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Abstract 
Our knowledge of sensory processing has advanced dramatically in the last few decades, but this understanding 
remains far from complete, especially for stimuli with the large dynamic range and strong temporal and spatial 
correlations characteristic of natural visual inputs. Here we describe some of the issues that make understanding 
the encoding of natural image stimuli challenging. We highlight two broad strategies for approaching this 
problem: a stimulus-oriented framework and a goal-oriented one. Different contexts can call for one or the other 
framework. Looking forward, recent advances, particularly those based in machine learning, show promise in 
borrowing key strengths of both frameworks and by doing so illuminating a path to a more comprehensive 
understanding of the encoding of natural stimuli. 
                                                                                    
Introduction 
The neural circuits that process sensory inputs are shaped by the properties of the stimuli they encounter as well 
as the behavioral demands of the animal. Because of this, a deep understanding of sensory circuits and the 
computations they support requires connecting what we know about sensory systems to properties of natural 
stimuli. In this review, we discuss some of the progress and the challenges in describing the neural encoding of 
complex stimuli such as those encountered in the real world; related issues extend to many areas beyond 
neurophysiology. We refer to the encoding of visual scenes as a paradigmatic example, but many of the same 
issues arise in other sensory modalities. 
 
Studies of sensory coding have traditionally relied on parameterized, artificial stimuli designed to isolate and 
characterize specific circuit mechanisms, such as nonlinearities in the integration of signals across space 
(reviewed by 1,2) or adaptation to changes in particular stimulus properties such as intensity, contrast, or 
orientation (reviewed by 3–6). These approaches have revealed the mechanistic basis of many important circuit 
computations. There is also a long history of studying the encoding of natural scenes in neurophysiology 
experiments (e.g. 7–12), and recent years have seen this interest expand (e.g., 13–15 and references therein). 
However, the encoding of natural stimuli is incompletely understood.  
 
Two issues make studying the encoding of natural stimuli challenging compared to typical artificial stimuli. First, 
complex stimuli, such as natural visual inputs, engage a host of interacting circuit mechanisms rather than 
individual mechanisms in isolation. These interactions can be difficult to capture with computational models. As 
a result, many models do not generalize well to predict responses to stimuli other than those to which they were 
fit16. For example, many predictive neurobiological models for stimulus-response transformations in the early 
visual system are based on a common architecture: linear filtering over space and time, followed by a nonlinear 
step. Such models tend to suffer from an inability to generalize to novel stimuli, especially natural ones17–19. 
Alternative model architectures may generalize better, for example those that stack multiple linear-nonlinear 



 

 

layers on top of one-another20,21, or those that use multiple linear filters in parallel to capture diverse feature 
sensitivities22–27. 
 
A second challenge inherent in the study of natural stimulus encoding is the complex statistics of natural scenes 
(reviewed by 28–31). For example, across different visual scenes and even within a single scene, image statistics 
(e.g. mean intensity, spatial contrast, and other, higher-order statistics) can vary widely but (fortunately) not 
randomly32–36. Within a single visual scene, different image features are often strongly correlated, which makes 
it difficult to relate a neural response to a particular feature of a scene (see 13 for a computational approach to 
this issue). One approach to managing this complexity is to develop generative models of natural images that 
enable a low dimensional representation. Parametric models exist for naturalistic textures37 -- i.e. semi-regular, 
repeating patterns (see Figure 1) -- and recent advances in machine learning show promise in generating not 
only textures38 but non-homogeneous naturalistic images (see 39 and references therein); for applications of 
these approaches see 40–42. 
  
Stimulus- and goal-oriented approaches to natural stimulus encoding 
We will focus on two theoretical frameworks that are often appealed to in the study of natural stimulus encoding: 
(i) A stimulus-oriented framework, A common approach is to identify transformations of sensory input signals 
that optimize statistical and information theoretic metrics, such as reducing statistical redundancies present in 
natural stimuli.  Complementary approaches based on generative modeling seek to capture the statistical 
dependencies of natural scenes, and by doing so also reveal how they can be reduced. Stimulus-oriented 
approaches are closely related to unsupervised machine learning, for which learning is based only on properties 
of the input and does not require a specific task goal such as object recognition. 
 
(ii) A goal-oriented framework, which appeals to the computational or behavioral goal of the circuit or animal. 
Unlike stimulus-oriented approaches, goal-oriented approaches explicitly treat some features of the stimulus 
differently than others, and which features are encoded depends on the desired behavioral output or goal. These 
approaches include recent advances in Deep Convolutional Neural Networks, particularly those based on 
supervised, discriminative learning from large databases of images with identified and labeled objects. 
 
These two frameworks may appear to be at odds. For instance, a model focused solely on a high-level goal like 
object recognition will not necessarily reduce redundancies or capture general statistical properties of the 
stimulus. Conversely, models focusing on reducing redundancies are not likely to explain, at least not explicitly, 
complex tasks such as object recognition. Historically, stimulus-oriented frameworks have largely been applied 
to early visual areas and goal-oriented objectives to later cortical areas. But these boundaries are beginning to 
blur. Indeed, in some cases the two approaches can be seen as complementary. For instance, even well-
established visual computations like lateral inhibition can be seen through both lenses: as a mechanism to 
suppress responses to low spatial frequencies and eliminate some of the redundancies present in natural 
images43,44, or as a way to facilitate the detection of specific features of a scene, namely edges45. In addition, 
stimulus-oriented approaches can be relevant for pre-attentive selection and segmentation tasks, for instance 
by creating a saliency map in primary visual cortex46. We will discuss some modern computational approaches 
that may facilitate the merger of stimulus- and goal-oriented frameworks, allowing one to inform the other and 
vice-versa. In particular, deep neural networks provide a promising route for exploring how stimulus- and goal-
oriented constraints together shape sensory processing. 
  
Stimulus-oriented approaches to natural vision 
An influential hypothesis that undergirds much of the study of natural scene processing is the “efficient coding 
hypothesis,” first proposed by Barlow47 (see also 48), and influenced by Shannon's earlier work on information 
theory49. Barlow proposed that an efficient coding scheme should reduce the redundancy of natural inputs, but 



 

 

without loss of the information that is encoded47. Redundancy as defined by Barlow is the fraction of the total 
information carrying capacity of a neuron or neural population that is not used to transmit information about the 
stimulus. Approaches based on producing sparse representations of natural inputs also take advantage of the 
redundancy in images50.  
 
Redundancy reduction predicts that a single noiseless neuron should distribute its responses uniformly (e.g., 
subject to a constraint on the maximal firing rate), such that each possible response occurs with equal frequency; 
to do otherwise would mean that the neuron is not making full use of its dynamic range. Examples of 
approximately uniformly-distributed sensory representations can be found in a variety of sensory systems51,52. 
Consideration of neural noise can substantially alter predictions of efficient coding because in that case efficiency 
involves both using a cell’s full response range and mitigating the effect of noise53–55.  
 
Redundancy reduction in a population of neurons (i.e., multiple channels) relies on removing statistical 
dependencies among their responses47. Reducing redundancy for natural stimuli is particularly challenging 
because natural visual inputs contain strong (nonlinear) statistical regularities across time and space (for a 
review, see30). We start by describing the application of these ideas in early sensory areas (mainly the retina) 
and then turn to efficient coding in visual cortex. 
  
Efficient coding and second order statistics 
Second-order spatial correlations in natural scenes have been a particular focus of efficient coding approaches. 
Such correlations, on average, obey a power law scaling: the power spectrum of spatial frequencies falls as the 
inverse of the square of the spatial frequency (Figure 2b)56. This is the result of the scale invariance of natural 
images -- i.e. many statistical properties are unchanged by magnifying or demagnifying an image36. Scale 
invariance has been suggested to result from the fact that objects can appear at any distance from an observer57.  
 
The prevalence of low spatial frequencies in natural images produces correlated responses in nearby cells, 
leading to a redundant population code. Receptive field surrounds of neurons in retina and LGN decorrelate 
responses of nearby neurons by suppressing responses to low spatial frequencies43,58 (but see 59–61). The 
transformation that flattens the power spectrum is sometimes referred to as “whitening.” Whitening, however, 
will increase high spatial frequency noise such as that in photoreceptor signals; consideration of noise predicts 
that the suppressive surround should be minimal or absent when noise is high (for a review, see 31,62). Similar 
principles of whitening without amplifying noise have also been proposed in other domains, such as stereo coding 
in cortex63. 
 
Eye movements are another factor that can make important contributions to the statistics of visual inputs and 
hence to efficient coding predictions. Human eye movements are characterized by small fixational movements 
and occasional discrete and rapid saccades (Figure 2a,c). The spatial frequency spectrum of natural images, 
subject to fixational eye movements, is roughly flat (i.e., whitened) at low spatial frequencies64 (Figure 2b). 
Natural inputs that simulate fixational eye movements indeed appear to decorrelate responses in populations of 
salamander retinal ganglion cells65. This whitening effect does not hold for large and rapid eye movements like 
saccades66 (see Figure 2b). Thus, Rucci & colleagues (especially 66) suggest that a single cell may use different 
decorrelation strategies throughout the course of natural stimulation: classical surround-mediated decorrelation 
or decorrelation via nonlinearities in spike generation60 immediately following a saccade and eye-movement 
generated whitening during the later parts of the fixational periods between saccades. Understanding the effects 
of such self-generated motion on the encoding of natural scenes will require further experiments (e.g., 
manipulating the statistics of synthetic eye movements in experiments on primate retina). 
  
Efficient coding beyond second order statistics 



 

 

Much of the classical work on efficient coding considers only second-order statistics and their removal by 
decorrelation. There is, however, much more to natural images than their spatial frequency spectra. This is 
evident when viewing artificial stimuli with a “natural” distribution of energy across spatial frequencies but no 
other statistical constraints; such images look highly unnatural (e.g Figure 3). This raises a concern that coding 
algorithms focusing on decorrelation may miss essential features of what early visual neurons do. 
 
Statistical independence provides a stronger constraint on efficient coding between channels (i.e. neurons or 
neuron-like receptive fields) than decorrelation (for a comprehensive review, see book by 67). Although achieving 
independence in general is a difficult problem, it can be simplified by considering only linear transformations 
followed by a point nonlinearity (i.e. a linear-nonlinear approach). Two such approaches applied to natural 
images (Independent Component Analysis and Sparse Coding) yield filters that qualitatively resemble the 
oriented and localized structure of receptive fields in primary visual cortex68,69; for a review, see 30. More recent 
work shows that optimizing for a form of hard sparseness in which only a limited number of neurons are active 
can yield a better match to the full variety of cortical receptive fields in macaque70. 
 
Different channels can also exhibit nonlinear statistical dependencies that cannot be fully removed by linear or 
linear-nonlinear approaches (see 71–73 and references therein). This has prompted work on reducing statistical 
dependencies via nonlinear transformations. These approaches have led to more direct comparisons between 
models derived from scene statistics and nonlinear neural behaviors. One focus in primary visual cortex has 
been on modeling nonlinear contextual phenomena, whereby the responses of neurons to a target stimulus are 
influenced by stimuli that spatially surround the target, or by stimuli that have been observed in the past. Such 
effects can be modeled by reducing statistical dependencies between filter responses across space or time via 
a nonlinear computation known as divisive normalization or by other complementary approaches32,73–78.  The 
statistical dependencies between filter responses can also be exploited to build models of complex cells that 
pool together filters, resulting in invariances to translation and other properties (for a review see book by 67 and 
references therein; see also 79,80). Models of secondary visual cortex have been derived by stacking multiple 
layers of linear-nonlinear transforms to achieve statistical independence, sparseness, or other related stimulus-
driven goals81–84. One can in principle stack many unsupervised layers, but it is not clear if efficient coding 
remains relevant for capturing the computations characteristic of higher cortical areas and hence provides a 
good fit criterion. It is often assumed instead that goal-oriented approaches become more appropriate as 
computations become more specialized. 
 
Generative models that capture image statistics can complement efficient coding approaches85,86. Efficient 
coding approaches seek to transform and manipulate inputs so as to maximize the transfer of information, which 
can result in statistical independence of the transformed inputs. But learning to generate the statistical 
dependencies prevalent in natural scenes also shows how to reduce them. To make this more concrete, consider 
an example in which efficient coding and generative models are complementary. Multiplicative generative models 
for the nonlinear dependencies in filter responses to images lead immediately to approaches to reduce such 
dependencies via division87. Building on this simple example, generative approaches allow formulation of rich 
models of the statistical dependencies in images, based on the observation that different parts of an image could 
have different statistical dependencies. This leads to models in which divisive normalization (and therefore 
redundancy reduction) only occurs for image inputs in which center and surround locations are statistically 
dependent according to the model32,88 (see also 89). 
 
Goal-oriented approaches to natural vision 
Efficient coding predicts that neural processing will maximize the information transmitted about a stimulus without 
explicitly considering behavioral demands such as the specific tasks required for survival. These behavioral 
considerations are central to goal-oriented approaches, which view the importance of stimulus structure and 



 

 

circuit mechanisms on coding through the lens of specific behavioral demands. Because many behaviorally-
relevant tasks require rich stimuli, goal-oriented approaches are often used to investigate the coding of natural 
inputs. We first illustrate these issues from studies of the retina and insect behavior, and then turn to their 
application in cortex. 
            
Retinal ganglion cells support specific behavioral goals 
A common observation that supports goal-oriented approaches is high neural selectivity to specific stimulus 
features to the exclusion of other (equally probable) features. In an early study of retinal feature selectivity, Lettvin 
and colleagues interpreted retinal ganglion cell (RGC) types in explicitly ethological terms, famously going so far 
as to speculate that one class of ganglion cell in the frog retina may be a “bug perceiver”90. But the idea that the 
earliest neurons in the visual system are tuned to highly specific features of the visual world was ahead of its 
time. Instead, the dominant view of retinal processing for several decades thereafter focused on basic 
processing, including lateral inhibition (via a center-surround spatial receptive field) and simple forms of 
luminance adaptation91. In this view, the computational heavy lifting to support specific behavioral goals is done 
in visual areas downstream of the retina and LGN. 
 
A great deal of evidence has now accumulated that retinal computation is more complex (for a review see 1). A 
wide variety of “non-standard” RGC computations have been discovered and often explained at the circuit and 
synaptic level. These include: direction-selectivity, orientation selectivity92, an omitted stimulus response93, and 
image recurrence sensitivity94. Of specific relevance here, recent work emphasizes intricate specializations of 
direction-selective circuits for extracting information about the direction of motion, often to the detriment of 
encoding other visual features95,96.  
 
The degree to which retinal neurons are specialized to guide a particular behavior or to perform general-purpose 
computations predicted by efficient coding may depend on species and on location within the retina. The 
“complex” computations discussed above (like direction selectivity) have not been observed in primate retina, 
although many primate RGC types remain unexplored. Further, the fovea and peripheral retina differ dramatically 
in circuitry (reviewed by97) and in functional properties98–100; these differences could indicate a difference in the 
division of computational labor between retinal and cortical circuits across retinal eccentricity.  
 
Differences like these - across cell types, species, or retinal eccentricity - suggest one way to reconcile stimulus- 
and goal-oriented frameworks in the retina. Retinal neurons that support a variety of behavioral goals or project 
to image-forming downstream thalamocortical circuits may show more general purpose computational features 
consistent with efficient coding since these cells act as a common front-end for many downstream feature 
extractions. Other retinal neurons may violate predictions from efficient coding because they project to areas of 
the brain that underlie more specialized visually-guided behaviors -- for example, direction selective neurons101 
that project to superior colliculus or the accessory optic system to guide eye movements, or RGCs that control 
circadian rhythms (for review see 102). 
  
Lessons from insect vision: behavioral goals shape and constrain visual processing 
Goal-oriented approaches have yielded particularly satisfying explanations for complex visual processing in 
insects. The insect vision community has a long history of examining visual processing as it relates to behaviors 
like flying103. Motion processing pathways in several different insects appear tuned to each species’ particular 
flight behaviors104. Some visual neurons in the fly encode visual features directly relevant for flight control, such 
as optic flow elicited by rotations or translations around and along specific body axes105,106 (see Figure 4). These 
neurons act as “matched filters” for specific types of optic flow107,108. Optic flow encoding may seem obvious in 
hindsight, but the local motion receptive fields of these cells would appear quite mysterious if not for the careful 
consideration of the impact of the fly’s own motion on visual inputs. 



 

 

 
Recent work on mouse directionally-selective RGCs has similarly recast their function in terms of self-generated 
motion while navigating the environment109 (see Figure 4). A long-standing view of directionally-selective RGCs 
held that they consist of four subtypes, each preferring a cardinal axis of motion (up, down, left, right, each 
separated by ~90 degrees) and in alignment with the axes of eye movements produced by the four rectus 
muscles of the eye101. These RGCs project to the superior colliculus110, which further suggests that they are 
involved in controlling eye movements. While this distribution of preferred directions holds in the mouse central 
retina, in other regions of the retina the preferred axes of directionally-selective RGCs are not perpendicular and 
thus do not neatly align with the rectus muscles of the eye. Sabbah & colleagues mapped retinotopic differences 
in direction-selectivity in relation to extrapersonal visual space and motion by the animal (Figure 4). They found 
that directionally-selective cells are in fact better thought of as encoding the animal’s own “advance/retreat” and 
“rise/fall” movements than the movement of some external object. 
  
Goal-directed Approaches in Cortex 
Goal-directed approaches have also been applied to visual cortex. Geisler and colleagues have promoted the 
importance of understanding how particular tasks may exploit different properties of natural scenes111,112. They 
have focused on the representations learned by tasks such as patch identification, foreground identification, 
retinal speed estimation and binocular disparity. For instance, filters learned for a foreground identification task 
were oriented either parallel or perpendicular to surface boundaries112, while filters from an image patch 
identification task had less discrete orientation preferences and more closely resembled primary visual cortex 
filters. Thus, the representations learned can depend on the visual processing goals imposed on the system. 
                                                
Deep Neural Networks                                  
Recent years have seen tremendous advances in an area of machine learning known as deep neural networks 
(DNNs113,114); these advances have driven progress in computer vision and a host of other fields. In deep neural 
networks, stimuli such as natural images are represented and processed hierarchically, loosely matched to the 
hierarchical structure of the brain. These networks come in many different flavors, including those that are trained 
in an unsupervised manner -- i.e. the network learns to identify and encode statistical structure in the inputs 
without a specific goal. Here we focus on supervised discriminative networks, which are tasked with identifying 
or categorizing inputs and learn to do so by observing many examples of each category in a labeled training 
data set. For example, a commonly used labeled training data set is ImageNet, which is a collection of images 
of objects and their associated classifications (e.g. “German shepherd”, “birdhouse”, or “eggnog”). DNNs have 
many potential applications; we emphasize their potential to help understand and make predictions about the 
neural processing of natural images, particularly how the nervous system could achieve invariant object 
recognition (e.g. to pose, background clutter, and other within class variations). 
  
Architecture and neural circuitry 
Deep neural networks consist of a series of connected layers, each of which implements a set of basic 
computations (Figure 5). The computations in a single layer include linear filtering (convolution), rectification, 
pooling, and sometimes local response normalization. DNNs can be considered as a hierarchical extension of 
the linear-nonlinear models often used to empirically describe visual responses. By design of the network, the 
dimensionality (number of elements) is reduced between successive layers, and effective receptive fields 
become larger as one progresses along the hierarchy. Thus, individual layers implement computations like those 
found in descriptive models of neural circuits, and the hierarchical arrangement of layers resembles the 
organization of visual (and other sensory) pathways. 
 
The parameters governing DNN behavior are not determined by specific low-level computational principles (e.g. 
reducing statistical dependencies as in efficient coding). Instead these parameters emerge by learning to 



 

 

minimize the difference between the DNN output and a desired response corresponding to the DNN goal - such 
as classifying images according to objects they contain. DNNs can also be used in a descriptive (and therefore 
not goal-oriented) manner by fitting them directly to neural data, rather than training them on a high-level task. 
One such model, when fit to retinal ganglion cell responses to natural movies, reproduced several of the 
“complex” retinal computations discussed above. The model did not reproduce these behaviors when fit to white 
noise stimulation115.  
 
While neural networks have been around for decades, recent years have seen dramatic improvements in 
performance due to increases in computer speed and the availability of large data sets (e.g. images with labeled 
objects) that together make it possible to efficiently train networks with many layers.  
  
Learning from successes and failures of DNNs 
DNNs trained on object classification show an intriguing ability to predict the responses of cortical neurons to 
natural images (for recent reviews, see 116,117; for other recent work, see 118–120). This approach has been applied 
with particular success to processing in the ventral visual pathway, which culminates in neurons in inferotemporal 
(IT) cortex.  Many IT neurons exhibit high feature selectivity -- responding to specific objects and (famously) 
faces121. 
 
The flow of signals from the retina to IT is characterized by the loss of a veridical representation of the retinal 
image: receptive fields become progressively larger and more complex, invariances to properties like object size 
and position emerge, and the appropriate space to specify inputs (e.g. inputs that produce similar responses of 
a given neuron) becomes increasingly difficult to identify. These transformations are challenging to describe 
using stimulus-based models. DNNs, however, have been more successful. Interrogation of the architecture of 
DNNs trained on object classification suggests that invariances may arise from the pooling stages of the 
networks122,123. DNNs show an ability to generalize in two important ways: (1) they are able to classify images of 
objects not in the original training set, including adjusting their representation of inputs for different tasks through 
transfer learning124; and, (2) they capture several aspects of neural responses even though neural data is not 
used in training.  
 
But DNNs are, of course, imperfect. For example, current DNN models fail to capture some aspects of human 
perception such as insensitivity to perturbations to an image125,126. This behavior may arise from current DNN 
architectures operating in rather linear regimes127, and more biologically realistic saturating nonlinearities may 
improve performance128 (although see 129). DNNs capture some but not all aspects of responses of neurons in 
mid-cortical layers120. Interpreting DNNs can also be difficult. Unlike more principled efficient coding approaches 
in which the form of the computation itself (e.g., divisive normalization or gain control) can be motivated by the 
computational goal, it is often not clear what feature of a supervised, discriminative DNN leads to a given level 
of performance. This sort of insight is more readily gleaned from shallower models that share many architectural 
features with DNNs (see, e.g., 26,130). 
 
Any insights that DNNs trained on high-level tasks like classification provide about how the visual system 
computes comes from identifying, through learning, key statistical structure in the inputs that is important for 
performing the specific task used in training. Motivation for such an approach comes from convergent evolution 
of computations like motion detection in insect and vertebrate visual systems (see above). Given that DNNs are 
only loosely modeled after visual circuits, a realistic expectation is that they identify the computational capabilities 
and limitations of specific architectures rather than provide a literal model of how the visual system works. If 
statistical structure of the inputs, rather than specific hardware constraints, dominates which computational 
strategies are effective for a given task, we might expect DNNs and neural systems to converge on similar 
computational algorithms even if the implementations of these algorithms differ due to differences in hardware. 



 

 

  
Future directions 
Understanding neural computation and coding in the context of naturalistic visual stimuli is a difficult problem. 
But the wealth of neurophysiological data about the visual system and the emergence of new computational 
tools for building and fitting models put us in a good position to make progress. Below we highlight a few emerging 
directions that we believe will help advance understanding. Many of these approaches merge techniques and 
ideas from the stimulus- and goal-oriented frameworks discussed above. 
  
Identify key circuit mechanisms and integrate into models 
A complete understanding of natural visual encoding entails building models that can accurately predict neural 
responses to natural scenes. We believe that a major reason for the shortcomings of current models is that they 
lack key architectural and computational features present in biological circuits, and that these features 
substantially shape neural responses. Certain model abstractions (for example, linearity of the receptive field) 
may be appropriate under some stimulus conditions but not others. At the same time, simply building models 
using realistic components is not likely to explain complex computations such as object recognition. Merging 
DNN techniques with more realistic biological circuitry offers one path forward.  
 
DNNs components and connectivity are typically chosen largely based on the computational efficiency of 
learning using current optimization tools (e.g. gradient descent). This can lead to architectures that lack key 
components of neural circuits. Identifying and incorporating biologically-inspired computational motifs will help 
identify which motifs are important for specific computations -- e.g. the computations characteristic of different 
stages of the visual hierarchy -- and which motifs can be simplified without loss of performance. This in turn 
could lead to direct predictions about the mechanisms operating in the relevant neural circuits. 
 
One indication of the potential benefits of such an approach comes from comparing physiologically-based 
models of early visual areas (linear-nonlinear models with two forms of local normalization) and layers of the 
VGG network (which lack normalization): physiological models captured human sensitivity to image perturbations 
considerably better than DNNs131. A challenge is our current inability to identify which biological mechanisms are 
essential for specific computations and which can be abstracted as in linear-nonlinear models. Progress will also 
require probing the interactions between coactive mechanisms that are likely engaged strongly for complex 
stimuli such as natural images. A partial list of computational features prominent in neural circuits but under-
represented in DNNs applied to neuroscience, includes normalization by stimulus context and recurrent 
connections. Sophisticated forms of normalization in DNNs have thus far been applied to computer vision132,133 
but offer potential for neuroscience directions134. Recurrent connections can improve object recognition135 and 
have the potential to capture neural phenomena such as adaptation21.  
 
Combine the merits of stimulus- and goal-oriented approaches 
DNNs are designed to perform well on the discriminative recognition task at the top level of the network, but 
this constraint does not uniquely specify the architecture of the other layers.  On the other hand, stimulus-
oriented approaches provide a principled way to capture more detailed computations and nonlinearities in early 
stages of visual processing, including retina and primary visual cortex. But it is not clear if such approaches 
can capture computations in later stages of the cortical hierarchy.  
An important future task is therefore finding better ways to reconcile and integrate the merits of both 
approaches. For instance, most of the early processing that takes place before primary visual cortex is 
neglected in current DNNs (an exception is 21). Incorporating this early processing into networks could become 
a merger point between goal-directed objectives shaping the top levels of the network and stimulus-driven 
constraints shaping the initial stages of the architecture. Another direction is to incorporate computational 



 

 

motifs derived from stimulus-driven normative approaches (such as the normalization discussed above) into 
DNNs. 
 
New theoretical and practical approaches that balance stimulus- and goal-oriented approaches provide 
promising directions. For instance, an approach known as the information bottleneck formalizes the idea of 
capturing relevant information rather than all information (for recent application to deep learning, see 136). 
Another recent approach unifies several definitions of efficient coding and considers the impact of incorporating 
only stimuli that are predictive about the future on coding137,138. Other recent work connects generative 
(stimulus-oriented) and discriminative (goal-oriented) components in a single model through a shared 
representation139. This combination has been exploited in ‘semi-supervised’ machine learning, which makes 
use of scarce labeled data along with unlabeled data, and therefore is a hybrid between supervised and 
unsupervised approaches. However, this combined stimulus and goal-oriented representation has not been 
applied to neuroscience and understanding natural vision. Recent theoretical work has also expanded the 
notion of efficient coding by recasting it as a specific case of Bayesian inference140. By using a broader 
definition of optimality, Bayesian efficient coding allows one to evaluate the efficiency of neural representations 
in terms of encoding goals beyond simple information maximization.  
 
There is also a need for progress with stimulus-oriented unsupervised learning approaches that exploit the 
power of DNNs without specialization for a specific goal.  Unsupervised learning is considered by many the 
“holy grail" of learning (for recent examples, see 141 which incorporates multiple levels of divisive normalization; 
and 142 which incorporates pooling). It is still unclear whether deep network architectures with unsupervised 
learning can predict responses of neurons to natural scenes or capture the invariances that characterize higher 
visual processing. 
  
Train DNNs using multiple, behaviorally-inspired tasks 
A DNN trained to perform a particular task can recapitulate some aspects of sensory circuits; for example, the 
middle layers of an image classification DNN resemble in some respects neurons in intermediate stages of the 
ventral stream120 (reviewed by 117). Presumably these correspondences arise from similarities in both network 
architecture and task. A real sensory system, however, supports a wide array of tasks or behavioral goals 
simultaneously. The result is that, especially in early sensory areas, neurons have to process sensory input in a 
way that supports multiple parallel feature extractions or behavioral goals. Neurons that make up this common 
biological front end (e.g. photoreceptors or some types of retinal ganglion cells) may therefore align their 
encoding strategies with efficient coding to support a wide variety of downstream goals. Downstream circuits 
performing more specialized computations, on the other hand, may not behave according to classical efficient 
coding principles. This agrees with our intuition that efficient coding somehow applies more neatly to peripheral 
sensory systems. Formalizing this intuition requires grappling with several difficult questions: Are there general 
rules that govern when a stimulus- or goal-oriented perspective is more appropriate? At what point does a 
sensory pathway stop simply efficiently packaging information and start “doing” something with that information? 
 
Multi-task DNNs offer one approach for exploring how shared circuitry could support multiple tasks143. Indeed, 
such networks trained for speech and music classification naturally divide into separate pathways, and the level 
at which that split occurs can affect the performance of the network on these two tasks144. An interesting question 
is whether constraining networks by multiple mid-level tasks (as in 145) can provide a more general-purpose 
representation resembling that predicted by efficient encoding. A major impediment to developing multi-task 
DNNs is the limited availability of datasets that could be used to train such networks (e.g. ImageNet, which 
consists of a collection of labeled objects, is the dominant dataset used for vision-related applications).  
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Figure 1: Texture Synthesis based on Deep Convolutional Neural Networks. The activations of different 
layers of a DNN trained for object recognition can be employed to capture statistics of textures beyond second 
order38. Texture synthesis is accomplished by numerical optimization of the pixel values of an image that 
matches the statistics of a reference image (Original Image enclosed in black). Statistics can be obtained from 
activation values at different stages of the deep DNN. Images enclosed in red are synthesized by considering 
only activations from the first and second pooling stages of the DNN, whereas images enclosed in blue include 
the third and fourth pooling stages in their statistics. In the case of the inhomogeneous images (bottom row) 
the texture generation tiles local features in scrambled places that will match the activation statistics that have 
been averaged over space. Original images outlined in black (Feynman portrait and rocks) are from 
http://www.cns.nyu.edu/~lcv/texture/ and are used with permission from Eero Simoncelli. 
 

  
  



 

 

 
Figure 2: Efficient coding strategies rely on self-generated movement. (a) A natural image and measured 
human eye movement trajectory from 146. An observer will explore a scene using large, ballistic changes in 
fixation called saccades. In the time between saccades, observers make much smaller, involuntary eye 
movements called fixational eye movements (for review, see 147). (b) Using these eye movement data, we can 
reconstruct the time-varying image on the retina into a naturalistic movie stimulus. We summed the Fourier 
spatial power spectra of each frame of this movie, resulting in a roughly 1/f2 power law scaling, which is 
characteristic of static natural images (black trace). Following the analysis in 64, we then measured spatial power 
spectra for the dynamic component of the natural movie. To produce these spatial power spectra, we computed 
the spatiotemporal power spectrum of a movie and summed over all non-zero temporal frequencies. Fixational 
eye movements simply shift much of the power, except that at the lowest spatial frequencies, to higher temporal 
frequencies. The removal of the temporal DC component of the movie thus selectively removes low spatial 
frequency content, and the result is a whitened spatial power spectrum (Fig. 2b, blue trace). Importantly, this 
result relies on fixational eye movements and not saccades. When saccades are included in the natural movie 
stimulus, considerable low spatial frequency content is still present at nonzero temporal frequencies, so 
whitening does not occur (Fig. 2b, red trace). (c) The position (in one dimension) of the eye as a function of time 
is shown by the green trace. Examining the eye position at a finer time scale (dashed inset) reveals smaller 
fixational eye movements. Boi et al.66 suggested that during a saccade, the dynamic spatial frequency content 
of natural images follows the familiar 1/f2 power law scaling (left inset, red trace). As the fixation proceeds, the 
retinal input is whitened (right inset, blue trace). Between saccades (when the image is relatively stable), any 
low spatial frequency content is present mostly in the temporal DC component of the input. In other words, the 
large-scale spatial structure isn’t changing very much within a single fixation. The whitening effect of fixational 
eye movements will depend on how completely (and how quickly) a visual neuron adapts to the (mostly static) 
low spatial frequency content imposed by each new fixation. 
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Figure 3: Beyond-pairwise statistics contribute to complex structure in natural images. Top row: Two 
grayscale natural images. Middle row: The natural images above with randomized phase spectra. Both of these 
images have the roughly 1/f2 spatial power spectrum characteristic of natural images, yet appear quite unnatural. 
Bottom row: The natural images with their phase spectra swapped, such that the image on the left now has the 
phase spectrum of the original image on the right, and vice-versa. See 30,148.  Original photographs were taken 
by the authors. 
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Figure 4: Motion sensitive neurons encode self-movement across the animal kingdom. (a) Schematic 
showing a fly in flight. (b) Local motion receptive field of the VS8 neuron in the blowfly Calliphora. The direction 
of each arrow indicates the local preferred direction, and the length of each arrow indicates the cell’s motion 
sensitivity. This local motion receptive field corresponds to the optic flow pattern that would result from a rotation 
of the animal. The rotation axis around which the fly would need to turn to maximally activate this neuron is 
indicated in (a). Data & schematic provided by Holger Krapp. (c) Schematic showing a mouse ambulating in a 
forward direction. The resulting visual input is an optic flow pattern emanating from a singularity directly ahead 
of the animal (blue lines). (d) Direction preferences of a population of DS RGCs in mouse retina are overlaid on 
the retinal surface. Forward motion optic flow moves outward from a point in the retina (blue lines). The direction 
preferences of this cell type roughly align with the optic flow lines that result from forward motion. Other DS RGC 
types similarly respond to optic flow resulting from other directions of motion of the animal. Data redrawn from 
109. 
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Figure 5: Deep neural networks reflect some, but not all, architectural and computational motifs found 
in neural circuits. Top: Deep neural networks are composed of multiple, connected layers. Several basic 
computations are performed within each layer. Bottom: examples of common circuit motifs and computations 
observed in neural circuits. Some of these examples are well-represented by many DNNs (e.g. pooling / filtering), 
others can be included in DNNs but their precise nature & location are not necessarily well reflected (e.g. 
rectification or normalization), and still others are excluded from most DNNs (e.g. time-dependent nonlinearities). 
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