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Divisive normalization and subunit pooling are two canonical classes of computation that have become widely

used in descriptive (what) models of visual cortical processing. Normative (why) models from natural image

statistics can help constrain the form and parameters of such classes of models. We focus on recent advances in

two particular  directions,  namely deriving richer  forms of  divisive normalization,  and advances  in  learning

pooling from image statistics. We discuss the incorporation of such components into hierarchical models. We

consider both hierarchical unsupervised learning from image statistics, and discriminative supervised learning in

deep convolutional  neural networks (CNNs).  We further discuss studies on the utility and extensions of the

convolutional architecture, which has also been adopted by recent descriptive models. We review the recent

literature and discuss the current promises and gaps of using such approaches to gain a better understanding of

how cortical neurons represent and process complex visual stimuli. 

Highlights:

• Subunit pooling and normalization are building blocks of hierarchical cortical models.

• Image statistics models predict when normalization is recruited in primary cortex.

• Hierarchical models can capture cortical data in secondary and higher cortex.

• There is potential for progress on when normalization is recruited in higher cortex.

• Convolutional subunit structure yields a key representation property of equivariance.

Introduction

There has been long standing interest in understanding the relation between the statistics of natural stimuli and

sensory processing [1], [2], [3], [4], [5], [6]. This can provide an interpretive or normative perspective, which

complements descriptive and mechanistic modeling approaches [7]. Recent advances in image statistics and in

machine learning rooted in  deep learning,  provide an opportunity for  a  richer understanding of how visual

cortical neurons represent and make inferences about complex images.
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Figure 1. Subunit  pooling model.  The input  signal  goes through a bank of linear-nonlinear  subunits (i.e.,  linear  filter

activation followed by a point  nonlinearity  such as  squaring),  which are then spatially  pooled via a  weighted sum. A

rectified non-linearity is applied to obtain the final response of a higher level neural unit (schematic is after [8], [9••], [10••],

[11]).

Figure 2. Flexible normalization model of center-surround activations. The response of a neural unit is given by its linear-

nonlinear output, divided by a weighted sum of other linear-nonlinear units in surrounding spatial locations (extending

beyond the classical receptive field of the given neural unit in the center location). The on/off switch constitutes a gating

determined from natural image statistics considerations, such that normalization is only present to the degree that center and

surround activations are deemed statistically dependent for the given image patch and filters (schematic is after [12], [13••],

for normalization, see [14]). 

2



We focus on advances in learning joint  statistical properties of natural  images, with emphasis on two main

classes of nonlinear models that have been prominent in recent literature: (i) Neural subunit pooling models

(Figure 1) have become popular for describing and fitting cortical neural data, including primary visual cortex

(area V1; [8], [11]), secondary visual cortex (area V2; [10••]), and higher cortical areas [9••]. In such models, a

weighted sum of the rectified or squared responses of linear filters in a lower level of the model (essentially

making up the subunits of the given neural unit) are pooled together to give rise to the neural unit response at a

higher level (Figure 1). The spatial extent of the pooling is typically within the classical receptive field of the

(higher  level)  neural  unit.  Considerations  of  natural  image statistics  can complement descriptive models  by

constraining what subunits may pool together to form more complex representations; (ii) Divisive normalization

is a ubiquitous nonlinearity in descriptive models of neural processing [15], [14]. In normalization models, the

response of a given neural unit is divided by a (pooled) weighted sum of the rectified or squared responses of

other neural units with receptive fields in spatially overlapping and surrounding spatial locations. Normalization

models have therefore addressed not only phenomena within the classical receptive field of a neuron, but have

also typically spanned a larger spatial extent than subunit pooling models. The contextual surround nonlinearly

modulates the responses of cortical neurons, and can lead to striking perceptual effects such as illusions [16],

[17]. For instance, in the tilt illusion, the perceived orientation of a bar in a center location appears tilted away

from the orientation of a contextual surround stimulus. In recent years, image statistics approaches have resulted

in richer models of divisive normalization that go beyond descriptive accounts, suggesting when normalization is

recruited in area V1 (Figure 2).

The main components of the above models, namely pooling and normalization, are common building blocks of

hierarchical cortical models. We discuss recent progress in the context of both unsupervised learning models

based on the statistics of natural images, and supervised discriminative convolutional neural networks in which

the parameters are learned based on the goal of discriminating objects [18], [19]. 

V1 models of pooling and normalization from image statistics 

V1-like filters derived from Independent Component Analysis (ICA) or Sparse Coding have striking nonlinear

dependencies [20], [21], [22], [23], [24].  These statistics have been utilized in two main ways, as detailed below.

On one hand, the joint statistics can be utilized to learn what subunits are statistically coordinated in pooling

models, resulting for instance in complex cell models. On the other hand, from an efficient coding perspective,

maximizing information transfer requires making responses of neural unit activations statistically independent.

Reducing the statistical dependencies has been approached with normalization models.
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Pooling  models  can  be  learned  using  extensions  of  ICA and  Sparse  Coding  that  relax  the  independence

assumption. In Independent Subspace Analysis (ISA), subspaces are assumed to be independent, but subunits

within  a  subspace  can  be  statistically  dependent  ([5]  and  references  therein).  This  results  in  learning  V1

“complex cells”, that are invariant to spatial transformations of the input. In particular, subspaces resembling

translation invariant complex cells are made up of the sum of squares of shifted replicas of oriented V1-like

filters. Allowing freedom in the combination of low level units that give rise to the variance of high level units,

results  in  richer  patterns  of  statistical  coordination  of  orientations  [25],  [26],  [27].  Other  approaches  have

extended linear combination rules to address nonlinearities of occlusion [28], [29], [30].

Divisive normalization models derived from consideration of the joint statistics have particularly focused on

understanding nonlinear contextual phenomena in V1 extending outside the classical receptive field [31], [22],

[32], [33], [34], [12]. Divisive normalization models can be motivated from an efficient coding perspective. As

noted earlier,  V1-like filter  outputs  to  images (including those obtained from ICA or  Sparse  Coding)  have

striking joint statistical variance dependencies even for spatially non overlapping receptive fields. A nonlinear

transformation such as division can reduce these dependencies [21], [22], [35]. 

Related  ideas  have  cast  this  as  inference  about  the  local  receptive  field  properties  given  the  statistically

dependent (multiplicative) surround [12]. An example of a multiplicative model is lightness (or color) constancy,

in which the reflectance in a given spatial location is multiplied by a global illuminant covering a larger spatial

area [36], and so estimating the local reflectance can be obtained via division. More generally, global properties

such as contrast or orientation structure can provide spatial coordination across receptive fields. Division can

reduce this coordination and so highlight the local receptive field property that is invariant to properties such as

global  contrast.  These ideas can be formalized by a class of statistical model  known as the Gaussian Scale

Mixture [37],  [27].  In  this  model,  the  statistical  coordination  between  receptive  fields  arises  via  the

multiplication  of  local  Gaussian  variables  by  a  global  shared  mixer  variable.  Removing  the  statistical

dependencies therefore amounts to the reverse operation, namely dividing by an estimate of the shared mixer

variable. Normalization  has  more  broadly  been  motivated  from  the  normative  perspective  of  probabilistic

marginalization that is invariant to nuisance parameters [38]. Another recent normative model suggests that each

neural unit response is divided by other neural units responses prior to pooling, as optimal cue combination in

the face of signal-dependent noise [39••]. 
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Recent normalization models have utilized richer statistical properties of images, by taking account of the non

homogeneity  of  images,  i.e.  that  at  different  locations  in  the  image,  dependencies  between the  center  and

surround locations can be different, as viewed through the lens of V1-like neural units [12], [40] (see also other

approaches for adjusting to the context across space and/or time; [32], [41], [42]). This has resulted in more

sophisticated models of normalization (which we denote flexible normalization), whereby neural unit activations

are divided by a weighted sum of surrounding unit activations only to the degree that center and surround are

inferred to be statistically dependent (Figure 2; [12]). This also relates to visual salience as a breakdown of

statistical  homogeneity  in  area  V1  [43].  Predictions  of  the  flexible  normalization  model  were  tested

neurophysiologically in area V1 with patches of images extending beyond the classical receptive field [13••],

suggesting that normalization is gated by inference about statistical dependencies in images. The advantage of

this approach is that the combinatorial search over a huge space of descriptive forms of normalization is avoided

since the image statistics framework provides additional constraints (from consideration of the properties of

images) that result in a better fit to the neural data.

Jaini  and  Burge  [44••]  have  derived  pooling  models  that  incorporate  normalization,  based  on  an  optimal

Bayesian decoding goal of determining which stimulus properties are most useful for a given task. Quadratic

models akin to those used in descriptive subunit models [45], [9••] arise from their analysis. The assumption that

neural unit responses given the hidden task variable should be Gaussian distributed lends to a simple estimation

process. The model also includes a form of divisive normalization acting on the input stimuli (rather than after

the filter responses are computed) that serves as a simple form of contrast normalization.

Hierarchical models targeting V2-like neural units 

Area V2 contains more complex representations that combine the features captured in V1, but the exact nature of

the representation has remained unclear. Nevertheless, a number of properties have been emerging for V2 from

neurophysiology studies, including sensitivity to combinations of edges [46], [47]; figure ground [48], [49], [50];

sensitivity to textures [51••], [52]; cross orientation suppression formulations in V2 [10••]; and other changes

that occur between V1 and V2 [53], [54], [55]. 
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Hierarchical image statistics models can capture edge combinations, for instance, by incorporating two layers of

sparse coding [56], as well as with other approaches [33], [57], [58••]. But can hierarchical models obtain a

larger repertoire of V2 like units, beyond edge combinations and corner units? Similar questions have also come

up in V1 studies, in which aspects such as hard as opposed to soft sparseness [59] and highly overcomplete

representations  [60] have been suggested as important  for obtaining more diverse  receptive fields.  For  V2,

Hosoya  and Hyvärinen  [58••]  have  proposed  introducing  a  significant  dimensionality  reduction  after  a  V1

complex cell layer, followed by an additional expansive (overcomplete) sparse coding [61]. The model has been

comprehensively  compared  to  a  number  of  properties  observed  in  V2,  accounting  for  neurophysiology

experiments of local orientation integration [47] and length and width suppression [55]. Cagli  et al. [57] have

shown that in a two layer model, incorporating flexible divisive normalization in the first layer prior to pooling

versus an equivalent model without normalization, makes more apparent the linear dependencies in the second

layer and leads to a richer combination of units in the second layer. This goes beyond corner units, capturing

some  texture  boundaries.  The  model  with  flexible  normalization  achieves  better  performance  on  object

recognition and on a figure ground task, compared to the model without normalization.

Recent  neurophysiology  studies  have  shown  that  a  distinguishing  factor  between  area  V1  and  V2,  is  the

sensitivity to the high order structure of textures in V2 but not V1 [51••], [52]. These studies demonstrate this

sensitivity  by  comparing  the  responses  of  cortical  neurons  to  naturalistic  texture  stimuli,  versus  spectrally

matched noise images which lack the high order statistical structure. This presents a rich set of data that can be

tested against hierarchical models. Recent work has shown that early stages of discriminative CNN models,

which we will discuss in more detail below, can capture some of the texture sensitivity of the cortical V2 versus

V1 data [62], [63] (see also [64]). It is worth noting that a collective testing of the V2 properties that have

emerged from neurophysiology has not been tapped into by any single model discussed above. 
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Multi-layer hierarchical models 

Sparse coding can be extended to multiple hierarchical layers [65], [66], but higher layers have not been tested

against  neural  data.  Hirayama  et  al.  [67]  have  recently  hierarchically  extended  ISA to  multiple  layers,  by

designing a tractable generative model for which subspaces in each layer may be dependent on others via higher

layer hidden variables. This leads in the second layer to some similar properties of [58••], and allows extension

to higher layers. Deep CNN models, which include pooling and sometimes local normalization, can capture

aspects of cortical data across the hierarchy [18], [19]. This may be related to a gradual untangling of object

manifolds [68],  [69] (see also [70], [71]).  Two main stages of computation take place in this untangling: a

dimensionality expansion that linearizes the problem, and a second stage of dimensionality reduction. Pooling, in

particular average pooling, falls in the second category.

Some  hierarchical  models  have  incorporated  normalization  beyond  the  first  layer,  but  mostly  for  image

processing and computer vision applications. Balle et al. [72••], [73] have proposed a multilayer unsupervised

learning  model  for  image  compression  that  incorporates  a  joint  nonlinear  transformation  that  seeks  to

Gaussianize  the  data  in  each  layer,  amounting  to  a  generalized  divisive  normalization.  Spratling  [74]  has

extended unsupervised predictive coding models of V1 to include two or more levels, with application to image

recognition. CNNs have included various restricted forms of divisive normalization,  typically either to help

training  or  to  improve  object  recognition.  Local  response  normalization  in  AlexNet  [75]  (see  also  [76])

normalizes  groups  of  spatially  overlapping  units,  akin  to  cross  orientation  suppression  [15].  In  batch

normalization [77], each single neural unit response is normalized by the mean and standard deviation of a given

batch over time. In layer normalization [78], all units in a given layer are normalized by the mean and standard

deviation. In Ren et al. [79], normalization by center and surround units is used to improve object recognition.

Han and Vasconcelos proposed a more sophisticated V1-motivated divisive normalization model for deep neural

networks [80], [81] to improve object recognition. Interestingly, recent approaches geared largely at computer

vision  raise  some  of  the  same  questions  that  have  been  studied  longer  in  the  context  of  computational

neuroscience and V1: How should normalization operate locally and more broadly in terms of spatial context?

What units should group together in the normalization pool? 

Contextual  influences  beyond  the  classical  receptive  field  have  been  most  widely  studied  for  area  V1.

Understanding  when  normalization  is  recruited  in  cortical  area  V2  (and  indeed  in  higher  areas)  is  more

challenging (see recent neurophysiology studies of [82]). We propose to incorporate contextual normalization

models inspired by V1 image statistics modeling directions, into hierarchical models of V2 for application to

neuroscience [83]. We expect this will allow us to make predictions about when normalization is recruited in V2.
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Figure 3. Spatial dependencies are reduced for higher layers of deep convolutional neural networks. The employed CNN is

AlexNet. Activation maps for the first three convolutional layers (conv1, conv2, conv3) are depicted by the gray boxes on

the left side of the figure. The width and depth of each box represent the spatial locations, and the height represents the

number of filters. For higher layers, spatial resolution is reduced and at the same time the number of filters are increased.

Here,  we display (as an average over all filters in a given layer) the normalized conditional  histograms (bowtie plots)

between the activation values obtained by convolution at two spatial locations that overlap, but no more than 30%. We also

show the average marginal distributions. 
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Figure 3 depicts the joint statistical dependencies across space and the marginal statistics in response to images

for  different  layers  of  AlexNet  [75].  The  first  two layers  exhibit  joint  statistical  dependencies  between the

responses of neural units in center and surround locations, and sparse marginal statistics, similar to what has

been previously observed for V1-like filter outputs. This suggests that flexible surround normalization can be

used to reduce the statistical dependencies and Gaussianize the marginals. In addition, it is interesting to note

that  although efficient  coding is  not  set  as  a  goal,  even without  surround normalization,  the joint  statistics

become more independent and the marginal statistics more Gaussian on average as one proceeds from the first

layer  to  higher  layers  of  AlexNet.  This  echoes  the  discussion  in  [73],  that  hierarchical  models  without

normalization may perform with similar accuracy, but requiring more layers to do so--a suggestion that needs

more thorough testing.

Recent work has also focused on more theoretical aspects of CNN models, including the role of convolution.

Deep  CNNs  that  perform  tasks  like  object  recognition  often  include  max  pooling  and  average  pooling.

Intuitively,  these  forms  of  pooling  applied  to  the  convolutional  architecture  are  suitable  for  translation

invariance.  This  assumption allows to reduce the dimensionality of the parameters that  need to be learned.

Approaches for visualizing invariances in deep CNNs have revealed both shift invariance and other forms of

invariance [84]. Theoretical approaches for understanding deep convolutional networks have pointed out that a

main property of the convolutional architectures is equivariance (a generalization of invariance), i.e. that the

representation changes in predictable ways to group actions [85••], [86], [87], [88]. Translation is one of the

most  basic examples of  a group action,  but  other  transformations include rotations  of  the  image plane and

changes in scale (see also [89]). 

It has been argued that invariance alone at early levels of detecting simple features can hurt selectivity at higher

levels. Equivariance, on the other hand, provides a more complete account of what simple features are present

and  how these are instantiated in the images. Recent extensions of CNN models known as capsule networks

[90], [91] exploit the equivariance property. A main difference with conventional pooling, is that the outputs not

only provide information about the likelihood of a feature being present which is closer to what max pooling

provides,  but  also about  the transformation taking place in the feature.  One potential  way that  pooling and

normalization can combine is motivated by the role of equivariance in the stimuli representation. Similar to

population coding, subunits can be pooled to retrieve the instantiation parameters (such as the location) of a

feature in the form of a neural unit (simple cell) response. Normalization would then guarantee that the response

is robust to variations in the input.
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Discussion

In recent years, there has been a convergence of similar architectural components (convolution, subunit pooling,

and normalization) in both descriptive and normative visual cortical models. We have suggested that for divisive

normalization models in V1, rather than combinatorially searching the space of possibilities for computing the

normalization signal, normative image statistics approaches can add value to descriptive accounts by making

predictions about when normalization is recruited for natural stimuli [13••]. In the context of subunit pooling

models,  an  interesting  direction  for  combining  descriptive  and  normative  perspectives,  is  through  transfer

learning. Subunit groups capturing properties of natural stimuli can be learned from much larger image datasets

with normative approaches,  and the subsequent  pooling or  normalization weights  could be tuned to  neural

response predictions.

In this review, we have discussed normalization from various normative perspectives. So what is normalization

good for? Normalization is  considered a canonical  computation in the brain [14].  From an efficient  coding

standpoint,  neurons  have  a  limited  response  range,  a  limit  to  the  range  of  stimuli  they  can  respond  to

differentially.  Normalization in  the  visual  system to the lightness  or  contrast  level  can set  the  responses of

neurons  to  more  finely  cover  the  current  range.  Another  way  to  think  about  normalization,  is  that  neural

responses become invariant to global properties such as lightness, contrast, or more complex properties such as

orientation  texture.  We  have  motivated  this  from  the  point  of  view  of  a  generative  statistical  model.

Normalization may serve to reduce predictable information, which may relate to highlighting salient aspects in

the scene [6]. In addition, normalization may help in recognizing objects invariant to such global properties.

Interestingly, restricted forms of normalization have been incorporated into deep convolutional neural networks

for the purpose of improving object recognition. Normalization may help by reducing some invariances and

equalizing the response range of the neural units. But in recent years, some very deep architectures perform well

without  normalization  [92]–[94].  Indeed,  it  is  possible  that  very  deep  networks  can  better  estimate  the

transformations required for invariant object recognition and so bypass the need for normalization at all. The

brain, in contrast, may incorporate richer nonlinearities and sacrifice on the depth. However, there is a need to

study more sophisticated forms of normalization by contextual information in such networks. More importantly,

we believe that normalization will be useful for generalizing to a broader range of images and tasks that were not

in the original training set, a feat that humans are better at than artificial neural networks [95].

We have suggested that hierarchical models now have the potential to push forward progress in understanding

cortical representation and processing in mid level cortical areas. In particular,  we highlighted area V2 as a

potentially  tractable  goal. Recent  hierarchical  models  have  started  to  make  progress  in  understanding  V2

processing inside the classical receptive field. In terms of contextual surround influences, most modeling work

has focused on cortical area V1. However, a number of testable hierarchical models are emerging. We believe

there is  now the potential  to incorporate learning of surround normalization at  higher levels of  hierarchical

models, and therefore to make headway in understanding contextual influences in V2.
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