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Abstract
Motivated by the increasingly more important role of ab initio molecular
dynamics models in material simulations, this work focuses on the definition
of local stress, when the forces are determined from quantum-mechanical
(QM) descriptions. Two types of ab initio models, including the Born–
Oppenheimer and Ehrenfest dynamics, are considered. In addition, formulas
are derived for both tight-binding and real-space methods for the approx-
imations of the QM models. The formulas are examined via comparisons with
full ab initio molecular simulations.

Keywords: ab initio molecular dynamics, Irvine–Kirkwood formalism,
density-functional theory
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1. Introduction

The last few decades have witnessed considerable interest in ab initio molecular dynamics
(AIMD) as a simulation tool in chemistry and material science [1–3]. Compared to classical
molecular dynamics (MD), where the interatomic potential is constructed in advance, AIMD
determines on-the-fly the forces on the ions from quantum-mechanical (QM) degrees of
freedom, which remain active throughout the computation. AIMD is particularly suitable for
problems where classical MD models are difficult to construct, e.g. alloys with multiple
species and material interfaces, and problems where there are significant changes in the
chemical environment, e.g. bonding patterns. There have been great recent progress in the
development of efficient AIMD models, see the reviews [1, 4] for more details. Various
software packages have also been developed and widely used [5–7].

Due to the advent of growing computing powers, it is conceivable that AIMD will soon
be applied to large-scale mechanical systems, at which point, studying the elastic field
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induced by lattice defects, boundary conditions, electric fields, etc would be of interest. It
would then be of great practical importance to derive the atomic-level stress from AIMD. This
was already noted in the pioneering work of Nielsen and Martin [8, 9], where the notion of
total stress has been established by applying a uniform strain and taking the variation of the
total energy with respect to the strain tensor. This approach was later extended by Filippetti
and Fiorentini [10], who continued this path and introduced the stress density, whose integral
recovers the total stress. Numerical implementations have been proposed by Shiihara et al
[11, 12], where they still considered a uniform strain applied to the system. Vitek and Egami
[13] emphasized the fact that the local stress can be generated by local disorder. Based on the
work of Nielsen and Martin, the local stress, called the atomic level stress, was identified
around each atom site. A more general approach is proposed by Rogers and Rappe [14],
where local stress is defined using a non-homogeneous strain by the principle of virtual work.

Meanwhile, for classical MD models, there have been consistent mathematical frame-
works for the definition and computational methods for the local stress, mostly motivated by
the Irving–Kirkwood formalism [15], which starts with the Liouville equation for the many-
particle density, and hydrodynamics equations can be obtained by taking the ensemble
average with respect to the distribution function. In principle, this formalism is applicable to
systems that are in or out of equilibrium. In practice, a more popular approach is the Hardy’s
formulation [16, 17], which starts directly with the local density and momentum distributions.
Following the Newton’s equations of motion in the MD model, fundamental conservation
laws can be derived, and the local stress can be identified from the momentum balance.
Effectively, this amounts to replacing the delta functions in the Irving-Kirkwood formalism
by certain smooth kernel functions. There has been tremendous recent progress toward the
definition and computation of such local stress, see [18–39] and the references therein for
recent development.

The primary goal of this paper is to establish the notion of local stress in AIMD models.
The notion of local stress has been presented by Nielsen and Martin [40] in the context of
many-particle QM models. It is also derived using the momentum balance equation. In the
practical case where the electron structures are described by the density-functional theory
(DFT) [41], however, only the total stress was presented in [40]. We will present in this paper
the derivation of the local stress for models based on DFT and its extensions [42, 43]. Our
approach is motivated by the success in the classical MD models, and the main ingredient is
the momentum balance and a consistent decomposition of the atomic forces. Due to the wide
variety of AIMD models, we will focus on two widely implemented models, including the
Born–Oppenheimer MD (BOMD) and the Ehrenfest dynamics. The BOMD approach
involves solving the time-independent eigenvalue problem at each time step, while in
Ehrenfest dynamics, the wave functions are determined by solving the time-dependent
Schrödinger equation (TDSE) in real time, e.g. to study the response of graphene to external
electric field [44]. In both cases, the formulas for computing the total force on an ion are
similar.

Of particular importance for the definition of the local stress is the distribution of the
force among each pair of ions, as extensively studied in classical MD [18, 21, 22, 33, 36–39].
We show that the force decomposition critically depends on how the QM models are dis-
cretized in space. We discuss two specific implementations, the tight-binding (TB) approach,
where the wave functions are approximated by linear combinations of atomic orbitals, and the
real-space approximations, e.g. finite-difference or finite element approximations. In the
former approach, the basis functions are centered around ion positions, while in the latter
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approach, the grid points remain fixed in the computation. We will show that the force
decomposition is rather straightforward in the former approach, since the interatomic distance
is naturally involved in the Hamiltonian matrix. However, for real space methods, since the
grid points are not attached to ion positions, such force decomposition is rather non-trivial.

The rest of the paper is organized as follows. In section 2, we review the AIMD models,
as well as the definition of stress in classical MD models. The TB approximation, along with
the stress definition, will be presented in section 3. In section 4, we discuss the real-space
approximation methods, and we present some numerical results.

2. Ab initio molecular models and fundamental conservation laws

Throughout the paper, we will denote the ion positions by RI, and the coordinate for the
electronic wave functions by r. The elastic field will be defined in terms of the spatial variable
x. We assume that the system under consideration consists of Nion ions, and Nele electrons.

2.1. Two AIMD models

Let us start with the Newton’s equations of motion for the ions

=

= -
¶
¶

= 

⎧
⎨⎪
⎩⎪

˙

˙ ( )
R P m

P
R

E I N

,

, 1, 2, , .
1

I I I

I
I

tot ion

Here mI is the mass; RI and PI represent the coordinate and momentum of the nuclei,
respectively. The main departure of AIMD from conventional MD models is that the potential
energy Etot is determined from an underlying QM description, instead of using a pre-
determined interatomic potential. How the electronic degrees of freedom are introduced, on
the other hand, leads to different formulations of AIMD. We will consider two models that
have been widely implemented. Extensions to other models, e.g. [3, 45–49], especially the
Car–Perrinello approach [3], are likely to be straightforward.

BOMD. First, we consider the BOMD model, where at each step, one solves a time-
independent eigenvalue problem

y e y= = ˆ ( )H ℓ N, 1, 2, , . 2ℓ ℓ ℓ ele

Again we denote the number of electrons by Nele.
For the Hamiltonian operator Ĥ , we will consider the DFT [41], which uses a non-

interacting system with an exchange-correlation function that reproduces the ground-state
electronic density of the full, interacting system. The Hamiltonian operator Ĥ (in reduced
units) consists of the kinetic energy, Hartree and exchange correlation, and the external
potential

= -


+ + +ˆ ˆ [ ] ˆ [ ] ˆ ( )H V n V n V
2

. 3H

2

xc ext

We will denote the second and third terms, which are functionals of the electron density,
as Kohn–Sham potential

= +ˆ ˆ [ ] ˆ [ ] ( )V V n V n , 4HKS xc
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where

å y=
=

( ) ∣ ( )∣ ( )r rn t n t, , , 5
ℓ

N

ℓ ℓ
1

2
ele

is the total electron density. The coefficients nℓ are the occupation numbers.
The Hamiltonian operator Ĥ depends on the ion’s positions, which contribute to the

electronic structure as an external potential V̂ext. This will be explained in more details in
the next section. As a result, the eigenvalue problems need to be solved repeatedly, since the
position of the ions is changing continuously. After each eigenvalue problem is solved, the
total energy and force on each atom are computed as follows

å e= = -
¶
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=
=

 ( )fE n
E

R
I N, , 1, 2, , . 6
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ℓ ℓ I
I

tot
1

tot
ion

ele

The coupled system (1) and (2) are the basis of BOMD models, which can be interpreted
as differential-algebraic equations. The main assumptions is that the electronic states are
instantaneously relaxed to ground states during the movement of the nuclei. Typically, the
explicit formulas for computing the forces (6) are derived based on the Hellmann–Feymann
theorem. We will discuss these formulas in the context of TB and real-space approximations.

Ehrenfest dynamics. Another type of AIMD models is the Ehrenfest dynamics, e.g. [48],
where wave functions are determined from the TDSEs

y y¶ = ˆ ( )Hi , 7t ℓ ℓ

in conjunction with the Newton’s equations of motion for the ions (1). The coupled dynamics
describes an ion–electron coupling that occurs continuously in time. For the time-dependent
model, we consider the time-dependent density-functional theory (TDDFT), and the model
has been widely used to compute the excitation states and responses to electric and magnetic
fields [42, 43, 50].

In this case, the formula for computing the forces in (6) will be the same as in the static
case, but for the reason that the wave functions and ion positions are independent variables.

2.2. The definition of local stress based on momentum balance and force decomposition

Since the Newton’s equations (1) remain the same in all AIMD models, the fundamental
conservation law of momentum still holds. More specifically, given the momenta and
coordinates of the nuclei, we define the local momentum

å j= -
=

( ) ( ) ( ( )) ( )j x xt P t R t, . 8
I

N

I I
1

ion

This is the starting point in Hardy’s derivation of stress [16], which we will follow here.
The function j is introduced as an approximation to the Dirac delta function in the original
Irving–Kirkwood formalism [15], and it is assumed to be non-negative with integral being 1.
More specifically, by taking time derivative, one gets
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The conservation of momentum at the continuum level asserts that

s¶ =  · ( )j , 10xt

with s being the total stress tensor. So the goal is to express the right-hand side of the
equation (9) as a divergence form.

This will be true if the force fI exhibits the following patterns:

(i) the force can be decomposed among each pair of atoms (I, J):

å=
¹

( )f f , 11I
J I

IJ

(ii) each component is skew-symmetric

= - ( )f f , 12IJ JI

(iii) fIJ is local, it should decay quickly as a function of the interatomic distance.

The first two conditions are critical (and sufficient) to ensure the conservation of
momentum. It is worthwhile to point out, although it is trivial to many, that the fact that the
force can be decomposed as in (11) does not by any means imply that the interaction is
pairwise. In fact, the force component fIJ may depend on atoms other than the two atoms I
and J. The last property is not mandatory. However, when the forces are highly non-local, the
computation would be much more expensive, since many particles have to be visited.

To see why such force decomposition is necessary, we can substitute (11) into the second
term on the right-hand side of (9), which yields
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Here in the last step, we used the fundamental theorem of calculus, and converted the
difference between the two terms into a line integral along RIJ=RI−RJ,

ò j l l= - -( ) ( ) ( )x xB R R d . 13IJ J IJ
0

1

This derivation reveals a divergence term, from which one can identify the local stress

å å ås j= - Ä - - Ä
= = =

( ) ( ) ( ( )) ( ) ( )x f xP t P t R t R B
1

2
. 14

I

N

I I I
I

N
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N

IJ IJ IJ
1 1 1

ion ion ion

It is clear that such definition is always up to a divergence-free term, which makes it non-
unique. This is a common observation [18]. One interpretation is to integrate the momentum
balance equation (9) over an arbitrary domain. Using the divergence theorem, one would
obtain the traction along the boundary, in the form of a pairwise force fIJ , which is consistent
with Cauchy’s notion of stress. The momentum in the first term can be further decomposed
into a mean ( ( )j x t, ) and a relative momentum. They lead to the convection term, which
typically appears on the left-hand side of the momentum balance equation, and a kinetic stress
term, e.g. see the derivations in [30]. But our focus will be on the potential part of the stress

Modelling Simul. Mater. Sci. Eng. 27 (2019) 065016 X Li

5



(the last term). The line integral along each pair of atoms comes out naturally in the Irving–
Kirkwood and Hardy’s formulation. But it did not arise from the derivation of the stress
density from QM descriptions [8–12].

In the next two sections, we will discuss how the force decomposition can be obtained
when the force is determined from QM models, including the algebraic description (2) and the
dynamics model (7).

3. Force decomposition and local stress in TB models

3.1. TB methods

TB methods represent an important class of approximations that are constructed using basis
functions centered around atoms, here denoted by f -a ( )r R . We also choose α ä occ(RI)
with occ(RI) indicating the set of local orbitals. The wave function ψℓ will be approximated by
a linear combinations of atomic orbital.

å åy f» " =
a

a a
Î

(· ) ( )
( )

c R ℓ N, , 1, 2, , , 15ℓ
I R

ℓ I I
occ

, ele

I

with coefficients acℓ I, labeled by the atom I and the local orbital α,
The first step in implementing TB is assembling the overlap and Hamiltonian matrices,

defined as follows

f f

f f

=

=

a b a b

a b a b

⟨ (· )∣ (· )⟩

⟨ (· )∣ ˆ ∣ (· )⟩ ( )

S R R

H R H R

, , ,

, , . 16

I J I J

I J I J

,

,

The matrix elements only depend on the relative position of the atoms; RIJ=RI−RJ.
Namely, we can write a b a b≔ ( )S M RI J IJ, , . It satisfies the symmetry condition

=a b b a( ) ( ) ( )M R M R . 17IJ JI, ,

In practice, they are precomputed and represented in parametric forms.
For BOMD, the next step is usually the eigenvalue problem. Using a projection into the

subspace spanned by the local orbitals (15), one can reduce the eigenvalue problem (2) into a
finite-dimensional generalized eigenvalue problem

e= ( )c cH S . 18ℓ ℓ ℓ

Here cℓ is an eigenvector, with elements denoted by cℓ, Iα as in (15).
Let C be the matrix that contains the eigenvectors as columns. Then the diagonalization

can be written simply as

= L ( )HC SC . 19

The diagonal matrix Λ contains the eigenvalues eℓʼs.

3.2. The force decomposition

In order to define the force on an ion, we first observe that the total energy, e= åE n ,ℓ ℓ ℓtot

can be written in terms of the Hamiltonian matrix and the eigenvectors

ååå=
a b

a b a b ( )E H c c n . 20
ℓ I j

I J ℓ I ℓ J ℓtot , , ,

By taking the derivative with respect to the ion position RI, and using the orthogonality
condition in (19), one can derive the Hellmann–Feymann formula, which in this case, is given
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by

*
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The derivative of the eigenvectors with respect to the ion positions does not appear due to the
orthogonality conditions (19), but not because they are independent of them.

This provides a natural decomposition
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This is exactly how the forces are evaluated in the DFTB+ code [5]. The formulas can be
simplified, by introducing the density-matrix ρ, and the energy density-matrix Γ, as follows
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Then the force can be written as

r= -
¶
¶

- G
¶
¶

⎛
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⎞
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⎛
⎝⎜

⎞
⎠⎟ ( )f

R
H

R
M2tr 2tr . 24IJ I J

I
I J I J

I
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The fact that fIJ is skew-symmetric is also evident.

3.3. A numerical test

To verify the desired property of the force decomposition, we consider a silicon nanowire
with 512 atoms. The dimension of this quasi one-dimensional system is
96.96Å×10.87Å×10.87Å. The nanowire is divided into 16 blocks along the longitudinal
direction. By integrating the conservation law (10) in a block, we have

t t¶ + - =+ - ( )j 0. 25t k k k1 2 1 2

Here jk is the total momentum in the kth block. t is the projection of the stress in the
longitudinal direction, i.e. t s= · ( )1, 0, 0 , and it represents the traction between two
adjacent blocks.

We follow the atomic units used in the software package, and modified the code to
generate the force components f .IJ We ran a BOMD simulation in DFTB+ for 100 steps with
step size Δt=2.067 (0.05 fs). The initial velocity is randomly chosen. Figure 1 shows the
total momentum in a block in the longitudinal direction j(1), and a traverse direction j(2)(t). To
examine the calculation of fIJ , we computed the traction t from the AIMD simulation, and
then using the balance equation (25), we reconstructed the velocity at the same time steps.
Excellent agreement has been found.
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4. Stress calculation in real-space methods

In real-space methods, the Hamiltonian operator will be discretized using finite difference
[51] or finite element methods [52]. The Hamiltonian operator is then represented at the grid
points as a matrix, here denoted by H. The numerical procedure in the quantum mechanical
model would involve either solving the eigenvalue problem (2) or the TDSEs (7). The main
difficulty is that the electronic degrees of freedom are defined at grid points, and they are not
specifically tied to the position of the ions.

4.1. Force decomposition and stress calculations

After the eigenvalues are computed from (2), the total energy can be expressed as

å e=( ) ( )E R R R n, , , , 26N
ℓ

ℓ ℓtot 1 2

with nℓʼs again being the occupation numbers.
The Hellmann–Feymann formula states that the change of the total energy with respect to

the change of any parameter λ is given by [53, 54]

ål
y

l
y

¶
¶

=
¶
¶

⟨ ∣
ˆ

∣ ⟩ ( )E n
H

. 27
ℓ

ℓ ℓ ℓtot

In real-space methods, the Hamiltonian operator is approximated at grid points. The only
part of the Hamiltonian that explicitly depends on the ion position is the external potential

Figure 1. Comparison of the total momentum in a block of a nanowire, one computed
from a BOMD simulation in DFTB+ (dashed curve), and the other computed from the
momentum balance (25) (solid line).
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Here ( )rn t, is the electron density, given by

å y=
=

( ) ∣ ( )∣ ( )r rn t n t, , . 29
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N

ℓ ℓ
1

2
ele

Remark. It is worthwhile to point out that in principle, for ground-state calculations, the
electron density has an implicit dependence on the ion position. However, the Hellmann–
Feymann theorem asserts that the derivatives only need to be taken with respect to the RI in
the external potential.

We will denote the three terms on the right-hand side of (28) as Vloc, Vnloc, and -V i i,
respectively. The term -V i i is a classical Coulomb interaction and the corresponding force
decomposition is trivial, since it has a classical pairwise form and no explicit involvement of
the wave functions:

=
-

-
- ( )

∣ ∣
( )f

Z Z R R

R R
. 30IJ

I J I J

I J

i i
3

Meanwhile, the first two terms stem from the pseudopotential approximation, e.g. norm-
preserving potentials [55], which represents the influence of inner-shell electrons and reduce
the problem to valence electrons. It represents the ion–electron interactions via a local term,
here denoted by ( )rw , which usually only depends on the distance from an ion, and a non-
local term, which consists of projections to local orbitals. In practice, this offers considerable
reduction in the computational cost. Here we have represented the summation of the pro-
jectors by the function U. Interested readers are referred to [55] for specific forms of these
terms The details of the force calculations in this case has been explained in the
monograph [56].

It suffices to consider the derivatives of the first two terms with respect to the ion
positions. Based on the Hellmann–Feymann theorem, we define

*

ò

ò ò y y

=  -

=
¶
¶

+
¶
¶ ¢

- ¢ - ¢ ¢
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⎝⎜

⎞
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f r r r

f r
r r

r r r r r

w R n

t U R R t

d ,

, , , d d . 31

I I

I ℓ I I ℓ

loc

nloc

In principle, the wave functions ψℓ obtained from DFT or TDDFT model depend on both
the electronic coordinates and the atom positions. What makes the Hellmann–Feymann
formula (31) appealing is the fact that only the part of the Hamiltonian that depends on the
atom position would appear. In particular, the kinetic energy is not involved in (31), and
neither is the derivatives of the wave function with respect to the atom positions.

However, this formula does not reveal the interactions among the neighboring atoms, i.e.
the decomposition f .IJ It is tempting to separate the integrals by dividing the entire domain
into non-intersecting subdomains, each of which contains an ion. Our numerical tests suggest
that the symmetry condition is not fulfilled. More importantly, in the non-local term, the
projectors in U only depend on points close to the atom RI. As a result, separating the integral
would not yield a term that explicitly depends on a neighboring atom RJ. In fact, when the

Modelling Simul. Mater. Sci. Eng. 27 (2019) 065016 X Li

9



second formula in (31) is implemented, the force becomes an on-site force, for which a force
decomposition is not possible due to (11).

This difficulty has prompted us to rewrite the formula (31) that determines the force and
derive alternative expressions. We notice that the wave functions depend on the ion position
as well, due to the external potential. Such dependence is implicit in the Feymann–Heymann
theorem, since it is canceled when the equation is left-multiplied by an eigen-function, due to
the orthogonality. To gain more insight, we observe the explicit dependence of the external
potential on the relative positions to the atoms, - = { }r R I, 1, 2, , ,I and we will write
the wave function as follows

y f= - - -( ) ( ) ( )r r r rt R R R t, , , , , . 32ℓ ℓ N1 2 ion

Similarly we write the electron density as

= - - -( ) ( ) ( )r r r rn t d R R R t, , , , , . 33N1 2 ion

It is, however, not necessary to know the explicit forms of the functions fℓ and d. They
are introduced here only to show explicitly the dependence on the ion positions. Now, we turn
to the local force (31). Using integration by parts, we obtain

ò ò

òå

=  - =- - 

= -
¶
¶

( ) ( ) ( ) ( )

( ) ( ) ( )

f r r r r r r

r r r

w R n t w R n t

w R
R

n t

, d , , d

, d . 34

I I I

J
I

J

loc

The last step is due to the form (32) and (33). This motivates us to define the force
decomposition as follows

ò= -
¶
¶

( ) ( ) ( )f r r rw R
R

n t, d . 35IJ I
J

loc

Similarly, we can define the force decomposition for the non-local part

*ò ò y y= - ¢ -
¶
¶

¢ ¢( ) ( ) ( ) ( )f r r r r r rt U R R
R

t2 Re , , , d d . 36IJ ℓ I I
J

ℓ
nloc

The remaining issue is to determine the change of the wave functions with respect to the
change of atom positions, i.e. y¶

¶R ℓ
J

. This is done by using the density-functional perturbation
theory approach [53]. Let us denote the change of the wave functions, due to an instantaneous
change of the position of an ion in one direction, by δψ. For the eigenvalue problem (2) that
needs to be solved in BOMD, the perturbation yields

* *

ò

ò

e dy
d

d
d y d e y

y dy y dy

- +
¢

¢ ¢ + - =

+ =

( ˆ )
ˆ [ ( )]

( )
( ) ( ˆ )

( ) ( ) ( ) ( ) ( )

r
r

r r

r r r r r

H
V n

n
n Vd 0,

d 0, 37

ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ

KS 0
ext

for ℓ=1, 2, L, Nele. Here ( )rn0 is the ground state electron density, and

*åd y dy=( )rn n2 Re
ℓ

ℓ ℓ ℓ

will correspond to the term ¶
¶

( )rn t,
RJ

in (35). V̂KS is the part of the Hamiltonian that depends

on the electron density (4). The term dV̂ext refers to the derivative of the external potential with
respect to the ionic position. The second condition in (37) is to ensure the orthogonality of the
wave functions.
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The equations form a linear system for the wave functions, known as the Sternheimer
equation, which can be solved via iterative methods. The coefficients of the linear system only
depend on the ground states. So one does not need to solve the eigenvalue problem again.
Such an approach has been an important route to determine phonon spectrum, polarizability,
dielectric constants, etc [57].

At this point, it is clear that the formulas (35) and (36) would satisfy the property (11).
But the skew-symmetric property (12) does not seem to be a direct consequence of our
derivation. Here we offer a heuristic argument: suppose that one of the ions, RJ, undergoes an
infinitesimally small displacement. In the Sternheimer equation (37), V̂ext would be a function
of -r R .J As a result, we may assume that the perturbed electron density will also be
centered around RJ. We assume that it is asymmetric with respect to -r R ,J e.g.
d d- = - -( ) ( )r rn R n RJ J . Therefore, we can write (35) as

ò d= - -( ) ( )f r r rw R n R d .IJ I J
loc

The local potential w only depends on the relative distance. So by changing variables,
- = - ¢r rR RI J , we find that

ò d= - - = -( ) ( )f r r r fw R n R d .IJ I J JI
loc loc

The same argument can be made toward the non-local part of the pseudopotential (36) using a
similar assumption on the density matrix.

For Ehrenfest dynamics models, one can again take the derivative of the wave function
with respect to the ion position. This procedure yields

òdy dy
d

d
d y d y¶ = + +

¢
¢ ¢ +( ˆ ˆ [ ]) [ ( )]

( )
( ) ˆ ( )r

r
r rT V n

V n

n
n Vi d . 38t ℓ ℓ ℓ ℓKS 0

KS 0
ext

In practical implementations, one can solve this linear Schrödinger equation to determine δψℓ,
and implement the formulas (30), (35) and (36).

4.2. Numerical tests

We consider a two-dimensional system—a single layer graphene sheet with 32 atoms. The
computation is done by using OCTOPUS [6], a real-space implementation of the ground
state and TDDFT. Again, we use the standard atomic units. The length unit is Bohr radius and
the energy unit is Hartree. All the results will be given in terms of these two units. For the
computation, the grid size in the finite-difference approximation is chosen to be 0.2066, and
the simulation domain consists of three-dimensional 90×78×40 grid with center of the
rectangular domain shifted to the origin. The dimension of the computational domain is
18.595×16.116×8.265 (in Bohr radius). Periodic boundary conditions are applied in the
first two space dimensions. We chose the standard pseudo-potential set in OCTOPUS.

To create a non-homogeneous stress, we set the initial displacement in the horizontal
direction to a sinusoidal profile

p
=( ) ( )xu

x

L
sin

2
, 391

1

with L being the width of the rectangular domain. The displacement in the other two
directions is zero. The atoms will be displaced according to this field in the first two-
dimensions with x being the reference coordinates. We set the velocity to zero, so the stress is
only due to the elastic field. We modified the part of the OCTOPUS code that computes the
phonon spectrum. But instead of computing the vibration frequencies, we followed the linear
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response calculations in OCTOPUS and computed δψℓ. The results are then used to compute
the force decomposition in (35) and (36).

With the atoms displaced according to (39), we computed the local Hardy stress using the
following two-dimensional kernel function, with a cut-off radius rcut=8 Bohr

f
p

= - + <
⎧
⎨⎪

⎩⎪
( ) ∣ ∣ ( )x

x x
x

r
r r

r1 2 3 1,

0, otherwise.

40
cut
2 cut

3

cut

2

cut

We compared our results to that from the empirical Tersoff potential, and they exhibit
good agreement, as shown in figure 2. In principle, this should not be a means to validate the
computational results. But in this particular case, since the displacement is quite smooth, we
expect that the two results should be similar.

We now examine the force decomposition property (11). To this end, we consider a less
trivial displacement field, as follows

= -( )
∣ ∣

( )∣ ∣u x
x
x

u e . 41x
max

0.06 2

The magnitude of the displacement only depends on the distance from the origin. We pick
umax=0.5. The strain field ò11 is displayed in figure 3. The maximum can be find near the
center, with magnitude around 0.8.

Starting with this strain field, we examine the force decomposition property (11), and the
results are listed in table 1. To verify the first property (11), we add up fIJ and compare the

Figure 2. The local stress σ11 calculated from the Hardy’s formalism using the force
decomposition determined from the real-space discretization of the DFT model (left),
and the classical MD model with the Tersoff potential.

Figure 3. The local strain ò11 produced by the displacement (41) with umax=0.025.
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sum with fI , for each of the three contributions, (30), (35) and (36). In the second row, we
verify the second property, i.e. the skew-symmetry (12). This is done for each contribution:
Local, non-local, and ionic parts. More specifically, we compute the Frobenius norm of the
matrix +f f .IJ JI Even though the system has non-homogeneous deformation, one can see
that the two properties (11) and (12) are satisfied up to some small error. The error from the
first row is clearly numerical error, since from the derivations of (35) and (36), the condition
(11) should hold exactly. One may also choose to maintain the skew-symmetric property (12)
exactly by defining = -˜ ( )f f f 2.IJ IJ JI In this case, the first condition (30) will hold
approximately. Figure 4 displays contour plots of the elements of the matrices fIJ

loc and fIJ
nloc

to provide a more direct view of the skew-symmetric structure.
Finally, we check the third property. More specifically, we show in figure 5 how the

magnitude of the force components fIJ changes with respect to the distance between the two
atoms ( = ∣ ∣r RIJ IJ ). Interestingly, fIJ exhibits a clear decay pattern, but it only becomes
significantly smaller beyond the fifth closest neighbors, and negligible when the distance is
around 10 Bohr (7th nearest neighbors). This is a lot larger than the cut-off radius of the
Tersoff potential [58], also shown in the same figure (The force decomposition for the Tersoff
potential can be found in [33]). In fact, there have been observations that the phonon spectrum
of graphene will not be captured accurately, unless fifth neighbors are included in the first-
principle calculation [59], which seems to coincide with our current observation.

Figure 4. The contour plots of the components of fIJ . Left panel: fIJ
loc from (35); right:

fIJ
nloc from (36).

Table 1. This table shows the results in the verification of the properties (11) and (12).

Force contributions f loc f nloc -f i i

å å -

å

∣ ∣f f

f

I J IJ I

I I

2

2
0.0040 0.0043 1.2380×10−9

å +

å

∣ ∣

∣ ∣

f f

f

I J IJ JI

I J IJ

,
2

,
2

0.0284 0.0734 5.1974×10−23
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5. Summary and discussions

We have investigated in this paper the appropriate force decomposition in AIMD models. The
goal is to be able to define the local stress that can either be used to analyze the elastic field, or
be integrated to a continuum description to build a multiscale method. For TB models, it turns
out that such decomposition is rather straightforward, due to the fact that the basis functions
are centered around the nuclei. For real-space methods, however, this becomes a non-trivial
task. We argued that one must estimate the change in the wave functions with respect to the
ion displacement in order to obtain such a force decomposition. This perturbation can be
computed within the linear response framework by solving the Sternheimer equation.
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