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Abstract—This  Work-in-Progress paper in the Research
Category uses a retrospective mixed-methods study to better
understand the factors that mediate learning of computational
modeling by life scientists. Key stakeholders, including leading
scientists, universities and funding agencies, have promoted
computational modeling to enable life sciences research and
improve the translation of genetic and molecular biology high-
throughput data into clinical results. Software platforms to
facilitate computational modeling by biologists who lack
advanced mathematical or programming skills have had some
success, but none has achieved widespread use among life
scientists. Because computational modeling is a core
engineering skill of value to other STEM fields, it is critical for
engineering and computer science educators to consider how
we help students from across STEM disciplines learn
computational modeling. Currently we lack sufficient research
on how best to help life scientists learn computational
modeling.

To address this gap, in 2017, we observed a short-format
summer course designed for life scientists to learn
computational modeling. The course used a simulation
environment designed to lower programming barriers. We
used semi-structured interviews to understand students'
experiences while taking the course and in applying
computational modeling after the course. We conducted
interviews with graduate students and post- doctoral
researchers who had completed the course. We also
interviewed students who took the course between 2010 and
2013. Among these past attendees, we selected equal numbers
of interview subjects who had and had not successfully
published journal articles that incorporated computational
modeling. This Work-in-Progress paper applies social cognitive
theory to analyze the motivations of life scientists who seek
training in computational modeling and their attitudes towards
computational modeling. Additionally, we identify important
social and environmental variables that influence successful
application of computational modeling after course completion.
The findings from this study may therefore help us educate
biomedical and biological engineering students more
effectively.

Although this study focuses on life scientists, its findings
can inform engineering and computer science education more
broadly. Insights from this study may be especially useful in
aiding incoming engineering and computer science students
who do not have advanced mathematical or programming
skills and in preparing undergraduate engineering
students for collaborative work with life scientists.
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I. INTRODUCTION

While high-throughput -omic technologies have
produced unprecedented quantities of biomedical data, these
data have yet to translate into significantly better clinical
outcomes. After decades of improvement, U.S. life
expectancy has declined, and development costs for a new
drug now exceed 1 billion dollars [1, 2]. A broad cross-
section of stakeholders including luminaries in the field,
leading universities and national funding agencies have
called for ‘convergence’ between disciplines and between
science and engineering approaches to improve life-science
research productivity [3]. To date, most initiatives for
promoting convergence have either recruited engineers into
the life sciences or created selective interdisciplinary training
programs at elite universities [4, 5]. Efforts to provide
interdisciplinary engineering education to the large number
of practicing life scientists and life science students have
been more limited; often restricted to boot camps in
programming or other computational skills [6]. An
alternative approach has been the creation of software tools
to facilitate adoption of computational methodologies
developed in other disciplines by traditionally trained life
scientists. In the realm of computational modeling, several
groups have produced platforms that seek to help scientists
with limited programming or quantitative backgrounds to
develop mechanistic computational models of biological
systems.

Intense interest in promoting convergence in the life
sciences has not led to much rigorous scholarship on how
best to promote interdisciplinary engineering approaches.
Recent work by Feldon et al., reports that short-format
courses have null effect on scholarly productivity in life
sciences PhD students [7]. Research by economists and
economic historians suggests that broad dissemination of
training into the workforce promotes the translation of
technological advances into productivity more than
investment in selective research centers [8-9]. This Work-in-
Progress paper in the research category of ‘Frontiers in
Education 2018, addresses a major gap in the literature by
initiating a rigorous quantitative and qualitative investigation
of the factors that mediate learning of computational



modeling by life scientists who attend a short-format training
course in the use of a computational modeling platform.

II. THEORETICAL FRAMEWORK & RESEARCH QUESTIONS

A. Theoretical Framework

Social cognitive theory (SCT) posits that behavior,
environmental, and individual factors mutually interact to
determine human learning [10]. In education-related studies
environmental factors often include social norms and
expectations [11]. SCT learning theory applies to many areas
of research. Education research grounded in SCT has
included studies of the learning and use of new technology-
intensive approaches in many contexts, including the
adoption of e-learning systems, teacher training in
technology use, and nursing education in the use new
technologies [12-14].

B.  Research Questions
To better understand how to improve the practice of

teaching engineering methods to life scientists, we ask the
following two research questions:

® What are the medium-term outcomes for attendees
of a short-format training course on computational
modeling within a specific accessible software
platform?

® What are the attitudinal, social and structural factors
that mediate learning of computational modeling
among life scientists?

III.  METHODS

A. Research Context

We studied the outcomes and experiences of attendees of
an annual short-format computational modeling course
called the CompuCell3D  User-Training  Course.
CompuCell3D is an NIH- and NSF-funded software tool
designed to facilitate the development of computational
models by life scientists [15, 16]. The CompuCell3D User-
Training Course has been conducted annually for thirteen
years.

B. Data Collection & Analysis

1) Bibliometric Analysis: Using pubmed searches we
analyzed scholarly output of attendees who participated in
the course from 2010-2013. We also analyzed a control
group of non-attending life scientists from an interest
mailing list.

2) Qualitative Interviews: We conducted individual
semi-structured interviews of course attendees. We
interviewed an equal number of ‘successful’ attendees who
published computational modeling work after course
attendance and ‘unsuccessful’ course attendees who did not
publish computational modeling articles. Additionally, we
interviewed attendees of courses held between 2013 and
2017 to gain a more recent perspective. We conducted
interviews via Skype and audio-recorded them. We

transcribed the recordings and coded them using the ‘long
table method.” We then compared emergent themes from
this analysis with our research questions.

IV. PRELIMINARY FINDINGS

Here we share the preliminary results from our
quantitative and qualitative studies.

A.  Quantitative Analysis

There were 126 unique attendees of the CompuCell3D
User Training Course between 2010 and 2013. Attendees
primarily consisted of graduate students and postdoctoral
researchers, with a smaller number of undergraduates and
senior scientists. The attendees represent a broad range of
US-based and international institutions.

In this cohort, 27 (21%) participated as authors on at
least one peer-reviewed publication using computational
modeling after course attendance. We did not conduct
regression analysis to identify factors that mediate
publication success among course attendees, due to the
limited number of successful cases. However, in the
overwhelming majority of successful cases, 21 out of 27
(78%), attendees came from institutions that sent more than
one attendee to the course (either in the same year or in the
year immediately preceding or following). The difference in
success between the cohorts from institutions/labs with
single and multiple course attendees, was significant (p <
.01) via Chi Square testing. This comparison was
independent of scientific success broadly defined, since
attendees who eventually published a computational
modeling paper, and those who did not, had roughly similar
levels of total publications per attendee.

As a comparison we also analyzed the publication
history of individuals subscribed to an email interest list for
the CompuCell3D modeling platform. Of 37 individuals
subscribed to the email list we were able to identify 29 as
life scientists. We found that 4 of those 29 (14%) later
published a journal article using computational modeling.
Course attendees therefore seem to have published in
computational modeling at a greater rate than a similarly
interested group of non-attendees. However, we have not
assessed this difference statistically, because we have not
yet determined whether the email-list cohort and the course
attendee cohort have comparable educational backgrounds
and career stages.

B. Interview data

1) Theme I: Mentor commitment to computational
modeling

A major theme in interviews with both ‘successful’ and
‘unsuccessful’ attendees was the importance of the faculty
mentor or principal investigators’ commitment to
computational modeling. Attendees who published
computational modeling articles frequently reported that
their mentor/PI encouraged their modeling efforts.
Interviewees described these mentor/PIs as viewing
modeling work as being as important as ‘wet lab’ or
experimental work. In contrast, the attendees who never
published computational models suggested that a major
impediment was that their mentor/PI viewed computational
modeling as a potential waste of time or resources. Several



interviewees from this cohort reported that their mentor/Pls
discouraged them from doing modeling work during the
day. One interviewee stated ‘it became clear pretty quickly
that modeling was something I needed to do on my own
time, and that when my boss was around I needed to be
doing experiments at the bench.’

2) Theme II: Opportunity cost
A theme that surfaced among those who did not publish

computational modeling papers, was a view that
computational ~ modeling  competed  rather  than
complemented the use of other molecular biology
technologies. These interviewees often compared

computational modeling with technologies such as CRISPR
or Flow Cytometry. They described computational modeling
in the CompuCell3D platform as having a ‘steep learning
curve,” while they viewed other technologies as providing
the opportunity for ‘rapid data generation.” One interviewee
described abandoning computational modeling in favor of
developing expertise in a new wet lab technique:

“I was kind of bogged down and then [new

molecular biology technique] came around

and it was like OK let’s do that. And that

was just simpler. Like I knew how to make

that work and we got a lot of data really

quickly, and so we just jumped on it and

kind of let this stuff go...”

Conversely, interviewees who published computational
modeling papers viewed modeling as a fundamental part of
the scientific process. These interviewees considered
adopting other new technologies as a mechanism to generate
data for modeling rather than as a potential replacement for
modeling. We are not certain whether this differing view
was a cause of persistence in computational modeling or
reflected the effect of later academic specialization in
modeling.

3) Theme III: Motivation for computational modeling.

The vast majority of interviewees reported that they were
primarily motivated by the potential for computational
modeling to provide scientific insight. Very few
interviewees expressed interest in developing coding or
quantitative skills as a mechanism to gain skills for careers
outside science. However, several interviewees from
traditional experimental biology backgrounds suggested that
a secondary motivation for their interest in computational
modeling, was to raise the impact of their research. These
interviewees viewed modeling expertise as a potential
avenue for ‘signaling’ the scientific quality of their work.
Interviewees who worked in labs that already participated in
computational modeling seldom reported such secondary
motivations. Instead interviewees from ‘modeling’
backgrounds seemed to view computational modeling as a
routine part of science rather than as a way to stand out or
differentiate themselves.

4) Theme 1V: Computational Thinking not Coding is the
Central Challenge of Computational Modeling

We were particularly interested to identify what
attendees who did not publish computational modeling
papers viewed as the most significant challenges associated
with applying computational modeling. Interestingly,

regardless of their level of programming or math
background, interviewees rarely reported technical issues as
sources of difficulty for computational modeling within the
CompuCell3D modeling environment. Most interviewees
reported that the CompuCell3D User-Training Course had
provided sufficient instruction to allow them to replicate
existing computational models.

However, interviewees who did not publish
computational models often reported that their primary
difficulty was in understanding how to translate their
research into a computational model. One interviewee stated
“.. was making progress, but there was still this
disconnect. Like, I could make stuff move on the screen but
how to translate that into a hypothesis was tough.”

Several interviewees expressed confusion about how to
break complex biological pathways or cellular behaviors
into specific mechanisms that could be modeled. Others
reported uncertainty about how coding specific biological
actions at the molecular or cellular level could be manifest
as higher-level behavior at the tissue level. These issues
closely align with difficulty in ‘problem decomposition,’
and ‘abstraction,” two key components of Computational
Thinking [17, 18].

5) Theme V: ‘Hidden Curriculum’

A theme that surfaced in interviews with attendees who
did not publish a computational model was confusion about
prevailing norms and practices in computational modeling.
For these interviewees ambivalence over technical choices
in model parameterization, or mathematical methods in part
of their model proved a major obstacle. Several interviewees
expressed frustration that information about how to decide
between options was not available in the manuals, or other
publications. This (missing) information seems to operate
analogously to a ‘hidden curriculum.” Interviewees who
successfully published computational modeling papers often
indicated that they received this information informally
from their mentor/PI or more senior colleagues.

V. DISCUSSION & FUTURE WORK

Our quantitative work indicates that a significant number
(21%) of the attendees of the CompuCell3D User Training
Course went on to publish a computational modeling paper.
However, the overwhelming majority of these success cases
(78%) came from research labs or universities that sent
multiple attendees to the Course, perhaps indicating strong
PI commitment to computational modeling. These results
align closely with our preliminary qualitative findings that
environmental or structural factors such as mentor/PI
commitment to computational modeling and the informal
transmission of modeling practices are critical for successful
learning and application of computational modeling.

Our preliminary qualitative results provide important
insight into the experiences of life-sciences trainees who
attempt to learn computational modeling. Perhaps most
interesting is that computational thinking rather than coding
or mathematical background seems to be the key limiting
factor in learning computational modeling. This suggests
that, to be truly successful, even computational modeling
tools which successfully lower the technical barriers to
computational modeling (such as the CompuCell3D
modeling environment), must be paired with resources to



help life scientists with computational thinking more
broadly. Similarly, the computational tools community must
establish curated resources on the ‘hidden curriculum’ of
computational modeling. For example, life scientists new to
modeling must be connected with guides to emerging
methodologies for qualitative data parameterization [19-22].

The developers of the CompuCell3D modeling
environment have already made several changes to their
training resources to reflect our preliminary findings. First,
they have added a user forum to their website to provide a
public mechanism for discussion of problems that arise
while developing computational models. They hope that this
user forum will make the ‘hidden curriculum’ of
computational modeling more accessible to those outside
computational modeling labs. Additionally, they hope that
these user forums will provide a virtual ‘community of
practice’ which will help attendees who are not in
computational modeling labs form peer-to-peer support
structures

Our findings do not address the findings of Feldon et al.
[7], concerning the (lack of) efficacy of short courses in
increasing overall scholarly output, but they do support their
observation that long-term engagement with a subject is
more important to success than a short week-long
intervention. Our interpretation of the data in this study is
that structural factors such as mentor/PI commitment and
the presence of other course attendees in a research group
are instrumental in facilitating the long-term engagement
with computational modeling needed for meaningful
learning. Our finding of relevance for both individual
cognitive factors (computational thinking) and structural
factors (PI commitment, and peer course attendance) is
consistent with SCT.

Critical limitations to our study to consider when
evaluating our findings include the self-selection of our
interview participants. All of our interview participants first
self-selected to attend the CompuCell3D User-Training
Course in computational modeling, and then agreed to an
interview.  Consequently, our interview  sample
demonstrated significant interest in computational modeling.
Our future work will investigate the attitudes and knowledge
barriers of life scientists who have not made a prior
investment in computational modeling. Our focus on a
single modeling platform limited our sample size preventing
regression analysis to identify factors that mediate success
in learning computational modeling.

This Work-in-Progress paper represents the initial stage
in our work to better understand how to support life
scientists in gaining interdisciplinary education in
‘convergence’ approaches such as computational modeling.
In future studies we hope to complement these findings by
evaluating key effects of student background on learning
and using interdisciplinary engineering approaches.
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