

Convergent Estimates of Marine Nitrogen Fixation

Wei-Lei Wang¹, J. Keith Moore¹, Adam C. Martiny^{1,2}, François W. Primeau^{1*}

Abstract

Uncertainty in the global patterns of marine nitrogen fixation limits our understanding of the response of the ocean's nitrogen and carbon cycles to environmental change. The geographical distribution and ecological controls on nitrogen fixation are difficult to constrain with limited in-situ measurements. Here we present convergent estimates of nitrogen fixation from an inverse biogeochemical and a prognostic ocean model. Our results demonstrate strong spatial variability in the nitrogen to phosphorus ratio of exported organic matter that greatly increases the global nitrogen-fixation rate. We find that new nitrogen supports up to 50% of export in subtropical gyres, that nitrogen fixation and denitrification are spatially decoupled and that current-era nitrogen sources and sinks largely balance on multidecadal timescales. Moreover, we propose a role for top-down grazing control in shaping the global patterns of nitrogen fixation. Our findings suggest higher than expected ocean carbon export and weaker stabilizing nitrogen-cycle feedbacks than previously thought.

Main

Great uncertainty in global patterns of marine nitrogen fixation limits our ability to build mechanistic models that reliably predict the response of the ocean's nitrogen and carbon cycles to environmental change. Field N₂-fixation measurements are challenging to scale up because they have poor spatial coverage with high spatio-temporal variability, spanning 6 orders of magnitude[1, 2, 3, 4]. Estimates from geochemical inverse models can use the more abundant hydrographic nitrate and phosphate concentration measurements to infer global rates of N₂ fixation. However, the existing P^* method[5, 6, 7] predicts a geographical distribution that conflicts with in-situ measurements and prognostic biogeochemistry models. For example, in-situ measurements in the tropical Pacific Ocean, yield rates that are high in the west and low in the east but the P^* method predicts the opposite

¹ Department of Earth System Science, University of California Irvine, Irvine, CA 92617, USA

² Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA

* Corresponding author

34 pattern[8, 9]. On larger-scales, observations and models suggest relatively high
35 rates of tropical-Atlantic N₂ fixation, whereas the P^* method predicts relatively low
36 rates[4,7,10,11].

37 The P^* method attempts to diagnose N₂-fixation rates with a tracer, $P^* \equiv [PO_4^{3-}] -$
38 $[NO_3^-]/16$, from observed surface phosphate and nitrate concentrations and its
39 computed divergence using an ocean general circulation model (OGCM).
40 Assuming that non-diazotrophic production follows a constant N:P ratio of 16:1, P^*
41 is unaffected by biological production so that any P^* divergences indicate the
42 addition of new fixed N.

43 Errors in the computed P^* divergence – either due to circulation or the nutrient data
44 – could explain the conflicting estimates. Coarse-resolution OGCMs have
45 significant biases, and P^* , being computed as a concentration difference, tends to
46 have larger relative errors than either $[PO_4^-]$ or $[NO_3^-]$ alone. Furthermore, the low
47 nitrate and phosphate concentrations in oligotrophic surface waters are often
48 below the detection limits of traditional measurement techniques.

49 Another source of error is the assumption that organic matter produced by non-
50 diazotrophic plankton follows fixed Redfield (16N:1P) stoichiometry. While the P^*
51 N₂-fixation estimate accounted for preferential remineralization of dissolved
52 organic phosphorus (DOP) compared to nitrogen (DON), it did not consider the
53 large-scale stoichiometric diversity of phytoplankton[7]. The impact of non-Redfield
54 plankton cycling could be important. Model studies show that it greatly changes
55 the amount of N₂ fixation necessary to explain observed P^* patterns while also
56 modifying the size of the marine nitrogen reservoir[12-14] with similar impacts from
57 non-Redfield cycling of DON and DOP[10,11]. Given recently documented C:N:P
58 variations in particulate and dissolved organic matter as well as in the organic-
59 matter export flux[15-19], it is important to construct models that do not assume
60 constant stoichiometry.

61 Our global inversion diagnoses N₂ fixation by tracking the circulation of N and P
62 separately through their organic and inorganic forms without assuming a constant
63 N:P ratio in plankton or exported organic matter. It is based on a data-constrained
64 circulation model[20, 21] to minimize prognostic-model biases and uses the full
65 water-column nitrate and phosphate measurements[22] to reduce the sensitivity to
66 larger surface-water P^* errors.

67 We present data-constrained estimates of (1) the spatially-variable N:P ratio of
68 exported organic matter, (2) global patterns of N₂ fixation and denitrification, (3) the
69 fraction of export production supported by new fixed nitrogen, and (4) the degree
70 to which N sources and sinks balance in the current era. By construction, the
71 inverse model is agnostic to the biological underpinnings that control N₂ fixation.
72 To identify the mechanisms driving the inferred N₂-fixation patterns, we compare
73 with results from the Community Earth System Model (CESM) ocean component,

74 also modified to allow for variable N:P in phytoplankton and sinking organic matter,
75 building on the non-Redfield treatment of DOM[11, 17]. CESM produces a
76 geographic distribution of N₂ fixation remarkably similar to the one inferred from
77 the inverse model, and provides insights into the geochemical and ecological
78 constraints on diazotrophs that drive global N₂-fixation patterns.
79

80 **Nitrogen fluxes and transformations**

81 The inverse model is based on a system of conservation equations relating rates
82 of losses of fixed N due to denitrification and anammox, physical transport due to
83 circulation and gravitational settling of particles, biogeochemical transformations of
84 N and P between organic and inorganic forms and between dissolved and
85 particulate phases, and external inputs of fixed N (Fig. 1). The solution of these
86 equations yields six state variables, which are the concentrations of dissolved
87 inorganic nitrogen and phosphorus ([DIN], [DIP]), and the dissolved and particulate
88 phases of organic nitrogen and phosphorus ([DON], [DOP], [PON], [POP]). The
89 biogeochemical transformation rates are parameterized using only 13 parameters
90 (Table S1), which are constrained by a hydrographic database of [DIN], [DIP], and
91 [DON][17, 22] (supplementary materials Fig. S1). The fluxes and transformations
92 inferred by the model are estimated under the assumption that the marine N cycle is
93 in steady state and therefore balanced. We relax this assumption in the
94 uncertainty analysis (see Methods).

95 **N:P ratio of exported organic matter**

96 The inversion yields a molar N:P ratio for the combined export from particulate and
97 dissolved organic matter, denoted (N:P)_{exp}, ranging from more than 26:1 in the
98 most nutrient-depleted gyres to less than 12:1 in nutrient-rich upwelling regions
99 (Fig.2a). We find a close correspondence between the inferred (N:P)_{exp} and the
100 N:P ratios measured in suspended particles[18, 19, 23] (Fig.2b), similar to
101 previous results examining C:P ratios[16]. The agreement suggests that at least
102 part of the variance in the relative export of N compared to P originates in the
103 stoichiometric diversity of plankton, rather than being entirely due to differential N
104 and P remineralization[11, 24]. We do find evidence for the preferential
105 remineralization of P. The optimal parameter estimates indicate a shallower
106 dissolution of POP compared to PON and a faster degradation of DOP compared
107 to DON (c.f. the optimal values of b_P , b_N , κ_{dP} and κ_{dN} , in Table S1).

108 The globally-integrated ratio of biological export of N and P is 17.3:1, above the
109 Redfield value of 16:1. The ratio is less than a simple averaging of the regional
110 ratios shown in Fig. 2a would suggest due to the unequal regional contributions to
111 total export. The elevated N:P ratios in the subtropical gyres are similar to those
112 assumed in previous studies[12,13] but our estimates for the non-gyre regions are
113 considerably higher, with mean ratios only modestly below Redfield. A global N:P

114 export ratio of 17.3:1 is also much higher than the ratio of the oceanic reservoir of
115 nitrogen and phosphorus which is 14.3:1[13]. While it is argued that the difference
116 between these two ratios is a signature of denitrification, this is only partly true. In
117 the presence of spatially-varying N:P ratios, the average residence time of
118 remineralized N need not equal that of P because of regional differences in the
119 time for respired products to return to the surface[25,26].
120

121 **Geographic distribution of N_2 fixation**

122 The inversion reveals high N_2 -fixation rates in the subtropical gyres where surface
123 nutrients are depleted (and export N:P ratios are high) and low fixation rates in
124 upwelling regions where surface macro nutrients are abundant (Figs. 3a,S6). The
125 most intense N_2 -fixation rates are found downstream of the low-latitude upwelling
126 regions in all basins. This pattern differs from the P^* estimate [7], which predicts
127 the highest fixation rates in the eastern tropical Pacific upwelling regions and
128 relatively low rates in the Atlantic.

129 Our global inversion is in good agreement with regional inversions for the Atlantic
130 Ocean derived from isotope budgets [27]. Northward of 24°N, 11°S, and 30°S we
131 estimate N_2 -fixation rates of $4.5^{7.0}_{3.1}$, $27.9^{38.1}_{21.3}$, and $36.2^{50.9}_{26.9}$ TgN/yr respectively,
132 whereas, Ref. [27] estimated 3.0 ± 0.5 , 27.1 ± 4.3 , and 30.5 ± 4.9 TgN/yr.

133 Our inversion generally supports the idea that little N_2 fixation occurs at
134 temperatures below 20°C [28]. The one exception to this is elevated N_2 fixation in
135 the Arctic Ocean, where detectable N_2 -fixation rates have been measured[29].
136 Our inverse estimates in this region must be interpreted cautiously because the
137 data constraining the circulation and nutrient-cycling are sparse (Fig. S1).

138 Water-column losses are inferred to be highest in suboxic waters ($[O]_2 < 5$ mmol/m³)
139 flanking the equator in the eastern tropical Pacific and in the northern Indian
140 Ocean, where column-integrated rates can exceed 440 mmol/m²/yr (Fig. 3c). The
141 inferred water-column losses extend over the much larger volume of hypoxic
142 waters ($[O]_2 < 60$ mmol/m³) albeit at a lower rate, with non-negligible integrated
143 water-column losses at oxygen concentrations above 20 mmol/m³ (Fig. S7a,b)
144 supporting the idea that substantial anaerobic respiration occurs within particle
145 microenvironments in hypoxic waters[30] (but see also Fig. S7c,d and S14-S16).
146 Benthic losses are highest along continental margins where more sinking organic
147 matter reaches the bottom (Fig. 3d).

148 Our inversion reveals the importance of large-scale inter-basin transport of nitrogen
149 for maintaining a globally balanced fixed-N budget (Table 1). The Atlantic Ocean
150 for example maintains its balance by exporting ~15TgN/yr (33% of its N input).
151 This result has been anticipated by prognostic model simulations and box-model
152 budgets[31,32] and is consistent with strong evidence for P-limitation in the North

153 Atlantic[33-35]. The Pacific Ocean supplies more than half of the fixed-N inputs,
154 but also contributes disproportionately to losses because of intense water-column
155 denitrification in the east Pacific low-oxygen zones, with a net basin-scale deficit
156 of ~10 TgN/yr in agreement with Ref.[31]. The Indian Ocean has a nearly
157 balanced N budget (Table 1).

158 Microbial N₂ fixation supports more than 30% of the export production in all
159 subtropical gyres and more than 50% in the N. Pacific and S. Atlantic (Fig. 4).
160 These estimates are in agreement with independent budgets based on $\delta^{15}N$
161 measurements. At the Bermuda Atlantic Time-series Study (BATS) station in
162 subtropical Atlantic (32°10'N 64°30'W), a $\delta^{15}N$ budget suggests that no input of
163 new N is needed to close the N budget[36] – our inversion shows a negligible
164 contribution of N₂ fixation. Similarly a $\delta^{15}N$ budget for the Hawaii Ocean Time-
165 series (HOT) (22°45'N 158°00'W) suggests that 30%–50% of export production is
166 sustained by new N[37] – we estimate 30%–40% (Fig. 4). Globally, we find that N₂
167 fixation supports ~8% of the global carbon export production, which is inferred by
168 our inverse-model to be ~12 PgC/yr.
169

170 ***Globally-integrated marine N cycle budget***

171 We estimate that N₂ fixation plus external inputs (Fig.3b), delivers 200 TgN/yr to
172 the ocean. This input is balanced by water-column and benthic losses of 68 and
173 132 TgN/yr (Table 1).

174 The uncertainty for our global N₂-fixation rate estimate of 163 TgN/yr is
175 approximately $\pm 30\%$ (Table 1). The globally-integrated N₂-fixation and N-loss
176 rates in our steady-state model can be scaled up or down with only modest
177 changes in the spatial distribution of nutrients and N₂ fixation (Figs S12 and S13).
178 Thus, while the nutrient data provides strong constraints on the spatial pattern of
179 N₂ fixation it provides only weak bounds for the globally-integrated rate. Our
180 uncertainty estimate for the globally-integrated rates therefore relies on ^{15}N
181 isotopic constraints[38,39], which require a benthic to water-column loss ratio
182 between 1.3 and 3.0. This constraint means that we cannot scale the benthic-loss
183 function up or down by more than 20% (Table S2), leading to uncertainties of
184 $\pm 40\%$ and $\pm 12\%$ for the globally-integrated benthic and water-column loss rates
185 (Table 1). In comparison, the uncertainty due to the other parameters is small,
186 typically contributing relative errors of less than 2% in basin-integrated rates.
187 External inputs due to rivers and atmospheric deposition are small in comparison
188 to the sedimentary losses and therefore contribute relatively less uncertainty[31].
189 An alternative inversion based on pre-industrial atmospheric deposition [40], yields
190 a N₂-fixation rate that is ~10% higher than the one for the present-day deposition
191 (Table S4) with only modest changes in the pattern of N₂ fixation (Fig. S9). This
192 ~10% decrease in N₂ fixation associated with increased atmospheric deposition is
193 similar to what has been found in previous modeling studies, which found strong

194 negative feedbacks limiting the impact of atmospheric deposition[41,42]. We don't
195 explicitly estimate organic N burial in sediments, but this would be a similarly small
196 fraction of our inferred benthic fixed N loss.

197 The uncertainty due to the relaxation of the steady-state assumption by allowing for
198 slowly-evolving nutrient fields (see Methods) has a modest impact on the
199 parametric uncertainty. The most probable non-steady state model has a global
200 nitrogen budget, with a 1 TgN/yr increment in the estimated benthic loss, an 11
201 TgN/yr reduction in water-column denitrification, and a 16TgN/yr reduction in
202 fixation, leaving a global source-sink imbalance of only 6 TgN/yr (Tables 1 and
203 S3). Because the inversion could have returned a much larger N-cycle imbalance,
204 this suggests that our model is robust to undetected slowly-evolving trends in the
205 marine N cycle and that for the current era there is no evidence for large
206 imbalances on multidecadal timescales.
207

208 A potentially important source of uncertainty that we are unable to quantify in our
209 annually-averaged inverse model is the neglect of the seasonal cycle. However,
210 because the model is constrained by data from the full water column, we expect
211 that the muted seasonality at the base of the thermocline and deeper waters will
212 anchor the inversion to produce the correct annually averaged fluxes. Further
213 reductions in the uncertainty of the inverse estimates of N₂ fixation will require a
214 seasonally varying circulation model that better resolves the coastal shelf regions
215 and the oxygen minimum zones. Better data coverage in the Arctic would help
216 reduce large uncertainties in polar waters.
217

218 ***Ecological controls on N₂ fixation patterns***

219 Our inverse model is largely agnostic about the biological underpinnings driving N₂
220 fixation. This is a positive feature as it reduces the chances that the answer is built
221 into the model structure. To understand the mechanisms driving N₂-fixation
222 patterns, we compare with biogeochemical simulations from the CESM ocean
223 component, modified to allow for variable N:P ratios in phytoplankton and organic-
224 matter export. The CESM-simulated N₂-fixation pattern is remarkably similar to the
225 inverse-model estimate ($R^2 = 0.47$, cf. Figs. 3a, 5a). In both the prognostic and
226 inverse models, N₂-fixation rates are suppressed directly above the coastal and
227 equatorial upwelling zones, with strong spatial decoupling of N₂ fixation and water-
228 column denitrification associated with upwelling zones in the eastern tropical
229 Pacific and Arabian Sea. Maximum N₂-fixation rates in both models are in
230 downstream waters, advected away from the upwelling zones. The decoupling
231 between upwelling zones and N₂ fixation occurs over much larger spatial scales in
232 the Pacific, due to iron-limitation in the offshore waters. N₂ fixation and the
233 drawdown of "excess" P are hampered by iron-limitation, pushing the highest N₂-
234 fixation rates to the western tropical Pacific, where iron concentrations are higher,
235 in line with field observations and previous modeling studies[11, 32, 43, 44].

236

237 N₂-fixation patterns in CESM are driven by bottom-up limitations on diazotroph
238 growth and top-down grazing by zooplankton. Previous studies have focused on
239 bottom-up controls (influences of nutrients, light, and temperature) to explain
240 global N₂-fixation patterns[11, 13, 14, 43, 44]. Diazotrophs need sufficient
241 phosphorus and iron for growth, and benefit from competitors' N-limitation. In
242 regions with high dust-input rates in the North Atlantic and northern Indian Ocean,
243 diazotrophs tend to be phosphorus limited, with iron availability constraining
244 growth over much of the remaining low-latitude ocean (Fig.5b).

245 Nutrient dynamics are important controls on diazotrophy, but we also suggest a
246 key role for grazing, based on both first principles and the CESM results.
247 Diazotroph growth rates are inherently slower than those of key microzooplankton
248 grazers, which have growth rates similar to the fastest growing phytoplankton[45,
249 46]. This suggests that diazotrophs will always be in the density-dependent part of
250 the grazing rate versus prey biomass curve, unlikely to escape grazing control and
251 bloom. Furthermore, as diazotrophs typically account for only a small fraction of
252 the phytoplankton community (in CESM up to ~10% of NPP in the most strongly N-
253 limited regions and less than 3% in upwelling zones), it will be the growth of the
254 more abundant and faster-growing, non-diazotrophic phytoplankton that
255 determines zooplankton biomass, indirectly influencing the top-down grazing
256 experienced by diazotrophs.

257 In CESM, diazotroph biomass is elevated and N₂-fixation rates are highest in the
258 most N-limited regions where zooplankton biomass is low (Figs. 5a, S21a). In the
259 Indian basin, western Pacific, and coastal upwelling zones, diazotrophs are not
260 strongly nutrient-limited (Fig.5b). Top-down grazing pressure is keeping
261 diazotroph biomass low, despite ambient nutrient concentrations that support near-
262 maximal growth rates. The lowest diazotroph biomass is seen in the coastal
263 upwelling zones, where other phytoplankton groups are blooming and zooplankton
264 biomass is elevated (Fig. S21a,c). A sensitivity experiment with the maximum
265 grazing rate on diazotrophs reduced by a factor of 0.63, giving them the same
266 maximum-grazing-rate to maximum-growth-rate ratio as diatoms, results in
267 massive diazotroph blooms in the low-latitude coastal upwelling zones, boosting
268 global N₂ fixation by 62% (Fig. 5c, S21b,d and SI). The high N₂-fixation rates in
269 upwelling regions in this reduced-grazing simulation are similar to the P^* estimate.
270 Thus, the CESM results suggest grazing plays a key role in the spatial decoupling
271 of N₂ fixation and denitrification, and prevents the runaway denitrification losses
272 that could occur with high N₂-fixation rates directly above the OMZs[47]. These
273 results are not dependent on the highly-parameterized treatment of zooplankton
274 and grazing in CESM, but should always arise in models that assume slower
275 maximum growth rates for diazotrophic phytoplankton along with a grazing
276 pressure similar to other phytoplankton.

277 Marine diazotrophs comprise a highly diverse group of organisms, but much of the
278 pelagic N₂ fixation is thought to be by relatively slow-growing, *Trichodesmium* spp.
279 and small unicellular diazotrophs[46]. The top-down grazing argument is
280 particularly applicable to unicellular diazotrophs, even if only a fraction of the
281 microzooplankton community was preying on them. *Trichodesmium* spp. may have
282 more specialized predators, but grows extremely slowly[46,48]. Copepods were
283 recently shown to graze on all diazotroph types present in mesocosm experiments
284 as primary or secondary consumers, with 28% of zooplankton N biomass coming
285 from diazotrophy[49]. More studies of grazing impacts on plankton community
286 composition and diazotrophy are needed.
287

288 **Convergent Estimates of N₂ Fixation**

289 Our results present convergent global estimates of marine N₂ fixation from two
290 independent methods, an inverse model that infers N inputs from the observed
291 nutrient concentrations and a prognostic Earth System Model that explicitly
292 resolves diazotrophic growth and N₂-fixation rates as a function of ambient
293 nutrients, temperature, and light, in the context of grazing and competition. The
294 prognostic model provides plausible mechanistic controls that lead to the N₂-
295 fixation pattern deduced by the inverse model. The export of excess fixed N from
296 the Atlantic basin (~15 TgN/yr) shows that a substantial amount of N₂ fixation is
297 geographically uncoupled from oxygen minimum zones, suggesting some
298 stabilizing nitrogen-cycle feedbacks might be weaker and slower than previously
299 thought.
300

301 There is a strong similarity between the N:P of sinking organic matter inferred from
302 the inverse model and simulated with CESM ($R^2 = 0.76$, Fig. S19). Both models
303 have elevated ratios in the subtropical gyres and N:P ratios only modestly below
304 the Redfield value elsewhere. Prior studies have imposed significantly lower N:P
305 ratios in the more productive regions[12,13]. To capture the observed higher N:P
306 ratios in the gyres, N:P ratios in nutrient-rich regions had to be set very low to
307 maintain an assumed 16:1 global mean for non-diazotrophs[13]. Our results
308 suggest that the observed nutrient distributions are not compatible with a mean
309 N:P ratio in organic matter export of 12:1 or lower in upwelling zones. Thus, given
310 mean N:P export ratios in the gyres above 20:1, global-mean N:P export ratio is
311 greater than the Redfield value at 17.3:1 in our most-probable inverse estimate
312 and 20.0:1 in CESM. The higher mean N:P ratio in sinking organic matter and
313 excessively high, water-column denitrification (134 TgN/yr) in CESM relative to the
314 inverse model, leads to a higher total N₂ fixation of 238 TgN/yr, with benthic
315 denitrification losses of 160 TgN/yr (Fig. S17). The discrepancy is largely
316 attributable to the coarse resolution in CESM, which does not capture the narrow,
317 equatorial sub-surface jets critical for ventilating the OMZs[50].
318

319 Accounting for N:P variability in organic-matter export boosts global N₂ fixation, by
320 63% in the inverse model and by 50% in CESM, when compared to simulations
321 with fixed Redfield stoichiometry (Table S7, Figs. S10, S20). Spatially-variable
322 N:P ratios for plankton and exported organic-matter allows global marine N-cycle
323 models to be reconciled with ocean observations, and significantly impacts the
324 marine carbon cycle. Variable N:P ratios boost global POC export by 12% in
325 CESM relative to fixed Redfield simulation. Earth System Models must include
326 explicit representation of this stoichiometric variability to capture the observed
327 biogeochemical patterns, and to accurately predict the response and feedbacks of
328 ocean biogeochemistry to ongoing global warming.
329

330 **References**

331 [1] Mohr, W. et al. Methodological underestimation of oceanic nitrogen fixation
332 rates. *PLoS One* 5, 1–7 (2010).

333 [2] Grosskopf, T. et al. Doubling of marine dinitrogen-fixation rates based on direct
334 measurements. *Nature* 488, 361–364 (2012).

335 [3] Dabundo, R. et al. The contamination of commercial ¹⁵N₂ gas stocks with ¹⁵N-
336 labeled nitrate and ammonium and consequences for nitrogen fixation
337 measurements. *PLoS One* 9, e110335 (2014).

338 [4] Luo, Y. W. et al. Data-based assessment of environmental controls on global
339 marine nitrogen fixation. *Biogeosciences* 11, 691–708 (2014).

340 [5] Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and
341 denitrification. *Global Biogeochem. Cy.* 11, 235–266 (1997).

342 [6] Deutsch, C. et al. Denitrification and N₂ fixation in the Pacific Ocean. *Global
343 Biogeochem. Cy.* 15, 483–506 (2001).

344 [7] Deutsch, C. et al. Spatial coupling of nitrogen inputs and losses in the ocean.
345 *Nature* 445, 163–167 (2007).

346 [8] Knapp, A. N. et al. Low rates of nitrogen fixation in eastern tropical South
347 Pacific surface waters. *Proc. Natl. Acad. Sci. USA* 1–6 (2016).

348 [9] Bonnet, S. et al. Hot spot of N₂ fixation in the western tropical South Pacific
349 pleads for a spatial decoupling between N₂ fixation and denitrification. *Proc.
350 Natl. Acad. Sci. USA* 114 (2017).

351 [10] Somes, C. J. & Oschlies, A. On the influence of non-redfield dissolved organic
352 nutrient dynamics on the spatial distribution of N₂ fixation and the size of the

353 marine fixed nitrogen inventory. *Global Biogeochem. Cy.* 29, 973–993
354 (2015).

355 [11] Letscher, R. T. & Moore, J. K. Preferential remineralization of dissolved
356 organic phosphorus and non-redfield DOM dynamics in the global
357 ocean: Impacts on marine productivity, nitrogen fixation, and carbon export.
358 *Global Biogeochem. Cy.* 29, 325–340 (2015).

359 [12] Mills, M. M. & Arrigo, K. R. Magnitude of oceanic nitrogen fixation
360 influenced by the nutrient uptake ratio of phytoplankton. *Nat. Geosci.* 3,
361 412–416 (2010).

362 [13] Weber, T. & Deutsch, C. Oceanic nitrogen reservoir regulated by plankton
363 diversity and ocean circulation. *Nature* 489, 419–422 (2012).

364 [14] Landolfi, A. et al. A new perspective on environmental controls of marine
365 nitrogen fixation. *Geophys. Res. Lett.* 42, 4482–4489 (2015).

366 [15] Weber, T. S. & Deutsch, C. Ocean nutrient ratios governed by plankton
367 biogeography. *Nature* 467, 550–554 (2010).

368 [16] Teng, Y. C. et al. Global-scale variations of the ratios of carbon to phosphorus
369 in exported marine organic matter. *Nat. Geosci.* 7, 895–898 (2014).

370 [17] Letscher, R. T. et al. Variable C : P stoichiometry of dissolved organic
371 matter cycling in the Community Earth System Model. *Biogeosciences* 12,
372 209–221 (2015).

373 [18] Martiny, A. C. et al. Regional variation in the particulate organic carbon to
374 nitrogen ratio in the surface ocean. *Global Biogeochem. Cy.* 27, 723–731
375 (2013).

376 [19] Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine
377 plankton and organic matter. *Nat. Geosci.* 6, 279–283 (2013).

378 [20] DeVries, T. & Primeau, F. W. Dynamically and observationally constrained
379 estimates of water-mass distributions and ages in the global ocean. *J. Phys.*
380 *Oceanogr.* 41, 2381–2401 (2011).

381 [21] Primeau, F. W., Holzer, M. & DeVries, T. Southern Ocean nutrient trapping
382 and the efficiency of the biological pump. *J. Geophys. Res. Ocean.* 118,
383 2547–2564 (2013).

384 [22] Garcia, H. et al. World Ocean Atlas 2013, Volume 4: Dissolved Inorganic
385 Nutrients (Phosphate, Nitrate, Silicate), NOAA Atlas NESDIS, vol. 76,
386 edited by S. Levitus, 25 pp. US Gov. Print. Off., Washington, DC (2014).

387 [23] Galbraith, E. D. & Martiny, A. C. A simple nutrient-dependence mechanism for
388 predicting the stoichiometry of marine ecosystems. *Proc. Natl. Acad. Sci.*
389 USA 112, 8199–8204 (2015).

390 [24] Loh, A. N. & Bauer, J. E. Distribution, partitioning and fluxes of dissolved
391 and particulate organic C, N and P in the eastern North Pacific and
392 Southern Oceans. *Deep. Res. Part I* 47, 2287–2316 (2000).

393 [25] Primeau, F. W. & Holzer, M. The oceans memory of the atmosphere:
394 Residence-time and ventilation-rate distributions of water masses. *J. Phys.*
395 *Oceanogr.* 36, 1439–1456 (2006).

396 [26] DeVries, T., Primeau, F. & Deutsch, C. The sequestration efficiency of the
397 biological pump. *Geophys. Res. Lett.* 39 (2012).

398 [27] Marconi, D. et al. Tropical dominance of N₂ fixation in the north Atlantic
399 Ocean. *Global Biogeochem. Cy.* 31, 1608–1623 (2017).

400 [28] Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic
401 primary production. *Nature* 400, 525–531 (1999).

402 [29] Blais, M. et al. Nitrogen fixation and identification of potential diazotrophs in
403 the Canadian Arctic. *Global Biogeochem. Cy.* 26 (2012).

404 [30] Bianchi, D. et al. Global niche of marine anaerobic metabolisms expanded
405 by particle microenvironments. *Nat. Geosci.* 11, 263–268 (2018).

406 [31] Eugster, O. & Gruber, N. A probabilistic estimate of global marine N-fixation
407 and denitrification. *Global Biogeochem. Cy.* 26, GB4013, (2012).

408 [32] Moore, J. K. & Doney, S. C. Iron availability limits the ocean nitrogen
409 inventory stabilizing feedbacks between marine denitrification and
410 nitrogen fixation. *Global Biogeochem. Cy.* 21, GB2001 (2007).

411 [33] Wu, J. F. et al. Phosphate depletion in the western North Atlantic Ocean.
412 *Science* 289, 759–762 (2000).

413 [34] Sañudo-Wilhelmy, S. A. et al. Phosphorus limitation of nitrogen fixation by
414 *trichodesmium* in the central Atlantic Ocean. *Nature* 411, 66 (2001).

415 [35] Mills, M. M. et al. Iron and phosphorus co-limit nitrogen fixation in the eastern
416 tropical north Atlantic. *Nature* 429, 292 (2004).

417 [36] Altabet, M. Variations in nitrogen isotopic composition between sinking and
418 suspended particles: implications for nitrogen cycling and particle
419 transformation in the open ocean. *Deep Sea Res. I* 35, 535 – 554 (1988).

420 [37] Karl, D. et al. The role of nitrogen fixation in biogeochemical cycling in the
421 subtropical North Pacific Ocean. *Nature* 388, 533–538 (1997).

422 [38] Brandes, J. a. & Devol, A. H. A global marine-fixed nitrogen isotopic budget:
423 Implications for Holocene nitrogen cycling. *Global Biogeochem. Cy.* 16, 0–1
424 (2002).

425 [39] DeVries, T. et al. Marine denitrification rates determined from a global 3-D
426 inverse model. *Biogeosciences* 10, 2481–2496 (2013).

427 [40] Lamarque, J.-F. et al. Historical (1850–2000) gridded anthropogenic and
428 biomass burning emissions of reactive gases and aerosols: methodology
429 and application. *Atmos. Chem. Phys.* 10, 7017–7039 (2010).

430 [41] Yang, S. et al. Enso-driven variability of denitrification and suboxia in the
431 eastern tropical pacific ocean. *Global Biogeochem. Cy.* 31, 1470–1487
432 (2016).

433 [42] Somes, C. J. et al. *Limited impact of atmospheric nitrogen deposition on*
434 *marine productivity due to biogeochemical feedbacks in a global ocean*
435 *model. Geophys. Res. Lett.* 43, 4500–4509 (2016).

436 [43] Somes, C. J., Schmittner, A. & Altabet, M. A. Nitrogen isotope simulations
437 show the importance of atmospheric iron deposition for nitrogen fixation
438 across the pacific ocean. *Geophys. Res. Lett.* 37 (2010).

439 [44] Ward, B. A. et al. Iron, phosphorus, and nitrogen supply ratios define the
440 biogeography of nitrogen fixation. *Limnol. Oceanogr.* 58, 2059–2075
441 (2013).

442 [45] Edwards, K. F. et al. Light and growth in marine phytoplankton: allometric,
443 taxonomic, and environmental variation. *Limnol. Oceanogr.* 60, 540–552
444 (2015).

445 [46] Fu, F.-X. et al. Differing responses of marine n2 fixers to warming and
446 consequences for future diazotroph community structure. *Aquat. Microb.*
447 *Ecol.* 72, 33–46 (2014).

448 [47] Landolfi, A. et al. Overlooked runaway feedback in the marine nitrogen cycle:
449 the vicious cycle. *Biogeosciences* 10, 1351–1363 (2013).

450 [48] O’Neil, J. M. & Roman, M. R. Ingestion of the cyanobacterium tri- chodesmium
451 spp. by pelagic harpacticoid copepods macrosetella, miracia and
452 oculosetella. *Hydrobiologia* 292, 235–240 (1994).

453 [49] Hunt, B. P. et al. Contribution and pathways of diazotroph-derived nitrogen to
454 zooplankton during the vahine mesocosm experiment in the oligotrophic
455 new caledonia lagoon. *Biogeosciences* 13, 3131–3145 (2016).

456 [50] Getzlaff, J. & Dietze, H. Effects of increased isopycnal diffusivity mimicking the
457 unresolved equatorial intermediate current system in an earth system
458 climate model. *Geophys. Res. Lett.* 40, 2166–2170 (2013).

459

460 **Acknowledgements**

461 This work was supported by the National Science Foundation (OCE 1436922
462 awarded to F.W.P.). F.W.P., J.K.M., and W.L.W. also acknowledge support from
463 the US Department of Energy Office of Biological and Environmental Research
464 (DE-SC0007206, DE-SC0012550, DE-SC0016539) and the RUBISCO-SFA
465 (J.K.M. PC13115) and A.C.M. acknowledges financial support from the National
466 Science Foundation (OCE-1046297 and OCE-1559002). The authors also
467 acknowledge support from National Science Foundation (OCE-1848576).

468

469 **Contributions**

470 All authors contributed to the design of the study. W.L.W. and F.W.P. built the
471 inverse model and analyzed its results. J.K.M. performed the CESM simulations
472 and analyzed its output. F.W.P., W.L.W. and J.K.M. wrote the manuscript. All
473 authors participated in the discussion of the results and commented on the
474 manuscript.

475 **Competing Interests**

476 The authors declare that they have no competing financial interests.

477 **Correspondence**

478 Correspondence and requests for materials should be addressed to F. Primeau
479 (email: fprimeau@uci.edu).
480

481

482 **Biologically available nitrogen budget**

483

Basin	Input			Loss		Net
	Atm. Dep.	River Input	Microbial N Fix.	Water Col.	Sedim.	
Pacific	12.0	3.3	100.6 ^{132.8} _{78.9}	54.6 ^{58.1} _{42.7}	70.9 ^{106.6} _{48.2}	-9.7 ^{9.2} _{19.9}
Atlantic	8.3	4.4	34.0 ^{49.5} _{24.0}	0.3 ^{0.3} _{0.1}	31.0 ^{45.0} _{21.8}	15.3 ^{17.7} _{13.6}
Indian	4.5	2.9	26.6 ^{37.2} _{19.5}	13.8 ^{14.5} _{12.5}	22.8 ^{34.3} _{15.5}	-2.6 ^{-1.5} _{-3.3}
Arctic	0.4	0.4	1.8 ^{2.9} _{1.1}	0.0 ^{0.0} _{0.0}	5.8 ^{7.2} _{4.6}	-3.2 ^{-2.7} _{-3.9}
Med.	0.7	0.2	0.2 ^{0.6} _{0.0}	0.0 ^{0.0} _{0.0}	0.9 ^{1.3} _{0.7}	0.2 ^{1.0} _{0.1}
Global	25.8	11.2	163.2 ^{222.9} _{125.6}	68.6 ^{72.9} _{55.8}	131.5 ^{194.5} _{90.7}	-5.7 ^{-0.4} _{-6.4}

484

485 **Table 1:** Biologically available nitrogen budget. All numbers are in TgN/yr and
 486 correspond to the most probable value from the posterior probability
 487 distribution for the steady state model. The only exception is the entry for the
 488 net global imbalance which corresponds to the most probable value for the
 489 model in which we allowed for a slowly evolving disequilibrium. The upper and
 490 lower limits correspond to the upper and lower bounds obtained by combining
 491 inversions in which we relaxed the steady state assumption to allow for a
 492 slowly decaying disequilibrium and inversions in which we scaled the rate
 493 coefficient for sedimentary denitrification by $\pm 20\%$, which produced a
 494 sedimentary to water column denitrification ratio in the range of 1.3 to 3.0 in
 495 accord with the ^{15}N isotopic constraints.

496

497

498

499 **Figure Legends**

500

501 **Figure 1:** Schematic representation of the P-cycle model (left) and N-cycle
502 model (right). The dissolved tracers DIP, DOP, DIN, and DON are affected by
503 advection and diffusion whereas the particulate tracers POP and PON are
504 affected by gravitational settling. See Methods and Supplementary Information
505 for the detailed mathematical formulation of the model and Bayesian inversion
506 procedure.

507

508 **Figure 2: N:P ratio of exported organic material.** (a) Map of the N:P ratio of
509 exported organic material ($(N:P)_{exp}$) inferred from the inverse model. The
510 numbers within the delineated regions correspond to the ratio of the integrated
511 export of N to the integrated export of P. (b) Comparison of the measured N:P
512 ratio in the stock of suspended particulate organic matter (POM) to that of the
513 flux of exported organic matter inferred from the inverse model. (c)
514 Comparison of the measured C:P ratio in the stock of suspended POM to that
515 in the flux of exported organic matter. For the calculation of the P:C export
516 ratio a C:N ratio of 106:16 is assumed. The export flux includes the
517 contributions from both sinking POM and the downward mixing of DOM and
518 the box plot summarizes the distribution of all $2^\circ \times 2^\circ$ grid boxes that fall in
519 each phosphate concentration bin. The boxplots show the 25, 50 and 75
520 percentiles binned according to the phosphate concentration in the water. The
521 whiskers cover 99.3 of the data with the remaining points shown with the
522 diamond symbols. Out of 1774 POM data points 77 outliers are not shown in
523 order to keep the vertical axis in a reasonable range. Note that the left axis for
524 panels (b) and (c) for the P:N and P:C ratios has a linear scale whereas the
525 right axis has a hyperbolic scale.

526

527 **Figure 3: Maps of the column integrated sources and sinks of fixed**
528 **nitrogen.** (a) Input due to microbial N_2 fixation. (b) Combined external input
529 due to the present-day atmospheric deposition and river fluxes[24, 25]. (c)
530 Loss due to water column denitrification and anammox. (d) Loss due to
531 sedimentary denitrification and anammox. Note that the color scales are non-
532 linear in order to make the lower rates visible. We note that while the spatial
533 pattern of N_2 fixation is quite robust, the pattern of water-column denitrification
534 is rather more uncertain. See Supplementary Information for alternate patterns
535 of water-column denitrification that are also consistent with the DIN and DIP
536 constraints

537

538 **Figure 4: Contribution of new N to export production.** (a) Fraction of export
539 production supported by the input of new N including microbial fixation,
540 atmospheric deposition (present day), and river inputs. (b) Fraction of export
541 production supported by microbial N₂ fixation alone.
542

543 **Figure 5: Prognostic model simulations of diazotrophs and N₂ fixation.**
544 (a) Rates of N₂ fixation simulated by the CESM. (b) Diazotroph growth
545 limitation patterns. Nutrient replete is where ambient nutrients could support
546 growth at more than 90% of the maximum growth rate. (c) Rates of N₂ Fixation
547 simulated by CESM with reduced grazing pressure, similar to that experienced
548 by the diatoms (maximum grazing rate on diazotrophs reduced by a factor of
549 0.63).

Methods

Inverse model

Ocean Circulation

The ocean circulation model used in this study was optimized using climatological observations of temperature, salinity, natural (pre-bomb) radiocarbon, sea surface height, phosphate, heat and fresh water fluxes, as well as the transient CFC-11 observations[20, 21].

Biogeochemical fluxes and transformations

The biogeochemical conservation equations keep track of six nutrient pools, dissolved inorganic phosphorus and nitrogen (DIP & DIN), dissolved organic phosphorus and nitrogen (DOP & DON) and sinking particulate organic phosphorus and nitrogen (POP & PON).

The downward transport of P and N by the sinking and solubilization of POP and PON is treated in such a way as to produce power-law flux attenuation profiles, $(z/z_0)^{-b}$, with separate exponents b_P and b_N for P and N. The DOP and DON are resired back to DIP and DIN with separate rate constants κ_{dP} and κ_{dN} .

Biological production of organic phosphorus is modeled using a spatially variable uptake rate coefficient that is parameterized in terms of two adjustable parameters (α and β). Two additional parameters control the rate of dissolution of POP into DOP and the rate of DOP respiration (b_P and k_{dP}). A dynamically variable N:P ratio, $r_{N:P}$, parameterized in terms of the local DIP concentration and two more adjustable parameters (A and B) relates the organic-phosphorus production to the organic-nitrogen production. As is the case for organic phosphorus, two adjustable parameters, (b_N and k_{dN}), control the rates of PON dissolution and DON respiration. We consider inputs of fixed N from N₂ fixation, atmospheric deposition, and rivers. Atmospheric and riverine inputs are prescribed[40, 51] and the input of N₂-fixation is diagnosed from the model solution (see Methods).

The net biological production of organic phosphorus in the euphotic zone is modeled using a spatially dependent uptake rate coefficient,

$$J_P = \gamma(\mathbf{r})[DIP], \quad (1)$$

where $\gamma(\mathbf{r})$, is parameterized in terms of satellite-derived net primary production (NPP) and the observed phosphate concentration ($[DIP]_{obs}$) using two adjustable parameters, α and β , [Ref.S[16]], i.e.

$$\gamma(\mathbf{r}) = \begin{cases} \alpha \left[\frac{1}{r_{C:P}} \frac{NPP(\mathbf{r})}{NPP_0} \right]^\beta & \text{if } z < z_c, \\ \frac{[DIP]_{obs}(\mathbf{r})}{[DIP]_0} & \\ 0, & \text{otherwise,} \end{cases} \quad (2)$$

In (2), \mathbf{r} denotes the position on our model grid, $[DIP]_{obs}$ is the objectively mapped phosphate concentration from the 2013 World Ocean Atlas and NPP is the satellite-derived carbon based net primary production (MODIS CbPM)[52,53], $r_{C:P} = 106$ for the Redfield model and $r_{C:P} = (c_1 + c_2[DIP]_{obs})^{-1}$ with $c_1 = 0.006$ and $c_2 = 0.0069/(\text{mmol P/m}^3)$ for the variable stoichiometry model[23], z_c is euphotic zone depth, which is the depth of upper two model layers ($\sim 73\text{m}$). $NPP_0 = 1 \text{ mmol C m}^{-2}\text{s}^{-1}$ are used to ensure that α , has dimensions of inverse time. The full mathematical formulation of the P-cycle conservation equations are given in the Supplementary Information.

The net biological production of organic nitrogen is modeled using

$$J_N = r_{N:P} J_P, \quad (3)$$

with N:P ratio parameterized in terms of the ambient DIP concentration according to

$$r_{N:P} = A + B \cdot \Theta([DIP]; [DIP]_c, \Delta), \quad (4)$$

where A and B are adjustable parameters and where $[DIP]_c = 0.075 \text{ mmol/m}^3$ and $\Delta = 1 \text{ mmol/m}^3$ are fixed parameters used to specify the limiter function

$$\Theta(x; x_c, \lambda) \equiv \frac{1}{2} \left[1 - \tanh \left(\frac{x - x_c}{\lambda} \right) \right]. \quad (5)$$

Sensitivity tests confirm that the inverse model solutions are not sensitive to $[DIP]_c$ (Supplementary Information).

The water-column loss of fixed N is proportional to the rate of organic-carbon respiration, limited to regions where dissolved oxygen concentrations are sufficiently low. Two adjustable parameters, ($[O_2]_c$ and Δ), control the shape of a limiter that ramps up the preference for nitrate over oxygen as the dominant oxidant. A third parameter, (k_w) scales the overall reaction rate.

Benthic losses occur in the bottom grid cells of each water column. They are modeled following an empirical function[54]. We added a parameter, (s), to scale the N-loss function, to account for uncertainties in this parameterization.

Due to the loss of fixed N in low-oxygen environments, recycled and external N sources can only support a fraction of the biological production of organic N implied by

the organic P production and local value of $r_{N:P}$. We therefore introduce a limiter that ramps down the uptake of DIN as its concentration approaches zero. The shape of this limiter is controlled by one last parameter ($[DIN]_c$). Importantly, the limiter acts only on the drawdown of DIN and not on the production of new organic N. The difference between drawdown and production is the inferred rate of N_2 fixation.

$$\begin{aligned} J_{FIX} &= \text{Net Production} - \text{Uptake} \\ &= \theta([DIN]; [DIN]_c, \Gamma) J_N, \end{aligned} \quad (6)$$

The full conservation equations are given in the Supplementary Information.

The inversion process proceeds as follows: We use the model solution for the [DIN], [DIP], and [DON] state variables to define the mean of a joint probability function that we assign to the [DIN], [DIP], and [DON] observational data (See Supplementary Information). This probability function is conditioned on the model's parameters. We then use Bayes' rule to invert the probability function, to obtain the posterior probability for the unknown parameters conditioned on the known data. Finally, we draw samples from the posterior parameter distribution, which we then feed into the model equations to generate a probabilistic sample of the unobserved geochemical rates of interest. To make the computation feasible, we approximate the posterior probability for the parameters using a multivariate normal distribution. Because the normal approximation is poor for the benthic scaling parameter s and the critical oxygen concentration, $[O_2]_c$, we separate the analysis into two levels of inference. At the first level we find the conditional probability of the parameters conditioned on s and $[O_2]_c$. At the second level of inference we vary s and $[O_2]_c$ and compare the relative posterior probability for these parameters after marginalizing out all the other unknown parameters. Separating the analysis in this way has the advantage of making the parameter optimization more efficient and allows us to directly analyze the marginal sensitivity of our inferences to the overall benthic N loss rate and to the overall water-column N loss rates.

Even if we can neglect the uncertainty due to the missing seasonal cycle, there is still the possibility that the system is not in steady state. There is likely strong variability over shorter timescales impacted by ENSO events and inter-annual variability in climate forcings[41]. Our inverse model results must therefore be viewed as a climatological estimate that averages over this type of variability. But there could also be weak longer term trends in the nutrient fields that invalidate the steady-state assumption. To address this issue we augmented the model's list of adjustable parameters to include the amplitudes of the 263 eigenmodes of the linearized model that have e-folding decay timescales of 20 years or more (Supplementary Information). The long decay timescale of these modes would make them difficult to detect in a time-series that is only a few decades long. Furthermore, because these modes are only weakly damped they are more likely to become excited by short term variability[41]. We then jointly re-optimized

the full list of parameters. The inclusion of the extra degrees of freedom had only a modest impact on the optimal values for most of the biogeochemical parameters. The only exceptions were for b_P , whose value decreased by 16% implying a deeper dissolution of POP, and κ_{dP} whose value increased fivefold, implying a very rapid remineralization of DOP. The impact on the inferred large-scale patterns of N_2 fixation due to these changes was small as were the changes to the basin wide budgets (Tables S3).

Prognostic CESM model simulations

The prognostic nitrogen cycle simulations were conducted using a modified version of the ocean component of the Community Earth System Model (CESM)[55, 56]. The model includes representations of four phytoplankton functional groups (diatoms, diazotrophs, calcifiers, and smaller pico- to nano-sized phytoplankton). The model also includes multiple potentially growth-limiting nutrients (nitrogen, phosphorus, iron, and silicon). It has been well validated[55,56] and is often a component of CESM climate simulations[57,58]. The version of the model used here was modified to include variable plankton phosphorus cell quotas, in response to ambient phosphate concentrations after Ref.[23], but with a minimum N:P ratio imposed, and to allow for variable N:P in the sinking particulate export. These modifications were included in CESM2. The CESM model results correspond to the average of the last 20 years of a 310-year simulation. More details are given in the Supplementary Methods.

Comparison of $(N:P)_{exp}$ to N:P of suspended POM

The particulate organic matter data used for the comparison between the N:P of suspended particulate organic matter with the inferred N:P of exported organic matter shown in Fig. 2 is from [Ref. 59].

Method References.

- [51] Seitzinger, S. et al. Global river nutrient export: A scenario analysis of past and future trends. *Global Biogeochem. Cy.* 24(2010).
- [52] Westberry, T. et al. Carbon-based primary productivity modeling with vertically resolved photoacclimation. *Global Biogeochem. Cy.* 22. GB2024 (2008).
- [53] Ocean productivity site (2008). URL
<http://www.science.oregonstate.edu/ocean.productivity/index.php>.
- [54] Bohlen, L., Dale, A. W. & Wallmann, K. Simple transfer functions for calculating benthic fixed nitrogen losses and C:N:P regeneration ratios in global biogeochemical models. *Global Biogeochem. Cy.* 26 (2012).

- [55] Moore, J. K., Doney, S. C. & Lindsay, K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. *Global Biogeochem. Cy.* 18, GB4028 (2004).
- [56] Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. *Nat. Geosci.* 6, 701–710(2013).
- [57] Moore, J. K. et al. Marine ecosystem dynamics and biogeochemical cycling in the community earth system model [cesm1 (bgc)]: Comparison of the 1990s with the 2090s under the rcp4. 5 and rcp8. 5 scenarios. *Journal of Climate* 26, 9291–9312(2013).
- [58] Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. *Science* 359, 1139–1143(2018).
- [59] Martiny, A. C. et al. Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. *Sci. Data* 1:140048 doi: 10.1038/sdata.2014.48 (2014).

Data Availability Statement

The code for the inverse model is available at [DOI: 10.5281/zenodo.2020377](https://doi.org/10.5281/zenodo.2020377). The optimized tracer transport operator used to run the inverse model is available upon request by contacting F.W.P. (fprimeau@uci.edu). All other data used to constrain the inverse model are publicly available (see Supplementary Materials). The particulate organic matter data used for the comparison between the N:P of suspended particulate organic matter with the inferred N:P of exported organic matter shown in Fig. 2 is from [Ref. 59]. The model output for generating all the other figures is available upon request.