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Divisive normalization and subunit pooling are two canonical classes of computation that have become widely
used in descriptive (what) models of visual cortical processing. Normative (why) models from natural image
statistics can help constrain the form and parameters of such classes of models. We focus on recent advances in
two particular directions, namely deriving richer forms of divisive normalization, and advances in learning
pooling from image statistics. We discuss the incorporation of such components into hierarchical models. We
consider both hierarchical unsupervised learning from image statistics, and discriminative supervised learning in
deep convolutional neural networks (CNNs). We further discuss studies on the utility and extensions of the
convolutional architecture, which has also been adopted by recent descriptive models. We review the recent
literature and discuss the current promises and gaps of using such approaches to gain a better understanding of

how cortical neurons represent and process complex visual stimuli.

Highlights:
*  Subunit pooling and normalization are building blocks of hierarchical cortical models.
* Image statistics models predict when normalization is recruited in primary cortex.
* Hierarchical models can capture cortical data in secondary and higher cortex.
* There is potential for progress on when normalization is recruited in higher cortex.

*  Convolutional subunit structure yields a key representation property of equivariance.

Introduction

There has been long standing interest in understanding the relation between the statistics of natural stimuli and
sensory processing [1], [2], [3], [4], [5], [6]. This can provide an interpretive or normative perspective, which
complements descriptive and mechanistic modeling approaches [7]. Recent advances in image statistics and in
machine learning rooted in deep learning, provide an opportunity for a richer understanding of how visual

cortical neurons represent and make inferences about complex images.
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Figure 1. Subunit pooling model. The input signal goes through a bank of linear-nonlinear subunits (i.e., linear filter
activation followed by a point nonlinearity such as squaring), which are then spatially pooled via a weighted sum. A
rectified non-linearity is applied to obtain the final response of a higher level neural unit (schematic is after [8], [9¢¢], [10¢°],

[11]).
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Figure 2. Flexible normalization model of center-surround activations. The response of a neural unit is given by its linear-
nonlinear output, divided by a weighted sum of other linear-nonlinear units in surrounding spatial locations (extending
beyond the classical receptive field of the given neural unit in the center location). The on/off switch constitutes a gating
determined from natural image statistics considerations, such that normalization is only present to the degree that center and
surround activations are deemed statistically dependent for the given image patch and filters (schematic is after [12], [13e°],

for normalization, see [14]).



We focus on advances in learning joint statistical properties of natural images, with emphasis on two main
classes of nonlinear models that have been prominent in recent literature: (i) Neural subunit pooling models
(Figure 1) have become popular for describing and fitting cortical neural data, including primary visual cortex
(area V1; [8], [11]), secondary visual cortex (area V2; [10++]), and higher cortical areas [9¢¢]. In such models, a
weighted sum of the rectified or squared responses of linear filters in a lower level of the model (essentially
making up the subunits of the given neural unit) are pooled together to give rise to the neural unit response at a
higher level (Figure 1). The spatial extent of the pooling is typically within the classical receptive field of the
(higher level) neural unit. Considerations of natural image statistics can complement descriptive models by
constraining what subunits may pool together to form more complex representations; (ii) Divisive normalization
is a ubiquitous nonlinearity in descriptive models of neural processing [15], [14]. In normalization models, the
response of a given neural unit is divided by a (pooled) weighted sum of the rectified or squared responses of
other neural units with receptive fields in spatially overlapping and surrounding spatial locations. Normalization
models have therefore addressed not only phenomena within the classical receptive field of a neuron, but have
also typically spanned a larger spatial extent than subunit pooling models. The contextual surround nonlinearly
modulates the responses of cortical neurons, and can lead to striking perceptual effects such as illusions [16],
[17]. For instance, in the tilt illusion, the perceived orientation of a bar in a center location appears tilted away
from the orientation of a contextual surround stimulus. In recent years, image statistics approaches have resulted
in richer models of divisive normalization that go beyond descriptive accounts, suggesting when normalization is

recruited in area V1 (Figure 2).

The main components of the above models, namely pooling and normalization, are common building blocks of
hierarchical cortical models. We discuss recent progress in the context of both unsupervised learning models
based on the statistics of natural images, and supervised discriminative convolutional neural networks in which

the parameters are learned based on the goal of discriminating objects [18], [19].

V1 models of pooling and normalization from image statistics

V1-like filters derived from Independent Component Analysis (ICA) or Sparse Coding have striking nonlinear
dependencies [20], [21], [22], [23], [24]. These statistics have been utilized in two main ways, as detailed below.
On one hand, the joint statistics can be utilized to learn what subunits are statistically coordinated in pooling
models, resulting for instance in complex cell models. On the other hand, from an efficient coding perspective,
maximizing information transfer requires making responses of neural unit activations statistically independent.

Reducing the statistical dependencies has been approached with normalization models.



Pooling models can be learned using extensions of ICA and Sparse Coding that relax the independence
assumption. In Independent Subspace Analysis (ISA), subspaces are assumed to be independent, but subunits
within a subspace can be statistically dependent ([5] and references therein). This results in learning V1
“complex cells”, that are invariant to spatial transformations of the input. In particular, subspaces resembling
translation invariant complex cells are made up of the sum of squares of shifted replicas of oriented V1-like
filters. Allowing freedom in the combination of low level units that give rise to the variance of high level units,
results in richer patterns of statistical coordination of orientations [25], [26], [27]. Other approaches have

extended linear combination rules to address nonlinearities of occlusion [28], [29], [30].

Divisive normalization models derived from consideration of the joint statistics have particularly focused on
understanding nonlinear contextual phenomena in V1 extending outside the classical receptive field [31], [22],
[32], [33], [34], [12]. Divisive normalization models can be motivated from an efficient coding perspective. As
noted earlier, V1-like filter outputs to images (including those obtained from ICA or Sparse Coding) have
striking joint statistical variance dependencies even for spatially non overlapping receptive fields. A nonlinear

transformation such as division can reduce these dependencies [21], [22], [35].

Related ideas have cast this as inference about the local receptive field properties given the statistically
dependent (multiplicative) surround [12]. An example of a multiplicative model is lightness (or color) constancy,
in which the reflectance in a given spatial location is multiplied by a global illuminant covering a larger spatial
area [36], and so estimating the local reflectance can be obtained via division. More generally, global properties
such as contrast or orientation structure can provide spatial coordination across receptive fields. Division can
reduce this coordination and so highlight the local receptive field property that is invariant to properties such as
global contrast. These ideas can be formalized by a class of statistical model known as the Gaussian Scale
Mixture [37], [27]. In this model, the statistical coordination between receptive fields arises via the
multiplication of local Gaussian variables by a global shared mixer variable. Removing the statistical
dependencies therefore amounts to the reverse operation, namely dividing by an estimate of the shared mixer
variable. Normalization has more broadly been motivated from the normative perspective of probabilistic
marginalization that is invariant to nuisance parameters [38]. Another recent normative model suggests that each
neural unit response is divided by other neural units responses prior to pooling, as optimal cue combination in

the face of signal-dependent noise [39¢°].



Recent normalization models have utilized richer statistical properties of images, by taking account of the non
homogeneity of images, i.e. that at different locations in the image, dependencies between the center and
surround locations can be different, as viewed through the lens of V1-like neural units [12], [40] (see also other
approaches for adjusting to the context across space and/or time; [32], [41], [42]). This has resulted in more
sophisticated models of normalization (which we denote flexible normalization), whereby neural unit activations
are divided by a weighted sum of surrounding unit activations only to the degree that center and surround are
inferred to be statistically dependent (Figure 2; [12]). This also relates to visual salience as a breakdown of
statistical homogeneity in area V1 [43]. Predictions of the flexible normalization model were tested
neurophysiologically in area V1 with patches of images extending beyond the classical receptive field [13e¢],
suggesting that normalization is gated by inference about statistical dependencies in images. The advantage of
this approach is that the combinatorial search over a huge space of descriptive forms of normalization is avoided
since the image statistics framework provides additional constraints (from consideration of the properties of

images) that result in a better fit to the neural data.

Jaini and Burge [44+¢] have derived pooling models that incorporate normalization, based on an optimal
Bayesian decoding goal of determining which stimulus properties are most useful for a given task. Quadratic
models akin to those used in descriptive subunit models [45], [9+] arise from their analysis. The assumption that
neural unit responses given the hidden task variable should be Gaussian distributed lends to a simple estimation
process. The model also includes a form of divisive normalization acting on the input stimuli (rather than after

the filter responses are computed) that serves as a simple form of contrast normalization.

Hierarchical models targeting V2-like neural units

Area V2 contains more complex representations that combine the features captured in V1, but the exact nature of
the representation has remained unclear. Nevertheless, a number of properties have been emerging for V2 from
neurophysiology studies, including sensitivity to combinations of edges [46], [47]; figure ground [48], [49], [50];
sensitivity to textures [51e¢], [52]; cross orientation suppression formulations in V2 [10¢]; and other changes
that occur between V1 and V2 [53], [54], [55].



Hierarchical image statistics models can capture edge combinations, for instance, by incorporating two layers of
sparse coding [56], as well as with other approaches [33], [57], [58¢¢]. But can hierarchical models obtain a
larger repertoire of V2 like units, beyond edge combinations and corner units? Similar questions have also come
up in V1 studies, in which aspects such as hard as opposed to soft sparseness [59] and highly overcomplete
representations [60] have been suggested as important for obtaining more diverse receptive fields. For V2,
Hosoya and Hyvérinen [58¢¢] have proposed introducing a significant dimensionality reduction after a V1
complex cell layer, followed by an additional expansive (overcomplete) sparse coding [61]. The model has been
comprehensively compared to a number of properties observed in V2, accounting for neurophysiology
experiments of local orientation integration [47] and length and width suppression [55]. Cagli et al. [57] have
shown that in a two layer model, incorporating flexible divisive normalization in the first layer prior to pooling
versus an equivalent model without normalization, makes more apparent the linear dependencies in the second
layer and leads to a richer combination of units in the second layer. This goes beyond corner units, capturing
some texture boundaries. The model with flexible normalization achieves better performance on object

recognition and on a figure ground task, compared to the model without normalization.

Recent neurophysiology studies have shown that a distinguishing factor between area V1 and V2, is the
sensitivity to the high order structure of textures in V2 but not V1 [51e], [52]. These studies demonstrate this
sensitivity by comparing the responses of cortical neurons to naturalistic texture stimuli, versus spectrally
matched noise images which lack the high order statistical structure. This presents a rich set of data that can be
tested against hierarchical models. Recent work has shown that early stages of discriminative CNN models,
which we will discuss in more detail below, can capture some of the texture sensitivity of the cortical V2 versus
V1 data [62], [63] (see also [64]). It is worth noting that a collective testing of the V2 properties that have

emerged from neurophysiology has not been tapped into by any single model discussed above.



Multi-layer hierarchical models

Sparse coding can be extended to multiple hierarchical layers [65], [66], but higher layers have not been tested
against neural data. Hirayama et al. [67] have recently hierarchically extended ISA to multiple layers, by
designing a tractable generative model for which subspaces in each layer may be dependent on others via higher
layer hidden variables. This leads in the second layer to some similar properties of [58¢¢], and allows extension
to higher layers. Deep CNN models, which include pooling and sometimes local normalization, can capture
aspects of cortical data across the hierarchy [18], [19]. This may be related to a gradual untangling of object
manifolds [68], [69] (see also [70], [71]). Two main stages of computation take place in this untangling: a
dimensionality expansion that linearizes the problem, and a second stage of dimensionality reduction. Pooling, in

particular average pooling, falls in the second category.

Some hierarchical models have incorporated normalization beyond the first layer, but mostly for image
processing and computer vision applications. Balle et al. [72¢¢], [73] have proposed a multilayer unsupervised
learning model for image compression that incorporates a joint nonlinear transformation that seeks to
Gaussianize the data in each layer, amounting to a generalized divisive normalization. Spratling [74] has
extended unsupervised predictive coding models of V1 to include two or more levels, with application to image
recognition. CNNs have included various restricted forms of divisive normalization, typically either to help
training or to improve object recognition. Local response normalization in AlexNet [75] (see also [76])
normalizes groups of spatially overlapping units, akin to cross orientation suppression [15]. In batch
normalization [77], each single neural unit response is normalized by the mean and standard deviation of a given
batch over time. In layer normalization [78], all units in a given layer are normalized by the mean and standard
deviation. In Ren et al. [79], normalization by center and surround units is used to improve object recognition.
Han and Vasconcelos proposed a more sophisticated V1-motivated divisive normalization model for deep neural
networks [80], [81] to improve object recognition. Interestingly, recent approaches geared largely at computer
vision raise some of the same questions that have been studied longer in the context of computational
neuroscience and V1: How should normalization operate locally and more broadly in terms of spatial context?

What units should group together in the normalization pool?

Contextual influences beyond the classical receptive field have been most widely studied for area V1.
Understanding when normalization is recruited in cortical area V2 (and indeed in higher areas) is more
challenging (see recent neurophysiology studies of [82]). We propose to incorporate contextual normalization
models inspired by V1 image statistics modeling directions, into hierarchical models of V2 for application to

neuroscience [83]. We expect this will allow us to make predictions about when normalization is recruited in V2.
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Figure 3. Spatial dependencies are reduced for higher layers of deep convolutional neural networks. The employed CNN is
AlexNet. Activation maps for the first three convolutional layers (convl, conv2, conv3) are depicted by the gray boxes on
the left side of the figure. The width and depth of each box represent the spatial locations, and the height represents the
number of filters. For higher layers, spatial resolution is reduced and at the same time the number of filters are increased.
Here, we display (as an average over all filters in a given layer) the normalized conditional histograms (bowtie plots)
between the activation values obtained by convolution at two spatial locations that overlap, but no more than 30%. We also

show the average marginal distributions.



Figure 3 depicts the joint statistical dependencies across space and the marginal statistics in response to images
for different layers of AlexNet [75]. The first two layers exhibit joint statistical dependencies between the
responses of neural units in center and surround locations, and sparse marginal statistics, similar to what has
been previously observed for V1-like filter outputs. This suggests that flexible surround normalization can be
used to reduce the statistical dependencies and Gaussianize the marginals. In addition, it is interesting to note
that although efficient coding is not set as a goal, even without surround normalization, the joint statistics
become more independent and the marginal statistics more Gaussian on average as one proceeds from the first
layer to higher layers of AlexNet. This echoes the discussion in [73], that hierarchical models without
normalization may perform with similar accuracy, but requiring more layers to do so--a suggestion that needs

more thorough testing.

Recent work has also focused on more theoretical aspects of CNN models, including the role of convolution.
Deep CNNs that perform tasks like object recognition often include max pooling and average pooling.
Intuitively, these forms of pooling applied to the convolutional architecture are suitable for translation
invariance. This assumption allows to reduce the dimensionality of the parameters that need to be learned.
Approaches for visualizing invariances in deep CNNs have revealed both shift invariance and other forms of
invariance [84]. Theoretical approaches for understanding deep convolutional networks have pointed out that a
main property of the convolutional architectures is equivariance (a generalization of invariance), i.e. that the
representation changes in predictable ways to group actions [85¢¢], [86], [87], [88]. Translation is one of the
most basic examples of a group action, but other transformations include rotations of the image plane and

changes in scale (see also [89]).

It has been argued that invariance alone at early levels of detecting simple features can hurt selectivity at higher
levels. Equivariance, on the other hand, provides a more complete account of what simple features are present
and how these are instantiated in the images. Recent extensions of CNN models known as capsule networks
[90], [91] exploit the equivariance property. A main difference with conventional pooling, is that the outputs not
only provide information about the likelihood of a feature being present which is closer to what max pooling
provides, but also about the transformation taking place in the feature. One potential way that pooling and
normalization can combine is motivated by the role of equivariance in the stimuli representation. Similar to
population coding, subunits can be pooled to retrieve the instantiation parameters (such as the location) of a
feature in the form of a neural unit (simple cell) response. Normalization would then guarantee that the response

is robust to variations in the input.



Discussion

In recent years, there has been a convergence of similar architectural components (convolution, subunit pooling,
and normalization) in both descriptive and normative visual cortical models. We have suggested that for divisive
normalization models in V1, rather than combinatorially searching the space of possibilities for computing the
normalization signal, normative image statistics approaches can add value to descriptive accounts by making
predictions about when normalization is recruited for natural stimuli [13+¢]. In the context of subunit pooling
models, an interesting direction for combining descriptive and normative perspectives, is through transfer
learning. Subunit groups capturing properties of natural stimuli can be learned from much larger image datasets
with normative approaches, and the subsequent pooling or normalization weights could be tuned to neural

response predictions.

In this review, we have discussed normalization from various normative perspectives. So what is normalization
good for? Normalization is considered a canonical computation in the brain [14]. From an efficient coding
standpoint, neurons have a limited response range, a limit to the range of stimuli they can respond to
differentially. Normalization in the visual system to the lightness or contrast level can set the responses of
neurons to more finely cover the current range. Another way to think about normalization, is that neural
responses become invariant to global properties such as lightness, contrast, or more complex properties such as
orientation texture. We have motivated this from the point of view of a generative statistical model.
Normalization may serve to reduce predictable information, which may relate to highlighting salient aspects in
the scene [6]. In addition, normalization may help in recognizing objects invariant to such global properties.
Interestingly, restricted forms of normalization have been incorporated into deep convolutional neural networks
for the purpose of improving object recognition. Normalization may help by reducing some invariances and
equalizing the response range of the neural units. But in recent years, some very deep architectures perform well
without normalization [92]-[94]. Indeed, it is possible that very deep networks can better estimate the
transformations required for invariant object recognition and so bypass the need for normalization at all. The
brain, in contrast, may incorporate richer nonlinearities and sacrifice on the depth. However, there is a need to
study more sophisticated forms of normalization by contextual information in such networks. More importantly,
we believe that normalization will be useful for generalizing to a broader range of images and tasks that were not

in the original training set, a feat that humans are better at than artificial neural networks [95].

We have suggested that hierarchical models now have the potential to push forward progress in understanding
cortical representation and processing in mid level cortical areas. In particular, we highlighted area V2 as a
potentially tractable goal. Recent hierarchical models have started to make progress in understanding V2
processing inside the classical receptive field. In terms of contextual surround influences, most modeling work
has focused on cortical area V1. However, a number of testable hierarchical models are emerging. We believe
there is now the potential to incorporate learning of surround normalization at higher levels of hierarchical

models, and therefore to make headway in understanding contextual influences in V2.
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