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ABSTRACT

Proximity-oriented spatial queries, such as range queries and k-
nearest neighbors (kNNs), are common in many applications, no-
tably in Location Based Services (LBS). However, in many settings,
users may also desire that the returned proximal objects exhibit
(likely) maximal and fine-grained semantic diversity. For instance,
nearby restaurants with different menu items are more interest-
ing than close ones offering similar menus. Towards that goal, we
propose a topic modeling approach based on the Latent Dirichlet
Allocation, a generative statistical model, to effectively model and
exploit a fine-grained notion of diversity, namely based on sets of
keywords (e.g., menu items) instead of a coarser user-given category
(e.g., a restaurant’s cuisine). In addition, and relying on the notion
of Distance Signatures, we propose an index structure that can be
used to effectively extract the k objects that are within a range dis-
tance from a given query location, and which are also semantically
diverse. Our experimental evaluations using real datasets demon-
strate that the proposed methodology is able to provide highly
diversified answers to cardinality-wise constrained range queries
much more efficiently than a straightforward alternative solution.
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1 INTRODUCTION

Range and k-Nearest Neighbor (kNN) queries are among the most
popular categories of queries in many applications relying on
Location-Based Services (LBS) [19]. These spatial queries are par-
ticularly useful when users seek Points of Interest (Pols) in their
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Restaurant | Cuisine Menu Items
S1 Japanese {Sushi, Sashimi, Sake}
S2 Japanese {Udon, Tempura, Sake}
s3 Seafood {Fish, Salmon, Wine}
S4 Asian {Dumplings, Sushi, Beer}
S5 Italian {Pizza, Pasta, Wine}
S6 German {Schnitzel, Pasta, Beer}

Figure 1: Searching restaurants by cuisines and menu items.
vicinity [12], e.g.: closest restaurants or friends. While those types of
queries have been subject to extensive research for over a decade [15,
20], the main motivation for our work is that in many practical
scenarios, in addition to the proximity, the users may be inter-
ested in the semantic diversity in terms of the various descriptors
of nearby entities. For example, in a geo-social network setting, a
user may want to spend time with groups of nearby friends with
varying interests. Similarly, as shown in Fig. 1 (to be used as our
running example), a user located in ¢ may be interested not only
in the the restaurants within a given bounded distance, but also in
experiencing a wider variety of menu items.

Motivated by this, we introduce a novel type of a query called
k-Diversified Range Query (kDRQ), which aims at maximizing the se-
mantic diversity of the answer set of spatial queries within a bounded
range. Although we focus on LBS-applications in our discussion
and examples, kDRQs are useful in many other settings in which
coupling the notion of semantic diversity with spatio-temporal
attributes (e.g., [9]) is meaningful. Existing works have tackled
problems requiring simultaneous consideration of spatial and non-
spatial properties of data objects. For example, queries pertaining
to similarity of spatio-textually enriched trajectories (i.e., seman-
tic/activity trajectories), e.g., [23, 24], take Pols and textual tags into
account. Similarly, [22] presents solutions that aim at diversifying
the answer-set in terms of kNN on road networks. However, in
broad terms, spatio-textual kNN query returns the set of k nearest
locations containing a certain keyword, say “restaurant”, not consid-
ering the details of the restaurants in the respective locations. Thus,
keywords are merely used for an additional filtering/selection.
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One way to improve the query diversification is to use a fine(r)
classification of the Pols. For example, instead of referring to a Pol
only as a “restaurant,” one can describe its category - e.g., “Chinese",
"German”, “Vegetarian”, etc [6]. While this helps in the sense that a
diversified query would now tend to return restaurants of different
categories, it may be difficult to define the classes and to manually
label them, for several reasons: (1) some Pols may not belong to only
one clearly defined category; (2) restaurants of the same category
may have sufficiently different menus to be considered “diverse”;
(3) often, a restaurant may provide its menu, but not a particular
type (as it is the case with many restaurants on Yelp).

We postulate that in order to better capture the diversity of Pols,
these should be described by sets of attributes, e.g., “keywords” such
as menu items in the case of restaurants, and the latent topics de-
fined by those sets. Consider the information in Fig. 1 and assume
that a user requests k = 2 diversified restaurants within a given
range which includes s1, s and s3. If only the cuisine type is used
to qualify the restaurants, it is clear that adding s, to an answer
set that already has s; (or vice-versa) will not improve the overall
diversity of the answer set. Thus those two restaurants will likely
never appear together in any answer set, whereas the pairs {sl, 53}
and {sy,s3} are equally diverse. Now, if one considers the restau-
rants’ menu items instead of only their cuisine, then the diversity
in {s1,s3} is higher than in {s1,s2} as there are no overlapping
keywords in the former set. In this context, we propose the use of
Latent Dirichlet Allocation (LDA) [3] to extract latent topics for
each Pol and to also annotate the sites network accordingly. As
we shall see, LDA yields meaningful and intuitive topics for result
diversification.

Unfortunately it turns out that maximizing set-based diversity
is not an easy problem. In fact, as we shall see later in this paper,
considering pair-wise diversity is an NP-hard problem ([10, 22]).
In order to mitigate that, we rely on the notion of LDA in order
to obtain a more informed (i.e., LDA-annotated) network, and we
propose a new indexing structure inspired by the concept of dis-
tance signatures [11]. Each node of the annotated network stores
approximate distance information of other nodes in a bounded
spatial neighborhood and also diversity information.

In summary, the main contributions of this work are:

o In Section 3 we formalize a novel type of query, named kDRQ,
which returns the k most semantically diverse locations that
are within a given range distance from a query point on road
networks.

e We discuss in Section 4 the use of LDA to extract latent topics
for Pols. We then present our LDA-based topic diversity and
provide a case study to show that it yields meaningful and
intuitive topics for result diversification.

o In Section 5 we present the details of our proposed solution -
index structures and processing algorithms — for calculating
the answer-set to kDRQ.

o In Section 6, we report our detailed experimental evalua-
tions using real datasets, demonstrating the benefits of the
proposed approaches.

We complement our study with an an overview of the related
literature in Section 2, and we conclude this work in Section 7.
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2 RELATED WORK

The concept of incorporating diversity into similarity search has its
origins in information retrieval. The Maximal Marginal Relevance
(MMR) model [5] is one of the earliest proposals to consider diversity
to re-rank documents in the answer set, where at each step, the
element with higher marginal relevance is selected. A document
has high marginal relevance if it is both relevant to the query and
has minimal similarity to previously selected documents.

Several approaches have been proposed for coupling spatial and
diversity settings. Finding the kNNs to a given query point q such
that the distance between any two points is greater than a prede-
fined minimum diversity is addressed in [13], and selecting the
most diverse set within a predefined radius in Hamming space is
addressed in [1]. A k-similar diversification set which optimizes a
linear functions combining the similarity (i.e., closeness) and diver-
sity for a given trade-off between them is studied in [21]. Monitoring
the most diverse k-sized set over distributed sets is addressed in [2].
The main difference to these previous works is in the definition of
diversity. These existing works aim at maximizing the pair-wise
diversity of categories of points. In our approach, we do not assume
that we have categorization of sites, nor do we assume that know
the pair-wise similarities between these categories. Instead, our
approach learns and models the topics of the data using textual
descriptions, to maximize the topic diversity of whole result sets,
rather than considering only pairs of points.

Our goal is to provide the user with a solution that offers a
different kind of trade-off between spatial proximity and diversity
- namely, topic-based instead of category-based diversity.

Angular diversity has been explored in [17] via Nearest Sur-
rounder Query, which finds the nearest objects from a query point
from different angles, and the angular similarity has been used for
diversified kNN problem in [16].

Relying on the Skyline paradigm [4], finding the set of all optimal
solutions for a given linear combination of two diversity notions,
spatial and categorical, is presented in [6]. The categorical diversity
is modeled by the difference between categories of data points - e.g.,
two restaurants are diverse if they are from different ethnicities.
The idea of using keywords, i.e., a finer granularity in order to
distinguish categories, to find diverse kNNs has been explored
in [22]. In that work the keywords are used for filtering data points,
i.e., only points that contain all query keywords are considered. We,
on the other hand, use the concept of Latent Dirichlet Allocation in
order to consider a more sophisticated notion of diversity based on
the set of keywords that describe each object. Moreover, differently
from the works above, we propose an indexing structure to speedup
the processing of kDRQs.

3 PRELIMINARIES

Definition 3.1 (Site Database). Let I = {iy, ..., i|z|} be a set of |Z]|
items (such as terms or keywords). A site, s, is a pair (L, I), where L
is a spatial location, and I € 7. A site database, DB = {sq, ..., S|DB 1
is a collection of sites.

For instance, depending on the application, sites may correspond
to restaurants or individuals, in which cases items could correspond
to menu entries in restaurants or personal skills, respectively.
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Definition 3.2 (Site Network). Let DB be a collection of sites. A
site network is a directed graph G = (V,E, W, S), where V is a set
of sites, each consisting of a pair (v.L,v.I); E € v.L x v.Lis a set of
edges between location-attributes (v.L) of the vertices; W : E — R*
is a function that maps each edge to a positive value representing
the cost of traversing the edge, and S : DB ~ V is a function that
maps a site s € DB3, to a vertex in G.

For the sake of simplicity and ease of exposition we assume that
the site network G, is properly embedded in a (potentially larger)
road network G. Note that this allows for the query point Q to be a
vertex in G that does not belong to the site network G proper.

Definition 3.3 (Network Range Query). Let DI be a collection
of sites, G = (V,E,W,S) be a site network, Q be a location on
an edge from E, and € be a positive real value. A network range
query RQ(DB,G,Q,€) returns all the sites in DB whose loca-
tions have their shortest distance to Q no greater than e, that is:
RQ(DB,G,Q,€) = {s € DB | dist(Q,s.L) < €}, where dist(Q,s.L)
is the shortest network distance from Q to s based on G.W.

A network range query allows us to find all sites within a given
range from a query location. In this work, our goal is to efficiently
reduce this set to a subset with of sites with cardinality < k, while
providing a maximum diversity.

Definition 3.4 (k-Diverse Subset). Let D € DI3 be a set of sites, and
div: D — R be a function that maps such set to a positive value
(diversity score). The k-diverse subset of DB, kDS 3;,, (DB, k), is de-
fined as the subset of D3 with cardinality at most k, maximizing the
diversity score, i.e., kDSg;, (DB, k) = argmaxpcppg, |pj<k div(D).

Based on Definition 3.3 and Definition 3.4, we can finally define
a k-diversified range query as follows:

Definition 3.5. Let DB be a collection of sites, G = (V,E, W, S)
be a site network, let Q be a vertex in the embedding road network
G and let € be a positive real value. Further, let div : D — RY
be a function that maps a set of sites onto a positive diversity
score and let k be a positive integer. The k-diversified range query
kDRQ(DB,G,Q, €, k) is defined as:

kDRQ(DB,G. Q. €. k) = kDS 4;» (RO(DB,G. 0, €).k)

In a nutshell, a k-diversified range query returns the k-most
diverse subset from among all the sites that are within distance at
most € from Q. The choice of diversity measure div is an essential
aspect left abstract above. Next, we discuss two choices for this
function. A straightforward manner to compute the diversity of
sets of items is to simply count their number of unique items.

Definition 3.6 (Set-Union-Based Diversity). Let D = {s1,...,sp|}
be a set of |D| sites. Then we define set-union-based diversity as
SUBD(D) = |Usgep s.1), i.e., the number of unique items in D.

Going back to the example shown in Fig. 1, the set-union-based
diversity of the set of restaurants D = {s1,s2,53} is |Usep s.1| =
|{Sushi, Sashimi, Sake, Udon, Tempura, Fish, Salmon, Wine}| = 8.

The most diverse set of size k among D3 using set-union-based
diversity is therefore given by argmaxpcpp |p|<k SUBD(D)

As simple as this definition appears, finding an optimal k-subset
from a set of candidate sites that maximizes set-union-based diver-
sity is NP-hard. It is an instance of the optimization problem of the
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Figure 2: Graphical Model in plate notation of LDA-based
topic modeling. Boxes represent entities (M sites, N key-
words within a site, K latent topics). Nodes correspond to
random variables, shaded nodes are observable random vari-
ables, and arrows indicate stochastic dependencies.

M

set cover problem, which is at least as hard as the decision problem
(deciding if there exists any k-subset) which is one of Karp’s 21
NP-complete problems [8, 14].

The second measure (initially proposed in [6]) calculates the
diversity of a set by the minimum pair-wise diversity of its elements.
This definition has the advantage that it can be used for any type
of sites for which pair-wise diversity is defined. In our case, where
a site is represented by a set of items, we can use Jaccard similarity
index as a measure of diversity.

Definition 3.7 (Pairwise Diversity). Let D = {s1,....s|p|} be a
set of |D| > 1 sites. Then we define pairwise diversity PD(D) as
PD(D) = ming, s;ep,s;+s;(1 = J(si,s5)), where J(si,s;) = {jﬁﬂjj{
i.e., the Jaccard index between two sets.

For example, to get the pairwise diversity of subset D = {s1, 52,53},
shown in Fig. 1, this algorithm would compute the Jaccard index for
all three pairs from D, J(s1,s2) = %,](51,53) = é and J(s2,s3) =0,
and then obtain the pairwise diversity of D as PD(D) = % (yielded
equally by {s1,s2} and {s1,s3}).

The most diverse set of size k among DB using pairwise diversity
is thus the set argmaxpcpp, | p|<k PD(D)

Despite only considering pairwise diversities, the selection of a k-
subset that maximizes the pairwise diversity is an NP-hard problem.
Even if we could guess the value of the maximum pairwise diversity
x, finding a set of k sites that all have a pairwise diversity of x or
greater is an instance of the clique problem, another one of Karp’s 21
NP-complete problems [14]. A detailed proof for the NP-hardness
of maximizing pairwise diversity can be found in [10].

4 TOPIC-BASED DIVERSITY

To reduce the potentially large and redundant space of items, we
next propose to model the latent topics of items at each site. For that,
we employ Latent Dirichlet Allocation (LDA) [3] — a generative
probabilistic model which assumes that each site is a mixture of
underlying (latent) topics, and each topic has a (latent) distribution
of more and less likely keywords; and we present its use on an
empirical case study.

4.1 LDA Based Diversity

A graphical representation of our LDA model is shown in Fig. 2!. A
vector « of length K is used to parameterize the a priori distribution
of topics. The parameter K corresponds to the number of latent
topics used to model our sites. When a site is created, we assume

Source: https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
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that its topics are chosen following a Dirichlet distribution having
parameter & which we use to obtain a topic distribution 6 for each
of our M sites. Thus, the large plate in Fig. 2 corresponds to a set
of M sites, each having a topic distribution 8 drawn randomly (and
Dirichlet distributed) from a.

For each topic, the prior parameter f is used to generate the
distribution of words within a topic. Thus, we assume that a topic
generates words following a Dirichlet distribution having a vector
B of length |Z| as parameter, where (cf. Definition 3.1) |Z| is the
number of words we consider in our dictionary. For each of our
K topics, a resulting vector ¢ stores, for each word i; € Z, the
probability of i; appearing in this topic. Therefore, the smallest
plate in Fig. 2 denotes a set of K vectors ¢; of length |Z|, mapping
each keyword to the probability of appearing within topic i.

To generate the words within a site s;, a topic is chosen randomly
from the topic distribution 6 and, given this topic, a number of
N; words are generated randomly from the word distribution ¢ -
where N; is assumed to be independent from the chosen topic and
uniformly distributed. This results, for each site, in a set of N; words
(z,w), where w is a word, and z is the topic of w. In Fig. 2, the node
W denotes the set of all N = }°; N; words, and Z is a function that
maps each word to the topic that generated it. Node W is shaded,
as it is the only variables that can be observed, while all other
variables are latent. The reason for choosing a Dirichlet distribution
rather than a more straightforward multinomial distribution for
the topic and word priors is inspired by research showing that the
distribution of words can be better approximated using a Dirichlet
distribution [18].

To infer the topics of our site database, we employ a generative
process for obtaining labels for the site. Given the observed key-
words of sites in our database, LDA optimizes the latent variables
so as to maximize the likelihood matching our observed sites and
their keywords. This generative process works as follows. Sites
are represented as random mixtures over latent topics, where each
topic is characterized by a distribution over all YW keywords from
a chosen dictionary of most common keywords. LDA assumes the
following generative process for database D3 consisting of M sites,
each having a number of N; keywords.

e For each site s; choose a topic distribution 6; ~ Dir(a),
where 1 < i < |DB|, and Dir(«) is a Dirichlet distribution
with prior a. In our experiments, we initially assume each
topic to have uniform prior probabilities, having a; = a;
for 1 < i,j < K. This apriori distribution is adapted using
Bayesian inference [3] to maximize the likelihood of gener-
ating the observed keywords.

e For each topic, choose ¢; ~ Dir(f), where 1 < i < K. For our
experiments, we assume each word to have the same low
prior probability, having ; = 0.001 for 1 < i < W. These
low prior probabilities are desirable for fast convergence, as
most keywords are very rare.

e For each word w in site j:

(1) Choose a topic z ~ Multinomial(6;) from the topic distri-
bution of j, and
(2) Choose a word w ~ Multinomial(¢z) from the word dis-
tribution ¢ of topic z.
Here, Multinomial(x) corresponds to a multinomial distri-
bution drawing from a stochastic vector x.

Xu Teng et al.

Next, we propose how to define the diversity of a set of sites based
on their coverage of latent topics. The idea is to describe a set of
sites by the expected number of distinct topics by this set.

Definition 4.1 (Topic-Based Diversity). Let D = {s,...,s|p|} be a
set of sites and let 6; denote the latent topic distribution of site s;
and consequently, let §; ; denotes the probability of site s; to belong
to topic j (1 < j < K). Topic-based diversity TBD(D) is defined as
the expected number of unique topics among sites in D. Formally:

K
TBD(D) =Y 1- [] (1-6:;). (1)
j=1 sieD

The idea of Equation 1 is to compute, for each topic j, the prob-
ability that at least one site in D covers topic j. This probability
is equal to the counter-probability of having no site in D cover
topic j which is computed as: P(no topic j in D) := [T5,ep (16, ;).
Thus, 1 — P(no topic j in D) is the probability of having topic j
appear at least once (i.e., topic j being covered), and TBD(D) is the
expectation of the number of topics covered.

Example 4.2. Consider the set of D = {s1, 53,5} sites shown in
Fig. 1, and assume that LDA returns the following distributions
among K = 3 latent topics: 6; = (0.8,0.1,0.1), 3 = (0.6,0.1,0.3),
and 05 = (0.0,1.0,0.0). This means that site s; has a high chance
(80%) to belong to Topic 1 (which may correspond to a latent topic
“Japanese Food”), s3 is also likely to belong to the same topic, but
also has a higher chance to belong to Topic 3, whereas ss is certain
to belong to Topic 2 (which could correspond to “Italian Food”).

To compute the topic-based diversity of D, we employ Equation 1.
For the first topic, we obtain 1 - [T;,ep(1-60;,1) =1-(1-0.8) *
(1-0.6) * (1 -0) = 0.92. Thus, we have a 92% likelihood that at
least one of the three sites has Topic 1. For Topic 2, we see that ss is
guaranteed to have this topic. Consequently we get 1 - [T, es(1
0i2) =1-(1-0.1) x (1 -0.1) » (1 - 1) = 1. For Topic 3, we
obtain a probability of 1 - (1 -0.1) * (1-10.3) * (1-0) =0.37 of
being covered. Summation of these three values yields TBD(D) =
0.92 + 1.00 + 0.37 = 2.29. Thus, we expect 2.29 out of these three
topics to be covered.

Intuitively, our notion of topic-based diversity provides a more
practical definition of diversity that assigns a lower diversity to
(different) keywords having a high probability to belong to the same
topic. Yet, in terms of computational complexity, the problem of
maximizing topic-based diversity remains NP-hard, as shown in
the following.

LEmMMA 4.3. Given a set of |D| sites. The problem TOPIC-kDIV
of finding the k-Diverse Subset (c.f. Definition 3.4) using topic-based
diversity is NP-hard.

Proor. Let K be the number of latent topics used in Defini-
tion 4.1 and assume a special case where each site covers exactly
m (m < k) topics with uniform probability. Further, assume that
K > mk. In this case, topic-based diversity is achieved by selecting
sites that maximize the number of topics covered with non-zero
probability. This problem of finding a set of sites, each having m
topics, that maximizes the cover of topics, is an instance of MAX-
COVER, another one of Karp’s 21 NP-complete problems [14]. Since
the constructed case, which is NP-complete, is a special case of
TOPIC-kDIV, we conclude that TOPIC-kDIV is NP-hard. ]



Fine-Grained Diversification of Proximity Constrained Queries on Road Networks

SSTD 19, August 19-21, 2019, Vienna, Austria

Table 1: Top-10 most probably keywords for K = 10 latent topics (from Yelp, with Natural Language Tookit).

Topic | Keywords (Probabilities in %)
1 ‘chicken’(9.2), ‘curri’(8.9), ‘indian’(6.4), ‘masala’(2.7), ‘spice’(1.9), ‘lamb’(1.9), ‘biryani’(1.7), ‘tandoori’(1.7), ‘rice’(1.7), ‘lentil’(1.5)
2 ‘chicken’(6.5), ‘enchilada’(5.5), ‘mexican’(5.0), ‘taco’(4.0), ‘bean’(2.8), ‘salsa’(2.6), ‘black’(1.8), ‘soup’(1.7), ‘casserol’(1.6), ‘chipotl’(1.5)
3 ‘chines’(9.2), ‘chicken’(7.7), ‘fri’(4.3), ‘pork’(3.5), ‘rice’(2.7), ‘noodl’(2.6), ‘beef’(2.4), ‘stir’(2.4), ‘soup’(2.3), ‘sauc’(1.6)
4 ‘thai’(19.8), ‘chicken’(7.9), ‘curri’(6.8), ‘soup’(3.8), ‘coconut’(3.5), ‘salad’(3.0), ‘shrimp’(2.7), ‘noodl’(2.6), ‘green’(2.0), ‘sauc’(1.8)
5 ‘chicken’(5.4), ‘chocol’(3.7), ‘cooki’(3.6), ‘butter’(3.3), ‘peanut’(3.0), ‘bake’(2.5), ‘chees’(1.9), ‘burger’(1.9), ‘chip’(1.6), ‘casserol’(1.5)
6 ‘french’(6.9), ‘soup’(4.4), ‘onion’(3.9), ‘chocol’(2.6), ‘creme’(2.5), ‘chicken’(2.1),bread’(2.0), ‘sauc’(1.5), ‘clafouti’(1.5), ‘toast’(1.5)
7 ‘grill’(6.6), ‘chicken’(5.4), ‘shrimp’(2.6), ‘fri’(1.7), ‘steak’(1.6), ‘southern’(1.6), ‘cajun’(1.5), ‘grit’(1.5),pork’(1.4), ‘sauc’(1.4)
8 ‘italian’(6.7), ‘lasagna’(3.3), ‘pasta’(2.6), ‘chicken’(2.5), ‘sauc’(2.3), ‘tomato’(2.2), ‘pizza’(2.1), ‘spaghetti’(1.9),'sausag’(1.9), ‘soup’(1.8)
9 ‘miso’(5.8), ‘japanes’(4.7), ‘teriyaki’(2.7), ‘bowl’(2.6), ‘salmon’(2.6), ‘glaze’(2.4), ‘scallop’(1.2), ‘eggplant’(1.0), ‘crispi’(0.8), ‘appet’(0.7)
10 ‘salad’(4.5), ‘potato’(2.0), ‘roast’(2.0), ‘chicken’(1.9), ‘sauc’(1.5), ‘bean’(1.4), ‘grill’(1.3), ‘green’(1.2), ‘cake’(1.1), ‘pie’(1.1)
Table 2: Most diverse set of sites with k = 3.
Measure Site Information
Oregano’s Pizza Bistro: (Italian, Restaurants, Pizza)
LDA-based Wienerschnitzel: (Sandwiches, Fast Food, Food, Hot Dogs, Ice Cream & Frozen Yogurt, Restaurants, Desserts)
Umami: (Restaurants, Asian Fusion, Japanese, Soup, Ramen)
Genghis Grill: (Restaurants, Chinese, Vegan, Buffets, Mongolian, Vegetarian, Thai, Korean, Asian Fusion)
Set-Union-Based | Noodles & Company: (Specialty Food, Food, Chinese, Noodles, Soup, Asian Fusion, Italian, Salad, Comfort Food,
Restaurants, Japanese, Sandwiches, Fast Food, Pasta Shop)
Pier 54: (Mediterranean, Lounges, Beer, Wine & Spirits, American (New), Breakfast & Brunch, Italian, Food, Restaurants,
Nightlife, Arts & Entertainment, Music Venues, Bars, Cocktail Bars, Wine Bars, Burgers)
Final Round Sports Bar & Grill: (Sports Bars, Restaurants, Pizza, Bars, American (Traditional), Nightlife)
Pair-wise-Based | Sweet Dessert Cafe: (Creperies, Cafes, Restaurants, Coffee & Tea, Breakfast & Brunch, Sandwiches, Desserts, Food)
McDonald’s: (Fast Food, Restaurants, Burgers, Food)

To provide an intuition of our algorithms to efficiently find a
set of sites that have a high topic-based diversity score, reconsider
the example above. If we were to add an additional site to this
set, what type of site be most beneficial to increase the diversity?
Clearly, Topic 2 is already fully covered, such that adding more
sites that have a high probability of having Topic 2 is futile. At the
same time, adding more of Topic 1 has low utility, as this topic is
already covered with a probability of 92%. However, adding another
site having a high probability of having Topic 3 would boost the
topic-based diversity score close to 3.0 in this example.

Before we show how this observation can be exploited into a
locally optimizing heuristic to efficiently find a set of high topic-
based diversity, we will first show a qualitative evaluation that
shows that our latent topics are indeed able to describe real-world
data in a meaningful way, using cooking recipes and restaurant
menus as a sample (yet representative) scenario.

4.2 Case Study: LDA for Restaurant Sites

We now present an empirical evaluation of our LDA-based diversity
measure. The semantically useful and humanly intuitive outcomes
are shown using a dataset crawled from Yummly, a recipe recom-
mendation website. We extracted the K = 10 latent topics from a
set of M = 27,638 recipes, considering the set of V' = 1,000 most
frequent keywords. Table 1 shows the result of LDA to model this
dataset. For each i-th topic, this table shows the vector ¢;, which
corresponds to a multinomial distribution over all words in our
dictionary. Thus, for each topic i, the probabilities of a word w cor-
respond to the probability that word w will be generated by topic i.
For each topic, the ten largest probability values are shown in this

table (although many more words may have a non-zero probability
to be produced by this topic).

Intuitively, we see that the topics found by LDA make sense.
We see that the ten topics corresponds to Indian, Mexican, Chi-
nese, Thai, American, French, Cajun, Italian, Japanese and Healthy
cuisines. LDA understands that some keywords appear in most
topics at different frequencies. For example, the term “Chicken”
appears as one of the Top-10 keywords in all topics except Japanese.
We also see that keywords such as “Curry” (tokenized to “Curri”
in Table 1) appears with high probability in Topic 2 (Indian) and
Topic 5 (Thai). We also see that words such as “Thai”, “Lasagna” and
“Miso” are very discriminative, appearing with very high probability
in one topic only.

To show that our LDA-based approach to define diversity (Def. 4.1)
yields intuitive sets of diverse sites, we compare our approach to
traditional diversity measures in Table 2 by performing trained
LDA model on test dataset from Yelp.

For each of the three diversity measures proposed in Section 3,
this table shows the set of k = 3 most diverse sites among 150
randomly selected candidate sites. To find this set, we employ the
Swap Algorithm that has been proposed in [21] to heuristically
find k subsets having high diversity. This algorithm is shown in
Algorithm 1.

We see that the Set-Union-Based approach (Def. 3.6) yields se-
mantically non-diverse results. The problem of this approach, which
maximizes the number of unique keywords among the result sites,
is that sites having a large number of keywords get an unfair ad-
vantage. In addition, the semantic of words is not considered, as all
words are treated as equally in-equal categories.
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Algorithm 1: The Swap Algorithm [21]

Input: Set of sites D, Integer k
1 ResultSet « @
2 foreach s € D do

3 if |ResultSet| < k then

4 ‘ ResultSet « ResultSet U s

5 else

6 C < ResultSet us

7 worstSite « arg maxy o Div(C \ s)
8 ResultSet < C \ worstSite

9 return ResultSet

In contrast, the pair-wise diversity approach (c.f. Definition 3.7),
which maximizes the pairwise diversity between sites, suffers from
similar problems, as many pairs of sites have a Jaccard similarity
of zero (no overlapping keywords). But without the ability to find
the semantic topics that connect keywords, this approach also falls
into the trap of returning sites that have different, but semantically
similar keywords.

To summarize, we observe that our LDA-based definition of di-
versity is capable to understand which keywords correspond to
the same topic, thus maximizing the semantic overlap between
returned sites. We also note the advantage of an LDA-based ap-
proach to probabilistically map between topics and keywords. This
is an example, for example, comparing to a purely ontology-based
approach, where each keyword would belong to exactly one topic.
Such an ontology approach would be forced to map common terms
such as “chicken” deterministcally to one topic.

Finally, we note that the Swap algorithm (Algorithm 1) only
yields a heuristic approximation of the optimal set that optimizes
topic-based diversity. We emphasize that the methodologies that
we elaborate upon in the remainder of this work do not propose any
new heuristics to select k diverse sites from a set of n candidates.
For solutions to this problem we refer the interested reader to
algorithms surveyed and proposed by Vieira et. al. [21]. Instead,
our goal is to efficiently find high-diversity candidates by traversing
the spatial network in an effective manner. Thus, we want to quickly
lead our algorithm to sites that are likely to contribute to the final
result without having to explore the entire collection of sites along
the network within the query range.

5 PROCESSING KDRQ QUERIES

We now present our query processing approach, starting with the
novel index structure, followed by the algorithmic processing.

5.1 DivMap: A Topic-Based Diversity
Maximizing Index Structure

To efficiently support k-diversified range queries on spatial net-

works, we propose a specialized index structure, which is inspired

by the concept of distance signatures [11].

5.1.1 General Idea. At each node of the network, a distance sig-
nature stores approximate distance information of nodes in the
spatial neighborhood. In detail, for different distance ranges (such
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Edge/Dir 1
Edge/Dir 2

Vertices

Figure 3: Schematic Sketch of our Diversity Map Index.

as [0m, 500m],[500m, 1000m], ...), the set of other nodes having a
shortest-path distance within each range is memorized. For exam-
ple, one node v may contain the information that the distance to
node u is bounded by 1500 — 2000 units. Having such information at
each node in the network, allows to find a shortest paths between
v and u more efficiently than a blind search such as Dijkstra’s
algorithm or an A* search would provide.

In our setting, we are not interested in finding shortest paths,
but we are interested in finding high-diversity sites within a given
range to return to our user. Thus, we propose to store at each node
and for each adjacent edge, an approximation of topics that can be
found by following the corresponding direction. Since our intent
is to maximize diversity, it suffices to store upper-bounds to topic
diversity for each direction and each distance range.

An overview of our proposed Diversity Map Index (DivMap) is
depicted in Fig. 3. At each node v of the network, the algorithm
places a virtual “signpost”. Pointing in each direction that can be
taken from v, this signpost gives a distance-approximated summary
of the topics can be found by following this direction. In particular,
this information includes the maximum topic values of sites found
in each direction, and for each distance bucket defined by the dis-
tance signature. The following describes our algorithm to build this
index structure.

Edges/Directions Distance Signature Topic Upper Bounds

5.1.2  Index Construction. Our index construction algorithm shown
in Algorithm 2 requires a site network G as defined in Definition 3.2
and a boundary set B to discretize the distance space, for example,
B = {[0m, 500m],[500m, 1000m], ... }. The algorithm iteratively pro-
cesses each vertex and adjacent node independently, which allows
for great parallelizability. For each vertex v and adjacent edge e, a
breadth-first search is used to find build the virtual signpost. For
this purpose, Line 4 removes other adjacent edges of v to ensure
that only paths crossing e are explored. Forcing the algorithm to
use edge e, we invoke Dijkstra’s single-source shortest-path algo-
rithm [7] in Line 5, to explore all sites reachable by using edge e
from vertex v. Whenever Dijkstra’s algorithm completes a node
having a site s, we checks if this site is useful to change the vir-
tual signpost of node v. For this purpose, we use the shortest path
distance between Q and s (returned from Dijkstra’s algorithm), to
find distance bucket the current site falls into to in Lines 7-8. The
index_of function of Line 8 simply returns the index of the bucket
that contains distance d. For example, if the distance signature
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Algorithm 2: DivMap Index Construction

Algorithm 3: DivMap Based Diverse Range Query

Input: Site network G = (V,E,W,S), boundary set B
1 foreach nodev € V do

2 foreach edge e adjacent to v do
3 DivMape < matrix(|B|, K)
//All zeroes |B| x K matrix
4 Remove all edges adjacent to v other than e
5 Invoke Dijkstra algorithm starting at v
6 foreach site s found do
7 d < dist(v,s)
//shortest path distance between v and s
8 index < index_of (d, B)
//Distance “Bucket” s falls into
9 for topic in 1:K do
10 DivMape[index, topic] <
L max(DivMape [index, topic], 0s, topic)

1 Restore all edges adjacent to v

12 return DivMap

buckets are [0, 500m], [500m, 1000m], [1000m, 1500m], ..., then this
function would return index 3 for d = 1200m. Next, we process the
topic vector 0 of site s. Our goal is to see if there is any topic i such
that s has a higher topic value 8 ; than all the sites seen in the
same distance bucket so far. This check is performed in Line 10,
the heart of the algorithm. Here, the maximum diversity values of
current signpost in the corresponding distance signature bucket
are increased, if 6 ; is larger than the currently largest value.

Finally, the edges that were ignored in this round are restored
in Line 11. Once all nodes and adjacent nodes are processed, the
complete index is returned.

5.2 Efficient kDRQ Processing

This section describes how our index structure proposed in Section
5.1 can be used to efficiently answer k-diversified range queries.

The general idea of this algorithm is as follows. Instead of using a
naive Dijkstra search to find all the sites inside the query range, we
exploit the DivMap index to greedily direct the search to sites that
locally complement the diversity of the k-most diverse sites that
we have already found so far. For example, if the most diverse set of
k sites found so far is completely covering Topic 1 and 2, but is only
partially covering Topic 3, and is not covering Topic 4 at all, then the
algorithm will will be guided to take directions that are extremely
likely to lead to sites having Topic 4, and somewhat likely to lead to
sites having Topic 3. However, our algorithm has to find a balance
between two aspect to optimize: distance and diversity. Following
a purely “distance-first” approach, the algorithm would degenerate
to Dijkstra algorithm. The advantage is that this algorithm may
quickly find some sites, which may already yield a high diversity
value “by chance”. Following a purely “diversity-first” approach,
our algorithm would head straight for the best sites (in terms of
diversity given the current set of sites seen so far), while ignoring
sites that are close to already explored parts of the network, and
which could be added to the result at little cost.

Input: Site network G = (V,E,W,S), Query Q € V, integer k,
range €, Diversity Index DivMap
1 initialization: D < @&, MaxHeap H < {((Q,Q), )},
distList < {(Q,0)}
// H is a heap sorted by Utility (Definition 5.1)
2 while H # @ do

3 e < H.extractMax //Remove (pop) the max-Utility
4 e'%! Jabel « “Green” //Mark tail node of e visited
5 | D < Swap(DuS(et%!), k)
//Swap sites S(emil) at e’ into D (See Alg. 1)
6 if D has changed then
7 Update utility U(D,e—distList[e!e], DivMap) (e;) for
eache; in H
8 foreach edge e, ; adjacent to !9l do
9 if efzfi;l.label=“Green”then
10 ‘ continue
1 else if efl%-l in distList then
12 if distList[eZ%-l] < distList[e" %] + w(eqd;)
then
13 ‘ continue
14 else
15 L H.remove(egyop) if e;‘;f)lp = efl‘é;l for egyop in
| H
16 distList[eZ%l] « distList[e' %] + w(eqq;)
17 H'insert(e“dj’ Y(p, e—distList[eéZ,;.l],DivMap) (eadj )

8 return D

—-

Intuitively, a balanced algorithm should prefer directions that
lead to interesting sites (in terms of diversity given the current set
of sites) which are not too far away. Our DivMap index proposed
in Section 5.1 allows to do that: Not only does it tell the algorithm
with direction to follow to find interesting sites, but it also gives
the algorithm an approximation of how far it will have to travel to
find these sites.

Similar to Dijkstra’s algorithm, we maintain a priority queue of
“active” edges adjacent to vertices that have already been explored
and processed. In each iteration, we greedily select an active edge
which maximizes the utility given the currently best k-set of sites.
Whenever a site s is found, we use a greedy swap algorithm [21],
to see if swapping s with any of the up to k currently selected sites
improves the topic-based diversity (c.f. Definition 4.1). Note that
this swap operation requires O(kz)—time, as k topic diversity values
need to be computed, each for a set of no more than k sites.

Starting at the query point Q, all adjacent unvisited edges are
stored in a candidate list, sorted in ascending order by their utility.
To balance between spatial proximity to unvisited direction and
diversity, we define a distance-weighted utility up, ¢, pivmap (e=
(vhead, vtail)), where v¢%? and v*%"! are the head and tail end
of e. This function estimates the utility of v exploring an direction
through e as the expected gain of diversity, given the current set
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of selected sites D, the range query parameter €, and exploiting
information stored in our index DivMap, formally:

Definition 5.1 (Utility). Let G be a site network and let DivMap
be a diversity map index as described in Section 5.1.2. Further, let D
be the current set of at most k sites selected as result, v be a visited
node and v’ be one of the unvisited adjacent nodes to v through
e. A € [0,1] and € be real values. The utility u(p ¢ pivpap)(€) of
exploring vertex v via edge e is defined as:

u(D,e,DivMap)(e) = (2)
m ia—1 K
> AT DivMape ([sig,j]) - [ (1-6:5)
sig=1 Jj=1 sieD

where m is the index of distance buckets that ¢ falls into

In a nutshell, Equation 2 uses, for each topic j, the probability
[1s,ep(1 - 0;,5) that topic j is not covered by the current site set
D. The remaining utility of topic j is multiplied with the upper
bound value of topic j in the first bucket of distance signature
bucket DivMape ([1,/]), i.e., the maximum value that we can reach
for topic j in the first bucket. This procedure is repeated for each
distance signature bucket, but the utility of each bucket after the
first is penalized by a cumulative factor of A. For example, for A = 0.5,
the diversity of the fourth bucket will be reduced by a factor of
0.5% = 0.125.

The factor A allows to select the trade-off between distance-greed
and diversity-greed. In the extreme case where A = 1, all buckets
will be weighted equally, allowing the algorithm to chase a site in
the outer buckets before finding any other sites. On the contrary, the
other extreme of A = 0 will completely ignore any bucket beyond
the first, thus allowing the algorithm only to consider sites within
the first bucket. Depending on the size of the buckets in the distance
signature, this setting will force the algorithm to explore parts of
the network close to Q first. The choice of A is not trivial, and as
our experimental evaluation in Section 6 shows, a good trade-off
requires 0 < A < 1.

Once a node is visited (initially, the query node Q), all adjacent
edges are added to the priority queue if the distance between Q and
tail of each edge does not exceed the range query parameter e.

A formal algorithm for this index-supported search is found in
Algorithm 3. This algorithm maintains a max-heap that stores all
active network edges sorted by their utility. In each iteration, the
edge e having the highest utility is processed as follows: The tail
mil, is marked as visited (Line 4). Then, all

are processed using the Swap algorithm (c.f.
tail

node of e, denoted as e

sites located at ef?!

Algorithm 1) in Line 5. If any site at e"“"" is added to the current
result set D in this way, all utility values have to be recomputed in
Line 7, as the utility (c.f. Definition 5.1) depends on the current set
of sites. Computing the utility of a edge requires O(k-K-m), where
k is the number of results, K is the number of topics, and m is the
number of distance signature buckets. Doing this for each of the
C currently active candidates nodes yields a total time complexity
of O(C -1log(C) - k - K - m), as the insertion into a heap of size C
requires O(log(C)) time.

Once ¢'®! has been processed, all neighbors edges, denoted as
€qdj> of ¢! are handled in three cases. In Case I (Lines 9 - 10),
the adjacent edge whose tail node have already been visited are
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ignored, as site at this node have already been processed. Case II
Z‘é’jl which have not been processed, but which
are already in the candidate heap H. For these scenario, we check

;Zi.l (Lines 11-15). Note that according
to Definition 2, higher € means higher utility. Since our algorithm
does not necessarily process vertices by their distance (like Dijkstra
algorithm would) and may visit a node before it’s shortest path
has been found, this step ensures that we always store the shortest
distance between Q and each visited node in distList, which as
well guarantees that the highest utility of each visited node is kept
in H. Thus, if previous path to eflfi;-l

path, then we can simply skip e, 4;(Line 13). Otherwise, we need to
remove all the previous path to efzfi;l (Line 15). And the algorithm
in Lines 16 - 17 will be executed to store/update the distance in-
tail
adj

considers vertices e

the distance between Q and e

is shorter than current found

formation of e in distList, and insert e,4; and corresponding

utility into H if e;‘fii! has never been met or already met but not

processed yet while keeping the shortest path to Q, which we treat
as Case III.

The algorithm terminates when H is empty, or when an maxi-
mum budget of iterations (not denoted in Algorithm 3 for brevity)
is reached. The later termination criterion is to ensure that high-
utility results can be returned to the user, without the requiring all
sites to be explored first.

6 EXPERIMENTS

The datasets used for constructing site network consist of two
main components: (1) the walkway network from part of Arizona,
U.S., obtained from OpenStreetMap, is used as road network; it
includes 18,773 nodes and 48,548 edges. (2) to construct the site
database, sites are obtained from Yelp in the same area, contain-
ing both spatial locations and an average of 4.067 keywords tex-
tual information for 882 restaurants in this region. The experi-
ments are conducted on a PC with Intel(R) Xeon(R) CPU E3-1240
v6 @3.70GHz, 32 GB RAM and 512 GB disk storage. Windows
10 Enterprise 64-bit is the operating system, and all algorithms
are implemented by Python 2.7. The source code can be found at
https://github.com/XTRunner/KDRQ 2019. The distance range, e,
is by default set to 2000m for all the following experiments, as-
suming which is the maximum distance a user would walk. For
each experiment, 200 vertices are randomly selected from the site
network as query points and the average results are presented.

Evaluation of Parameter A: In order to maximize the efficiency of
the DivMap index, the parameter A, which balances between “spa-
tial greed” and “diversity greed”, must be chosen wisely. Recall (cf.
Alg. 3 and Def. 2) that we choose the direction with highest utility
and A controls the weight of each bucket while calculating it. The
boundary set is set to be [0,500m], [500m, 1000m], [1000m, 1500m]
and [1500m, 2000m | for this part. Our experimental results, shown
in Fig. 4, evaluates the impacts of A in terms of three different mea-
surements — time efficiency (computation time to approach certain
diversity), site efficiency (visited sites), and edge efficiency (visited
edge). Specifically, Figure 4(a) shows that the algorithms run con-
sistently fast (less than 0.2 seconds run-time) for all settings of A.
In addition to run-times, we also measure platform independent
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Figure 5: Effect of different boundary sets

measure to understand how different values of A explore the net-
work differently. In Figure 4(b), we see that, for all A values, the
gain in diversity per site is approximately the same. This may seem
counter-intuitive at first, as A = 1 may walk far away to visit the
(diversity-wise) best sites first, while A = 1 has to first explore the
sites in the first distance signature bucket. Yet, in order to achieve
diversity close to the maximum of 3 (for k = 3), the sites in the first
bucket seem to be sufficiently diverse. Furthermore, an important
observation of Figure 4(c) is that extreme A values, i.e., A = 0 or
A =1, yield worse results in terms of edge efficiency. Thus, a pure
“spatial first” or “diversity first” approach is not recommended, ei-
ther exploring the network too locally, or chasing too far away sites.
In our dataset, it appears that A = 0.25 provides a good trade-off,
but this choice depends on characteristics of the dataset, such as
the density of sites, the number of latent features, and the number
of distance buckets. We note that finding heuristics to quickly esti-
mate this hyper-parameter for a new dataset is part of our future
work. The following evaluation experiments utilize the extreme
cases (i.e., A = 0 and 1) to compare with the result of the trade-off
scenario (i.e., A = 0.25).

Evaluation of the boundary sets B: Besides of A, boundary set
(parameter B in Algorithm 2) is as well an influential factor of
efficiency. In our experiments, four different boundary sets are
considered:

e Boundary 1: [0-1000, 1000-2000]

e Boundary 2: [0-500, 500-1000, 1000-1500, 1500-2000]

e Boundary 3: [0-250, 250-500, 500-750, ..., 1750-2000]

e Boundary 4: [0-1000, 1000-1414, 1414-1732, 1732-2000]

Boundaries 1,2 and 3 have equally sized distance intervals but
with different number of buckets, while Boundary 4 has the length
of the intervals implying an equal area allocated for each bucket,

e.g., the disk with radius 1000m and the annulus between it and
the concentric disk with radius 1414m have equal areas. Moreover,
without loss of generality, besides of two extreme A values (ie.,
A = 0and A = 1), we also present the result when A = 0.25 in
Fig. 5(c) which is shown to the best A option for our dataset from
above.

We can observe from Fig. 5(a) (A = 0) that the result using Bound-
ary 4 is identical to using Boundary 1, since only the first bucket
influences the result, allowing the algorithm to quickly find high-
diversity results. The diversity increases slowly for Boundary 2,
but eventually catch up with Boundary 1 and 4. Thus, it appears
that Boundary 2 groups sites inefficiently into distance signature
buckets for this study region. Using Boundary 3 (the black dot
line), we obtain significantly less diversity in general. The reason
is that in the case of A = 0, the algorithm is forced to stay very
close to explored areas, being constrained in its freedom to chase
high-diversity sites, and thus becoming more of a distance-first
algorithm.

For A = 1 (i.e., all buckets within given distance range are con-
sidered equally at each step), shown in the right of Fig. 5(b), bucket
range influences the results in a different way. First, we see that the
differences between Boundary 3 and Boundary 1 and 4 are smaller,
comparing to when A = 0. This is because the case of A = 1 ignores
the distance of buckets, going purely “diversity-first”. Thus, having
more buckets simply gives this algorithm more details where to
find the currently highest utility sites. The reason for the separation
of Boundary 1 and 4 is that the outer rings are now further away,
and the A = 1 algorithm chases sites in these rings oblivious of the
distance requires to get there, thus incurring a potentially large de-
tour. Having these additional details allows it to chase the best sites,
thus finding higher diversity sites, but taking more time (number
of edges explored) to find them. Finally, the case A = 0.25 (Fig. 5(c))
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Figure 6: DivMap index evaluation

is considered as a trade-off decision between distance-first (A = 0)
and diversity-first (A = 1), showing much different trends for all
four boundary sets. The smaller Boundary 2 surpassed Boundary 1
and 4, allowing the algorithm to more quickly detect high-diversity
results. The result for Boundary 3, compares to the previous, start-
ing to merge into the trend of Boundary 1 and 4. We conclude that
a balanced value 0 < A < 1 is preferable, to avoid inefficiencies by
either ignoring spatial distance or diversity.

Evaluation of parameter k. In the next experiment, we evaluate
the parameter k, while also comparing our approach to distance-
breath first Dijkstra search through the network. The resulting
diversities for k values of 3, 5 and 7 are very similar to each other, as
shown in Fig. 6 — demonstrating that (the performance of) DivMap-
based kDRQ dominates Dijkstra algorithm in terms of diversity
and computation time. We observe that A = 0.25 offers slightly
better result when k = 3, and an additional observation from Fig. 6
is that A = 0 initially has a better performance, but is eventually
surpassed by A = 1. This experiment supports the intuition that
our DivMap index is able to obtain high-diversity much quicker
especially when A = 0.25 (in terms of computation time) than a
traditional Dijkstra search which ignores topic information. We
also conclude that the overall run-times using different settings for
parameter A do not drastically affect run-times, but as we see in
Figure 4(c), the network space explored is tremendously different,
suggesting that a balanced value of A, which neglects neither the
spatial nor the diversity dimension, should be preferred.

7 CONCLUSIONS AND FUTURE WORK

We introduced the kDRQ - a novel query aiming at determining
the set of k objects on a road network with highest diversity in
terms of the set of their descriptive keywords, and are within a
given distance from the user’s location. We proposed an efficient
processing approach for kDRQ, relying on a novel index structure
and an LDA-based heuristic for diversity measure. Our experiments
demonstrated that the proposed approach can adjust to find the
right balance between diversity-first and distance-first to determine
high-diversity results.

As part of our future work, we plan to investigate: (a) heuristics
to automatically choose the search parameter A sensitive to both
the terms dataset and the area around the query point, (b) extend
kDRQ to incorporate continuous variants that consider the changes
of the answer-set both due to objects (i.e., users) motion, as well as
due to changes in the description items (e.g., a restaurant updates

part of its menu at certain hour) and (c) the broader impact of the
properties of the diversification function [10] on the quality of the
results of the heuristics.
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