statistical dependencies between filter responses across space or time via
a nonlinear computation known as divisive normalization or by other complementary approaches®’>’8, The
statistical dependencies between filter responses can also be exploited to build models of complex cells that
pool together filters, resulting in invariances to translation and other properties (for a review see book by ¢” and
references therein; see also "°%%). Models of secondary visual cortex have been derived by stacking multiple
layers of linear-nonlinear transforms to achieve statistical independence, sparseness, or other related stimulus-
driven goals®~®. One can in principle stack many unsupervised layers, but it is not clear if efficient coding
remains relevant for capturing the computations characteristic of higher cortical areas and hence provides a
good fit criterion. It is often assumed instead that goal-oriented approaches become more appropriate as
computations become more specialized.

Generative models that capture image statistics can complement efficient coding approaches®%®. Efficient
coding approaches seek to transform and manipulate inputs so as to maximize the transfer of information, which
can result in statistical independence of the transformed inputs. But learning to generate the statistical
dependencies prevalent in natural scenes also shows how to reduce them. To make this more concrete, consider
an example in which efficient coding and generative models are complementary. Multiplicative generative models
for the nonlinear dependencies in filter responses to images lead immediately to approaches to reduce such
dependencies via division®’. Building on this simple example, generative approaches allow formulation of rich
models of the statistical dependencies in images, based on the observation that different parts of an image could
have different statistical dependencies. This leads to models in which divisive normalization (and therefore
redundancy reduction) only occurs for image inputs in which center and surround locations are statistically
dependent according to the model*?®® (see also ).

Goal-oriented approaches to natural vision

Efficient coding predicts that neural processing will maximize the information transmitted about a stimulus without
explicitly considering behavioral demands such as the specific tasks required for survival. These behavioral
considerations are central to goal-oriented approaches, which view the importance of stimulus structure and



circuit mechanisms on coding through the lens of specific behavioral demands. Because many behaviorally-
relevant tasks require rich stimuli, goal-oriented approaches are often used to investigate the coding of natural
inputs. We first illustrate these issues from studies of the retina and insect behavior, and then turn to their
application in cortex.

Retinal ganglion cells support specific behavioral goals

A common observation that supports goal-oriented approaches is high neural selectivity to specific stimulus
features to the exclusion of other (equally probable) features. In an early study of retinal feature selectivity, Lettvin
and colleagues interpreted retinal ganglion cell (RGC) types in explicitly ethological terms, famously going so far
as to speculate that one class of ganglion cell in the frog retina may be a “bug perceiver™®. But the idea that the
earliest neurons in the visual system are tuned to highly specific features of the visual world was ahead of its
time. Instead, the dominant view of retinal processing for several decades thereafter focused on basic
processing, including lateral inhibition (via a center-surround spatial receptive field) and simple forms of
luminance adaptation®’. In this view, the computational heavy lifting to support specific behavioral goals is done
in visual areas downstream of the retina and LGN.

A great deal of evidence has now accumulated that retinal computation is more complex (for a review see '). A
wide variety of “non-standard” RGC computations have been discovered and often explained at the circuit and
synaptic level. These include: direction-selectivity, orientation selectivity®?, an omitted stimulus response®, and
image recurrence sensitivity®. Of specific relevance here, recent work emphasizes intricate specializations of
direction-selective circuits for extracting information about the direction of motion, often to the detriment of
encoding other visual features®*.

The degree to which retinal neurons are specialized to guide a particular behavior or to perform general-purpose
computations predicted by efficient coding may depend on species and on location within the retina. The
“complex” computations discussed above (like direction selectivity) have not been observed in primate retina,
although many primate RGC types remain unexplored. Further, the fovea and peripheral retina differ dramatically
in circuitry (reviewed by®’) and in functional properties®~'%°; these differences could indicate a difference in the
division of computational labor between retinal and cortical circuits across retinal eccentricity.

Differences like these - across cell types, species, or retinal eccentricity - suggest one way to reconcile stimulus-
and goal-oriented frameworks in the retina. Retinal neurons that support a variety of behavioral goals or project
to image-forming downstream thalamocortical circuits may show more general purpose computational features
consistent with efficient coding since these cells act as a common front-end for many downstream feature
extractions. Other retinal neurons may violate predictions from efficient coding because they project to areas of
the brain that underlie more specialized visually-guided behaviors -- for example, direction selective neurons'®!
that project to superior colliculus or the accessory optic system to guide eye movements, or RGCs that control
circadian rhythms (for review see '°?).

Lessons from insect vision: behavioral goals shape and constrain visual processing

Goal-oriented approaches have yielded particularly satisfying explanations for complex visual processing in
insects. The insect vision community has a long history of examining visual processing as it relates to behaviors
like flying'®. Motion processing pathways in several different insects appear tuned to each species’ particular
flight behaviors'®. Some visual neurons in the fly encode visual features directly relevant for flight control, such
as optic flow elicited by rotations or translations around and along specific body axes'*'% (see Figure 4). These
neurons act as “matched filters” for specific types of optic flow'"1%_ Optic flow encoding may seem obvious in
hindsight, but the local motion receptive fields of these cells would appear quite mysterious if not for the careful
consideration of the impact of the fly’s own motion on visual inputs.




Recent work on mouse directionally-selective RGCs has similarly recast their function in terms of self-generated
motion while navigating the environment'® (see Figure 4). A long-standing view of directionally-selective RGCs
held that they consist of four subtypes, each preferring a cardinal axis of motion (up, down, left, right, each
separated by ~90 degrees) and in alignment with the axes of eye movements produced by the four rectus
muscles of the eye'®'. These RGCs project to the superior colliculus'’®, which further suggests that they are
involved in controlling eye movements. While this distribution of preferred directions holds in the mouse central
retina, in other regions of the retina the preferred axes of directionally-selective RGCs are not perpendicular and
thus do not neatly align with the rectus muscles of the eye. Sabbah & colleagues mapped retinotopic differences
in direction-selectivity in relation to extrapersonal visual space and motion by the animal (Figure 4). They found
that directionally-selective cells are in fact better thought of as encoding the animal’s own “advance/retreat” and
“rise/fall” movements than the movement of some external object.

Goal-directed Approaches in Cortex

Goal-directed approaches have also been applied to visual cortex. Geisler and colleagues have promoted the
importance of understanding how particular tasks may exploit different properties of natural scenes'"''2. They
have focused on the representations learned by tasks such as patch identification, foreground identification,
retinal speed estimation and binocular disparity. For instance, filters learned for a foreground identification task
were oriented either parallel or perpendicular to surface boundaries''?, while filters from an image patch
identification task had less discrete orientation preferences and more closely resembled primary visual cortex
filters. Thus, the representations learned can depend on the visual processing goals imposed on the system.

Deep Neural Networks

Recent years have seen tremendous advances in an area of machine learning known as deep neural networks
(DNNs'"®"'%): these advances have driven progress in computer vision and a host of other fields. In deep neural
networks, stimuli such as natural images are represented and processed hierarchically, loosely matched to the
hierarchical structure of the brain. These networks come in many different flavors, including those that are trained
in an unsupervised manner -- i.e. the network learns to identify and encode statistical structure in the inputs
without a specific goal. Here we focus on supervised discriminative networks, which are tasked with identifying
or categorizing inputs and learn to do so by observing many examples of each category in a labeled training
data set. For example, a commonly used labeled training data set is ImageNet, which is a collection of images
of objects and their associated classifications (e.g. “German shepherd”, “birdhouse”, or “eggnog”). DNNs have
many potential applications; we emphasize their potential to help understand and make predictions about the
neural processing of natural images, particularly how the nervous system could achieve invariant object
recognition (e.g. to pose, background clutter, and other within class variations).

Architecture and neural circuitry

Deep neural networks consist of a series of connected layers, each of which implements a set of basic
computations (Figure 5). The computations in a single layer include linear filtering (convolution), rectification,
pooling, and sometimes local response normalization. DNNs can be considered as a hierarchical extension of
the linear-nonlinear models often used to empirically describe visual responses. By design of the network, the
dimensionality (number of elements) is reduced between successive layers, and effective receptive fields
become larger as one progresses along the hierarchy. Thus, individual layers implement computations like those
found in descriptive models of neural circuits, and the hierarchical arrangement of layers resembles the
organization of visual (and other sensory) pathways.

The parameters governing DNN behavior are not determined by specific low-level computational principles (e.g.
reducing statistical dependencies as in efficient coding). Instead these parameters emerge by learning to



minimize the difference between the DNN output and a desired response corresponding to the DNN goal - such
as classifying images according to objects they contain. DNNs can also be used in a descriptive (and therefore
not goal-oriented) manner by fitting them directly to neural data, rather than training them on a high-level task.
One such model, when fit to retinal ganglion cell responses to natural movies, reproduced several of the
“complex” retinal computations discussed above. The model did not reproduce these behaviors when fit to white
noise stimulation®.

While neural networks have been around for decades, recent years have seen dramatic improvements in
performance due to increases in computer speed and the availability of large data sets (e.g. images with labeled
objects) that together make it possible to efficiently train networks with many layers.

Learning from successes and failures of DNNs

DNNs trained on object classification show an intriguing ability to predict the responses of cortical neurons to
natural images (for recent reviews, see ''®'"": for other recent work, see '®'2%). This approach has been applied
with particular success to processing in the ventral visual pathway, which culminates in neurons in inferotemporal
(IT) cortex. Many IT neurons exhibit high feature selectivity -- responding to specific objects and (famously)

faces'®".

The flow of signals from the retina to IT is characterized by the loss of a veridical representation of the retinal
image: receptive fields become progressively larger and more complex, invariances to properties like object size
and position emerge, and the appropriate space to specify inputs (e.g. inputs that produce similar responses of
a given neuron) becomes increasingly difficult to identify. These transformations are challenging to describe
using stimulus-based models. DNNs, however, have been more successful. Interrogation of the architecture of
DNNs trained on object classification suggests that invariances may arise from the pooling stages of the
networks'?2'23, DNNs show an ability to generalize in two important ways: (1) they are able to classify images of
objects not in the original training set, including adjusting their representation of inputs for different tasks through
transfer learning'?*; and, (2) they capture several aspects of neural responses even though neural data is not

used in training.

But DNNs are, of course, imperfect. For example, current DNN models fail to capture some aspects of human
perception such as insensitivity to perturbations to an image'?®'%. This behavior may arise from current DNN
architectures operating in rather linear regimes'?’, and more biologically realistic saturating nonlinearities may
improve performance'®® (although see '?°). DNNs capture some but not all aspects of responses of neurons in
mid-cortical layers'®. Interpreting DNNs can also be difficult. Unlike more principled efficient coding approaches
in which the form of the computation itself (e.g., divisive normalization or gain control) can be motivated by the
computational goal, it is often not clear what feature of a supervised, discriminative DNN leads to a given level
of performance. This sort of insight is more readily gleaned from shallower models that share many architectural
features with DNNs (see, e.g., %1%)

Any insights that DNNs trained on high-level tasks like classification provide about how the visual system
computes comes from identifying, through learning, key statistical structure in the inputs that is important for
performing the specific task used in training. Motivation for such an approach comes from convergent evolution
of computations like motion detection in insect and vertebrate visual systems (see above). Given that DNNs are
only loosely modeled after visual circuits, a realistic expectation is that they identify the computational capabilities
and limitations of specific architectures rather than provide a literal model of how the visual system works. If
statistical structure of the inputs, rather than specific hardware constraints, dominates which computational
strategies are effective for a given task, we might expect DNNs and neural systems to converge on similar
computational algorithms even if the implementations of these algorithms differ due to differences in hardware.



Future directions

Understanding neural computation and coding in the context of naturalistic visual stimuli is a difficult problem.
But the wealth of neurophysiological data about the visual system and the emergence of new computational
tools for building and fitting models put us in a good position to make progress. Below we highlight a few emerging
directions that we believe will help advance understanding. Many of these approaches merge techniques and
ideas from the stimulus- and goal-oriented frameworks discussed above.

Identify key circuit mechanisms and integrate into models

A complete understanding of natural visual encoding entails building models that can accurately predict neural
responses to natural scenes. We believe that a major reason for the shortcomings of current models is that they
lack key architectural and computational features present in biological circuits, and that these features
substantially shape neural responses. Certain model abstractions (for example, linearity of the receptive field)
may be appropriate under some stimulus conditions but not others. At the same time, simply building models
using realistic components is not likely to explain complex computations such as object recognition. Merging
DNN techniques with more realistic biological circuitry offers one path forward.

DNNs components and connectivity are typically chosen largely based on the computational efficiency of
learning using current optimization tools (e.g. gradient descent). This can lead to architectures that lack key
components of neural circuits. Identifying and incorporating biologically-inspired computational motifs will help
identify which motifs are important for specific computations -- e.g. the computations characteristic of different
stages of the visual hierarchy -- and which motifs can be simplified without loss of performance. This in turn
could lead to direct predictions about the mechanisms operating in the relevant neural circuits.

One indication of the potential benefits of such an approach comes from comparing physiologically-based
models of early visual areas (linear-nonlinear models with two forms of local normalization) and layers of the
VGG network (which lack normalization): physiological models captured human sensitivity to image perturbations
considerably better than DNNs''. A challenge is our current inability to identify which biological mechanisms are
essential for specific computations and which can be abstracted as in linear-nonlinear models. Progress will also
require probing the interactions between coactive mechanisms that are likely engaged strongly for complex
stimuli such as natural images. A partial list of computational features prominent in neural circuits but under-
represented in DNNs applied to neuroscience, includes normalization by stimulus context and recurrent
connections. Sophisticated forms of normalization in DNNs have thus far been applied to computer vision'32"3
but offer potential for neuroscience directions'*. Recurrent connections can improve object recognition'®
have the potential to capture neural phenomena such as adaptation?'.

and

Combine the merits of stimulus- and goal-oriented approaches

DNNs are designed to perform well on the discriminative recognition task at the top level of the network, but
this constraint does not uniquely specify the architecture of the other layers. On the other hand, stimulus-
oriented approaches provide a principled way to capture more detailed computations and nonlinearities in early
stages of visual processing, including retina and primary visual cortex. But it is not clear if such approaches
can capture computations in later stages of the cortical hierarchy.

An important future task is therefore finding better ways to reconcile and integrate the merits of both
approaches. For instance, most of the early processing that takes place before primary visual cortex is
neglected in current DNNs (an exception is 2"). Incorporating this early processing into networks could become
a merger point between goal-directed objectives shaping the top levels of the network and stimulus-driven
constraints shaping the initial stages of the architecture. Another direction is to incorporate computational




motifs derived from stimulus-driven normative approaches (such as the normalization discussed above) into
DNNSs.

New theoretical and practical approaches that balance stimulus- and goal-oriented approaches provide
promising directions. For instance, an approach known as the information bottleneck formalizes the idea of
capturing relevant information rather than all information (for recent application to deep learning, see '%).
Another recent approach unifies several definitions of efficient coding and considers the impact of incorporating
only stimuli that are predictive about the future on coding'®"'*8. Other recent work connects generative
(stimulus-oriented) and discriminative (goal-oriented) components in a single model through a shared
representation'®. This combination has been exploited in ‘semi-supervised’ machine learning, which makes
use of scarce labeled data along with unlabeled data, and therefore is a hybrid between supervised and
unsupervised approaches. However, this combined stimulus and goal-oriented representation has not been
applied to neuroscience and understanding natural vision. Recent theoretical work has also expanded the
notion of efficient coding by recasting it as a specific case of Bayesian inference'*’. By using a broader
definition of optimality, Bayesian efficient coding allows one to evaluate the efficiency of neural representations
in terms of encoding goals beyond simple information maximization.

There is also a need for progress with stimulus-oriented unsupervised learning approaches that exploit the
power of DNNs without specialization for a specific goal. Unsupervised learning is considered by many the
“holy grail" of learning (for recent examples, see "' which incorporates multiple levels of divisive normalization;
and " which incorporates pooling). It is still unclear whether deep network architectures with unsupervised
learning can predict responses of neurons to natural scenes or capture the invariances that characterize higher
visual processing.

Train DNNs using multiple, behaviorally-inspired tasks

A DNN trained to perform a particular task can recapitulate some aspects of sensory circuits; for example, the
middle layers of an image classification DNN resemble in some respects neurons in intermediate stages of the
ventral stream'® (reviewed by '""). Presumably these correspondences arise from similarities in both network
architecture and task. A real sensory system, however, supports a wide array of tasks or behavioral goals
simultaneously. The result is that, especially in early sensory areas, neurons have to process sensory input in a
way that supports multiple parallel feature extractions or behavioral goals. Neurons that make up this common
biological front end (e.g. photoreceptors or some types of retinal ganglion cells) may therefore align their
encoding strategies with efficient coding to support a wide variety of downstream goals. Downstream circuits
performing more specialized computations, on the other hand, may not behave according to classical efficient
coding principles. This agrees with our intuition that efficient coding somehow applies more neatly to peripheral
sensory systems. Formalizing this intuition requires grappling with several difficult questions: Are there general
rules that govern when a stimulus- or goal-oriented perspective is more appropriate? At what point does a
sensory pathway stop simply efficiently packaging information and start “doing” something with that information?

Multi-task DNNs offer one approach for exploring how shared circuitry could support multiple tasks'. Indeed,
such networks trained for speech and music classification naturally divide into separate pathways, and the level
at which that split occurs can affect the performance of the network on these two tasks'**. An interesting question
is whether constraining networks by multiple mid-level tasks (as in '*°) can provide a more general-purpose
representation resembling that predicted by efficient encoding. A major impediment to developing multi-task
DNNs is the limited availability of datasets that could be used to train such networks (e.g. ImageNet, which
consists of a collection of labeled objects, is the dominant dataset used for vision-related applications).
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VGG-19 network

Original Image

Generated Images based on Generated Images based on

convl 1, pooll, and pool2 convl_1, pooll, pool2, pool3,
statistics and pool4 statistics

Figure 1: Texture Synthesis based on Deep Convolutional Neural Networks. The activations of different
layers of a DNN trained for object recognition can be employed to capture statistics of textures beyond second
order®. Texture synthesis is accomplished by numerical optimization of the pixel values of an image that
matches the statistics of a reference image (Original Image enclosed in black). Statistics can be obtained from
activation values at different stages of the deep DNN. Images enclosed in red are synthesized by considering
only activations from the first and second pooling stages of the DNN, whereas images enclosed in blue include
the third and fourth pooling stages in their statistics. In the case of the inhomogeneous images (bottom row)
the texture generation tiles local features in scrambled places that will match the activation statistics that have
been averaged over space. Original images outlined in black (Feynman portrait and rocks) are from
http://www.cns.nyu.edu/~Icv/texture/ and are used with permission from Eero Simoncelli.
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Figure 2: Efficient coding strategies rely on self-generated movement. (a) A natural image and measured
human eye movement trajectory from 6. An observer will explore a scene using large, ballistic changes in
fixation called saccades. In the time between saccades, observers make much smaller, involuntary eye
movements called fixational eye movements (for review, see '*"). (b) Using these eye movement data, we can
reconstruct the time-varying image on the retina into a naturalistic movie stimulus. We summed the Fourier
spatial power spectra of each frame of this movie, resulting in a roughly 1/ power law scaling, which is
characteristic of static natural images (black trace). Following the analysis in %, we then measured spatial power
spectra for the dynamic component of the natural movie. To produce these spatial power spectra, we computed
the spatiotemporal power spectrum of a movie and summed over all non-zero temporal frequencies. Fixational
eye movements simply shift much of the power, except that at the lowest spatial frequencies, to higher temporal
frequencies. The removal of the temporal DC component of the movie thus selectively removes low spatial
frequency content, and the result is a whitened spatial power spectrum (Fig. 2b, blue trace). Importantly, this
result relies on fixational eye movements and not saccades. When saccades are included in the natural movie
stimulus, considerable low spatial frequency content is still present at nonzero temporal frequencies, so
whitening does not occur (Fig. 2b, red trace). (c) The position (in one dimension) of the eye as a function of time
is shown by the green trace. Examining the eye position at a finer time scale (dashed inset) reveals smaller
fixational eye movements. Boi et al.®® suggested that during a saccade, the dynamic spatial frequency content
of natural images follows the familiar 1/f2 power law scaling (left inset, red trace). As the fixation proceeds, the
retinal input is whitened (right inset, blue trace). Between saccades (when the image is relatively stable), any
low spatial frequency content is present mostly in the temporal DC component of the input. In other words, the
large-scale spatial structure isn’t changing very much within a single fixation. The whitening effect of fixational
eye movements will depend on how completely (and how quickly) a visual neuron adapts to the (mostly static)
low spatial frequency content imposed by each new fixation.
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Figure 3: Beyond-pairwise statistics contribute to complex structure in natural images. Top row: Two
grayscale natural images. Middle row: The natural images above with randomized phase spectra. Both of these
images have the roughly 1/f spatial power spectrum characteristic of natural images, yet appear quite unnatural.
Bottom row: The natural images with their phase spectra swapped, such that the image on the left now has the
phase spectrum of the original image on the right, and vice-versa. See '8, Original photographs were taken
by the authors.
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Figure 4: Motion sensitive neurons encode self-movement across the animal kingdom. (a) Schematic
showing a fly in flight. (b) Local motion receptive field of the VS8 neuron in the blowfly Calliphora. The direction
of each arrow indicates the local preferred direction, and the length of each arrow indicates the cell’s motion
sensitivity. This local motion receptive field corresponds to the optic flow pattern that would result from a rotation
of the animal. The rotation axis around which the fly would need to turn to maximally activate this neuron is
indicated in (a). Data & schematic provided by Holger Krapp. (c) Schematic showing a mouse ambulating in a
forward direction. The resulting visual input is an optic flow pattern emanating from a singularity directly ahead
of the animal (blue lines). (d) Direction preferences of a population of DS RGCs in mouse retina are overlaid on
the retinal surface. Forward motion optic flow moves outward from a point in the retina (blue lines). The direction
preferences of this cell type roughly align with the optic flow lines that result from forward motion. Other DS RGC

types similarly respond to optic flow resulting from other directions of motion of the animal. Data redrawn from
109



Deep neural network
architecture & computations

)

c

<)

2

% S ERRRRRE >

£

°

S

g Filter

n / Rectify (_/)(\/)
Pool
Normalize &

Features

Biological circuit
motifs & computations

Divergence into
Rectification Summation Feedback Parallel pathways

6 o
R

Time dependent
nonlinearities Convergence from

Normalization distinct pathways

Figure 5: Deep neural networks reflect some, but not all, architectural and computational motifs found
in neural circuits. Top: Deep neural networks are composed of multiple, connected layers. Several basic
computations are performed within each layer. Bottom: examples of common circuit motifs and computations
observed in neural circuits. Some of these examples are well-represented by many DNNs (e.g. pooling / filtering),
others can be included in DNNs but their precise nature & location are not necessarily well reflected (e.g.
rectification or normalization), and still others are excluded from most DNNs (e.g. time-dependent nonlinearities).



