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ABSTRACT

This paper presents Verisig, a hybrid system approach to verifying
safety properties of closed-loop systems using neural networks
as controllers. We focus on sigmoid-based networks and exploit
the fact that the sigmoid is the solution to a quadratic differential
equation, which allows us to transform the neural network into
an equivalent hybrid system. By composing the network’s hybrid
system with the plant’s, we transform the problem into a hybrid
system verification problem which can be solved using state-of-the-
art reachability tools. We show that reachability is decidable for
networks with one hidden layer and decidable for general networks
if Schanuel’s conjecture is true. We evaluate the applicability and
scalability of Verisig in two case studies, one from reinforcement
learning and one in which the neural network is used to approxi-
mate a model predictive controller.
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1 INTRODUCTION

In recent years, deep neural networks (DNNs) have been success-
fully applied to multiple challenging tasks such as image process-
ing [29], reinforcement learning [20], learning model predictive
controllers (MPCs) [26], and games such as Go [27]. These results
have inspired system developers to use DNNs in safety-critical
Cyber-Physical Systems (CPS) such as autonomous vehicles [3]
and air traffic collision avoidance systems [14]. At the same time,
several recent incidents (e.g., Tesla [1] and Uber [3] autonomous
driving crashes) have underscored the need to better understand
DNNs and verify safety properties about CPS using such networks.

The traditional way of assessing a learning algorithm’s perfor-
mance is through bounding the expected generalization error (EGE)
of a trained classifier, i.e., the expected difference between the
classifier’s error on training versus test examples [21]. The EGE
can be usually bounded (e.g., in a probably approximately correct
sense [16]) by assuming that a large enough training set satisfy-
ing some statistical assumptions (e.g., independent and identically
distributed examples) is available. However, it is difficult to obtain
tight EGE bounds for DNNs due to the high-dimensional input
and parameter settings DNNSs are used in (e.g., thousands of inputs,
such as pixels in an image, and millions of parameters) [37]. Thus,
it remains a challenge to bound the classification error of DNNs
used in real-world applications; in fact, several robustness issues
with DNNs have been discovered (e.g., adversarial examples [28]).

As an alternative way of assuring the safety of systems using
DNN:s, researchers have focused on analyzing the trained DNNs
used in specific systems [6-8, 15, 25, 32, 35, 36]. While analytic
proofs of input/output properties are hard to obtain due to the
complexity of DNNs (namely, they are universal function approxi-
mators [13]), prior work has shown it is possible to formally verify
properties about DNNs by adapting existing satisfiability modulo
theory (SMT) solvers [8, 15] and mixed-integer linear program
(MILP) optimizers [7]. In particular, these techniques can verify lin-
ear properties about the DNN’s output given linear constraints on
the inputs. These approaches exploit the piecewise-linear nature of
the rectified linear units (ReLUs) used in many DNNs and scale well
by encoding the DNN as an input to efficient SMT/MILP solvers.
As a result, existing tools can be used on reasonably sized DNNS,
i.e., DNNs with several layers and a few hundred neurons per layer.

Although the SMT- and MILP-based approaches work well for
the verification of properties of the DNN itself, these techniques
cannot be straightforwardly extended to closed-loop systems using
DNNs as controllers. Specifically, the non-linear dynamics of a
typical CPS plant cannot be captured by these frameworks except
for special cases such as discrete-time linear systems. While it is
in theory possible to also approximate the plant dynamics with a
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ReLU-based DNN and verify properties about it, it is not clear how
to relate properties of the approximating system to properties of the
actual plant. As a result, it is challenging to use existing techniques
to reason about the safety of the overall system.

To overcome this limitation, we investigate an alternative ap-
proach, named Verisig, that allows us to verify properties of the
closed-loop system. In particular, we consider CPS using sigmoid-
based DNNs instead of ReLU-based ones and use the fact that the
sigmoid is the solution to a quadratic differential equation. This
allows us to transform the DNN into an equivalent hybrid system
such that a DNN with L layers and N neurons per layer can be
represented as a hybrid system with L + 1 modes and 2N states.
In turn, we compose the DNN’s hybrid system with the plant’s
and verify properties of the composed system’s reachable space by
using existing reachability tools such as dReach [17] and Flow™ [4].

To analyze the feasibility of the proposed approach, we show that
the DNN reachability problem (i.e., checking whether the DNN’s
outputs lie in some set given constraints on the inputs) can be
transformed into a real-arithmetic property with transcendental
functions, which is decidable if Schanuel’s conjecture is true [34].
We also prove that reachability is decidable for DNNs with one
hidden layer, given interval constraints on the inputs. Finally, by
casting the problem in the dReach framework, we also show that
reachability is §-decidable for general DNNs [10].

To evaluate the applicability of Verisig, we consider two case
studies, one from reinforcement learning (RL) and one where a
DNN is used to approximate an MPC with safety guarantees. DNNs
are increasingly being used in these domains, so it is essential to be
able to verify properties of interest about such systems. We trained a
DNN on a benchmark RL problem, Mountain Car (MC), and verified
that the DNN achieves its control task (i.e., drive an underpowered
car up a hill) within the problem constraints. In the MPC approxi-
mation setting, we used an existing technique to approximate an
MPC with a DNN [26] and verified that a DNN-controlled quadrotor
reaches its goal without colliding into obstacles.

Finally, we evaluate Verisig’s scalability, as used with Flow™, by
training DNNs of increasing size on the MC problem. For each
DNN, we record the time it takes to compute the output’s reachable
set. For comparison, we implemented a piecewise-linear approach
to approximate each sigmoid as suggested in prior work [7]; in
this setting, the problem is cast as an MILP that can be solved
by an optimizer such as Gurobi [24]. We observe that, at similar
levels of approximation, the MILP-based approach is faster than
Verisig+Flow™ for small DNNs and DNNs with few layers. However,
the MILP-based approach’s runtimes increase exponentially for
deeper networks whereas Verisig+Flow™ scales linearly with the
number of layers since the same computation is run for each layer.
This is another positive feature of our technique since deeper net-
works are known to learn more efficiently than shallow ones [31].

In summary, this paper has three contributions: 1) we develop an
approach to transform a DNN into a hybrid system, which allows
us to cast the closed-loop system verification problem into a hybrid
system verification problem; 2) we show that the DNN reachability
problem is decidable for DNNs with one hidden layer and decidable
for general DNNs if Schanuel’s conjecture holds; 3) we evaluate both
the applicability and scalability of Verisig using two case studies.
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(Approach: transform into a hybrid system)

Plant (with state x)

X < —0.07
xp = —0.07

Measurements y Control inputs u

Problem: verify property ¢ about the closed-loop system

Figure 1: Illustration of the closed-loop system considered
in this paper. The plant model is given as a standard hybrid
system, whereas the controller is a DNN. The problem is to
verify a property of the closed-loop system.

The rest of this paper is organized as follows. Section 2 states
the problem addressed in this work. Section 3 analyzes the decid-
ability of the verification problem, and Section 4 describes Verisig.
Sections 5 and 6 present the case study evaluations in terms of ap-
plicability and scalability. Section 7 provides concluding remarks.

2 PROBLEM FORMULATION

This section formulates the problem considered in this paper. We
consider a closed-loop system, as shown in Figure 1, with states
x, measurements y, and a controller h. The states and measure-
ments are formalized in the next subsection, followed by the (DNN)
controller description and the problem statement itself.

2.1 Plant Model

We assume the plant dynamics are given as a hybrid system. A
hybrid system’s state space consists of a finite set of discrete modes
and a finite number of continuous variables [18]. Within each mode,
continuous variables evolve according to differential equations with
respect to time. Furthermore, each mode contains a set of invariants
that hold true while the system is in that mode. Transitions between
modes are controlled by guards, i.e., conditions on the continuous
variables. Finally, continuous variables can be reset during each
mode transition. The formal definition is provided below.

DEFINITION 1 (HYBRID SYSTEM). A hybrid system with inputs u

and outputs y is a tuple H = (X, Xy, F,E,I,G, R, g) where

e X = Xp X X is the state space with Xp = {q1, . . .

Xc a manifold;

® Xy C X is the set of initial states;

o F: X — TXc assigns to each discrete mode q € Xp a vector
ﬁeldfq, ie,Xc = fq(xc,u) in mode q;
E C Xp X Xp is the set of mode transitions;
I: Xp — 2%¢ assigns to g € Xp an invariant of the form
I(q) € Xc;
e G : E — 2%¢ gssigns to each edge e =
U < I(q1);
R:E — (2X¢ — 2XC) gssigns to each edge e = (g1, q2) a
reset V. C I(q2);
g : X —> RP is the observation model such that y = g(x).

,qm} and

(91,92) a guard
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2.2 DNN Controller Model

A DNN controller maps measurements y to control inputs u and can
be defined as a function h as follows: h : R? — RY. To simplify the
presentation, we assume the DNN is a fully connected feedforward
neural network. However, the proposed technique applies to all
common classes such as convolutional, residual or recurrent DNNss.
As illustrated in Figure 1, a typical DNN has a layered architecture
and can be represented as a composition of its L layers:

h(y) = hp ohp—yo---0hi(y),

where each hidden layer h;, i € {1,...,L — 1}, has an element-wise
(with each element called a neuron) non-linear activation function:

hi(y) = a(Wjy + b;).

Each h; is parameterized by a weight matrix W; and an offset vector
bi. The most common types of activation functions are

e ReLU: a(y) := ReLU (y) = max{0, y},

e sigmoid: a(y) :=o(y) =1/(1 +e7Y),

e hyperbolic tangent: a(y) := tanh(y) = (e¥ —e7Y)/(e¥ +e7Y).
As argued in the introduction, and different from most existing
works that assume ReLU activation functions, this work considers
sigmoid and tanh activation functions (which also fall in the broad
class of sigmoidal functions). Finally, the last layer Ay is linear:!

hr(y) = WLy + br,

which is parameterized by a matrix W, and a vector by .

During training, the parameters (Wi, by, ..., Wr, by ) are learned
through an optimization algorithm (e.g., stochastic gradient de-
scent [11]) used on a training set. In this paper, we assume the DNN
is already trained, i.e., all parameters are known and fixed.

2.3 Problem Statement

Given the plant model and the DNN controller model described in
this section, we identify two verification problems. The first one is
the reachability problem for the DNN itself.

PrROBLEM 1. Let h be a DNN as described in Section 2.2. The DNN
verification problem, expressed as property ¢ gnn, is to verify a property
Yann on the DNN’s outputs u given constraints & z,,, on the inputs y:

Pann(Ys 1) = (Eann(y) A h(y) = 1) = Ygnn(u). ¢Y)
Problem 2 is to verify a property of the closed-loop system.

PrOBLEM 2. LetS = h|| Hp be the composition of a DNN controller
h (Section 2.2) and a plant P, modeled with a hybrid system Hp
(Section 2.1). Given a property & on the initial states Xy of P, the
problem, expressed as property ¢, is to verify a property y of the
reachable states of P:

P(Xo, x(2)) = £(Xo) = Y (x(1)), Yt 2 0. @

Our approach to Problem 1, namely transforming the DNN into
an equivalent hybrid system, also presents a solution to Problem 2
since we can compose the DNN’s hybrid system with the plant’s
and can use existing hybrid system verification tools.

I The last layer is by convention a linear layer, although it could also have a non-linear
activation, as shown in the Mountain Car case study.
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APPROACH. We approach Problem 1 by transforming h into a hy-
brid system Hy, such that if xo is an initial condition of Hy, then the
only reachable state in the last mode of Hy, is h(xo). Problem 2 is ad-
dressed by verifying safety for the composed hybrid system Hy, || Hp.

3 ON THE DECIDABILITY OF
SIGMOID-BASED DNN REACHABILITY

Before describing our approach to the problems stated in Section 2,
a natural question to ask is whether these problems are decidable.
The answer is not obvious due to the non-linear nature of the
sigmoid. This section shows that if the DNN’s inputs and outputs
are given as a real-arithmetic property, then reachability can be
stated as a real-arithmetic property with transcendental functions,
which is decidable if Schanuel’s conjecture is true [34]. Furthermore,
we prove decidability for the case of NNs with a single hidden layer,
under mild assumptions on the DNN parameters. Finally, we argue
that by casting the DNN verification problem into a hybrid system
verification problem, we obtain a §-decidable problem [10].2

3.1 DNNs with multiple hidden layers

As formalized in Section 2, the reachability property of a DNN h
with inputs y and outputs u has the general form:

Py u) = (E(y) A h(y) = u) = Y(w), ®)

where ¢ and ¢ are given properties on the real numbers. Verifying
properties on the real numbers is undecidable in general. A notable
exception is first-order logic formulas over (R, <, +,—,+,0,1), i.e.,
the language where < is the relation, +, -, and - are functions, and
0 and 1 are the constants [30]; we denote such formulas by R-
formulas. Intuitively, R-formulas are first-order logic statements
where the constraints are polynomial functions of the variables
with integer coefficients. Example R-formulas are Yx Yy : xy >
0,3x : x2—2=0,and Iw : xw2+yw+z=0.

Another relevant language is (R, <, +, —, -, exp, 0, 1), which also
includes exponentiation; we denote these formulas by Rexp-formulas.
Although it is an open question whether verifying Rexp-formulas is
decidable, it is known that decidability is connected to Schanuel’s
conjecture [34]. Schanuel’s conjecture concerns the transcendence
degree of certain field extensions of the rational numbers and, if
true, would imply that verifying Rexp-formulas is decidable [34].

We focus on the case where ¢ and { are R-formulas. The expo-
nentiation in the sigmoid means that ¢, however, is not a R-formula.
We show below that ¢ is in fact an Rexp-formula, which implies that
DNN reachability is decidable if Schanuel’s conjecture is true [34].

PrOPOSITION 3.1. Leth : R? — RY be a sigmoid-based DNN with
L — 1 hidden layers (with N neurons each) and rational parameters.

The property ¢(y,u) = (€(y) A h(y) = u) = Y(u), where £ and
are R-formulas, is an R exp-formula.

2Note that the results presented in this section hold for DNNs with sigmoid activation
functions, but similar results can be shown for tanh.
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ProOF. Since i is an R-formula, it suffices to show that ¢y (y, u) =
&(y) A h(y) = u can be expressed as an Rexp-formula. Note that

1
po(y,u) =&(y) A A
1 1+ exp{— (w) y—b}}
1
ARN = A
1+ exp{—(w{V)Ty - b{\[}
1
AR =
gy exp{—(wi_l)ThL_z - bl{_l}
1
ARN =
17y +exp{—(wI]J\I_1)ThL_2 - bi\f_l}
Au=Wilhl ... b 1T + by,
Where(w])TlerW]ole,andhl [h1 hN]T lef1,...,L-

1}. The last constraint, call it p(u) is already an R- formula Let
Wiljk = p k/q . with p! ik and ¢* [ 0 integers, and let dy =
1 1
911912 "
extra variables z; and v{ and arrive at an equivalent property ¢z,
which is an Rexp-formula since all denominators are Rexp-formulas:

-qk Np ~1 To remove fractions from the exponents, we add

1
Ju) = Azodo =y AR = A
dz(y,u) &(y) 0do =Y 1 1+exp{—(r11)Tzo—Ul}
1
/\th /\Ulzbl /\UN bN
g exp{—(rN)TZO - U{V} b
1
/\ZL—ZdO_hLZ/\h AL,
L-17 1+exp{—(ri_1)TZL—2 _Ui—1}
1
ARY =

1+ expl—(rN )Tzps -0 )

1 _ 1 N
Avp_y=bp_ A Avp = b Ap(u),

where rl’ = w{ dp are vectors of integers; U{ = bl] are R-formulas

since b{ are rational. o

COROLLARY 3.2 ([34]). If Schanuel’s conjecture holds, then veri-
fying the property ¢(y,u) = (¢(y) A h(y) = u) = ¢ (u) is decidable

under the conditions stated in Proposition 3.1.

REMARK. Note that by transforming the DNN into an equivalent
hybrid system (as described in Section 4), we show that DNN reach-
ability is §-decidable as well [10]. Intuitively, §-decidability means
that relaxing all constraints by a rational § results in a decidable
problem; as shown in prior work [10], reachability is 5-decidable for
hybrid systems with dynamics given by Type 2 computable functions,
which is large class of functions that contains the sigmoid.

3.2 Neural Networks with a single hidden layer

Regardless of whether Schanuel’s conjecture holds, we can show
that DNN reachability is decidable for networks with a single hidden
layer. In particular, assuming interval bounds are given for each
input, it is possible to transform the reachability property into an
R-formula, thus showing that verifying reachability is decidable.

THEOREM 3.3. Let h : RP — RY be a sigmoid-based neural net-
work with rational parameters and with one hidden layer (with N

R. Ivanov et al.

neurons), i.e., h(x) =
and let dy = q11q12 - -

#(y,u)

Wa (o (Wix + b1)) + ba. Let [W1lij = pij/qij
- qNp- Consider the property

=dy (y eIy Au=h(y)) = ¥(u),

where y = [yl,...,yp]T e RP,u = [ul,...,uq]T € RY, ¢ is
an R-formula, and Iy = [aq, f1] X X [ap,ﬁq] C RP, i.e, the
Cartesian product of p one-dimensional intervals. Then verifying
¢(y, u) is decidable if, for alli € {1,...,N} andj €f{1,....phe

e%/% and ePil% are rational, i.e., b’ ln(b ) aj =do ln(a]) and

=dyln ﬁj) for some rational numbers b, al., and ﬁj

ProoF. The proof technique borrows ideas from [18]. It suffices
to show that ¢(y, u) is an R-formula. Since ¢(u) is an R-formula,
we focus on the left-hand side of the implication, call it ¢o(y, u)

1

1+ exp{—(wll)Ty - b%}

go(y.u) =y €Iy Ah} =

1
wi)Ty - bN}

ARN = Au=Wylhl, . hN]T + by,

1+ exp{—(

where (w{ )T is row i of W;. Note that the last constraint in ¢ (y, u),
call it p(u), is an R-formula. To remove fractions from the exponen-
tials, we change the limits of y. Consider the property

1

LU) = elZant = A
Pl =yl A DTy - 8
1
ARN = A p(u),
! 1+exp{—(r{V)Ty—b{V} p)
where IZ [a1/do, B1/do]X- - -X[ap/do, Bp/do] and each r{ = dow{

isa vector of integers. Note that ¢o(y, u) = ¢z(y, u), since a change
of variables z = y/dy implies that z € 15 iff y € I. To remove expo-
nentials from the constraints, we use their monotonicity property
and transform ¢z(x, y) into an equivalent property ¢e (x, y):

1

Pelyu) =y eIy Ay = —— g A
T+y" - -yppexp{—b%}
1
ARN = ~ A p(u),
Ly P exp(-bN)
Y1 "'yp expr—b;
where I = [ePr/do emar/do) ... x [ePp/d e=ap/d0] and r{j is

element j of ri. To see that ¢ (y, u) = ¢7z(y,u), take any y € Ig and

1

1 Py} = zJ , with zj = e7Y; thus, z € I},
The final step transforms the property @. (y, u) into an equivalent
property v(y, u) to eliminate negative integers r{j in the exponents:

note that exp{—

v(y,u)EyEIeﬂzele_ylzl:1/\---/\ypzp:1
Ah] = A
U
l+l—[y] 1_[ exp }
Jjert Jjer-
Ahy = Ap(w),
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where Is— — [eal/dﬂ’eﬁl/do] X oo X [e“p/do’eﬂp/do],_[; = {k |

r1ik > 0}, and I = {k | r1ik < 0}. Note that ¢, (y,u) = v(y,u) since
for rfj <0, the constraint z;jy; = 1 implies y;lj = z;rlj

Thus, if ebi], e""'/do, and ePi/% are rational for all i € {1,....p}
jelL,..., 1_\]}, one can show that v(y, u) is an R-formula by multi-
plying all k] constraints by their denominators. All denominators

are positive since y; and z; are constrained to be positive. O

The single-layer assumption in Theorem 3.3 is not too restrictive
since DNNs with one hidden layer are still universal approximators.
At the same time, the technique used to prove Theorem 3.3 cannot
be applied to multiple hidden layers since the DNN becomes an
Rexp-formula in that case. Note that it might be possible to show
more general versions of Theorem 3.3 by relaxing the interval
constraints or the real-arithmetic constraints. Finally, note that the
assumption on the DNN’s weights is mild since a DNN’s weights
can be altered in such a way that they are arbitrarily close to the
original weights while also satisfying the theorem’s requirements.

4 DNN REACHABILITY USING HYBRID
SYSTEMS

Having analyzed the decidability of DNN reachability in Section 3,
in this section we investigate an approach to computing the DNN’s
reachable set. In particular, we transform the DNN into an equiva-
lent hybrid system, which allows us to use existing hybrid system
reachability tools such as Flow™. Sections 4.1 and 4.2 explain the
transformation technique, and Section 4.3 provides an illustrative
example. Finally, Section 4.4 discusses existing hybrid system reach-
ability tools. Note that this section focuses on the case of sigmoid
activations; the treatment of tanh activations is almost identical -
the differences are noted in the relevant places in the section.

4.1 Sigmoids as solutions to differential
equations

The main observation that allows us to transform a DNN into an
equivalent hybrid system is the fact that the sigmoid derivative can
be expressed in terms of the sigmoid itself:3

do

I 0 =0 -0o()). ©
X

Thus, the sigmoid can be treated as a quadratic dynamical system.
Since we would like to know the possible values of the sigmoid
for a given set of inputs, we introduce a “time” variable ¢ that is
multiplied by the inputs. In particular, consider the proxy function

g(t,x) = o(tx) = T30 (5)
such that g(1, x) = o(x) and, by the chain rule,
d .
(2.2 = g(t.%) = xg(t.x)(1 - 9(¢. ). ©)

Thus, by tracing the dynamics of g until time t = 1, we obtain ex-
actly the value of o (x); the initial condition is g(0, x) = 0.5, as can
be verified from (5). While the intermediate values of the sigmoid
states are not considered, the integration allows us to iteratively
construct the sigmoid’s reachable set. To avoid the integration, one

3The corresponding differential equation for tanh is (dtanh/dx)(x) = 1 — tanh?(x).
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needs to find a computationally cheap, yet expressive, represen-
tation of this reachable set. We leave investigating this approach
for future work. Since each neuron in a sigmoid-based DNN is a
sigmoid function, we can use the proxy function g to transform the
entire DNN into a hybrid system, as described next.

4.2 Deep Neural Networks as Hybrid Systems

Given the proxy function g described in Section 4.1, we now show
how to transform a DNN into a hybrid system. Let N; be the number
of neurons in hidden layer h; and let h;; denote neuron j in h;, ie.,

hij(x) = o(w])Tx + b)), ™)
where (wf)T is row j of W; and b{ is element j of b;. Given h;;, the
corresponding proxy function g;; is defined as follows:
; ; 1
gii(t,x) = at- (W) Tx+b))) = - —,
! T trexplt (W)Tx+ b))

where, once again, g;;j(1, x) = h;j(x). Note that, by the chain rule,

90+ . .
%(t, x) = gij(t,x) = (W) Tx + b)) gij (1, ) (1 = i (£, %)). (8)
Thus, for a given x, the value of hidden layer A;(x) can be obtained
by tracing all g;;(¢,x) until ¢ = 1 (initialized at g;;(0,x) = 0.5).
This suggests that each hidden layer can be represented as a set of
differential equations g;;(t, x), where g;; can be considered a state.
With the above intuition in mind, we now show how to transform
the DNN into an equivalent hybrid system. To simplify notation, we
assume N = Nj foralli € {1,...,L — 1}; we also assume the DNN
has only one output. The proposed approach can be extended to
the more general case by adding more states in the hybrid system.
The hybrid system has one mode for each DNN layer. To en-
sure the hybrid system is equivalent to the DNN, in each mode
we trace g;j(t,x) until t = 1 by using the differential equations
100 ,xf], to

represent the proxy variables for each layer; when in mode i, each
xJI.J,j € {1,..., N}, represents neuron h;; in the DNN. We also intro-

gij(t,x) in (8). Thus, we use N continuous states, xP

duce N additional continuous states (one per neuron), xlj e

S Xy
to keep track of the linear functions within each neuron. The xi]
states are necessary because the inputs to each neuron are functions
of the le states reached in the previous mode.

The hybrid system description is formalized in Proposition 4.1.
The extra mode g is used to reset the le states to 0.5 and the xi]
states to their corresponding values in q;. The two extra states, t and
u, are used to store the “time” and the DNN’s output, respectively.
Note that © denotes Hadamard (element-wise) product.

PROPOSITION 4.1. Leth : R? — R be a sigmoid-based DNN with
L — 1 hidden layers (with N neurons each) and a linear last layer
with one output. The image under h of a given set Iy is exactly the
reachable set for u in mode q1, of the following hybrid system:

e Continuous states: x¥' = [xf, .. ,xfj]-'—,x] = [xl], ... ,xJJV]T,
u,t;
o Discrete states (modes): qo, q1, - - -, qL;

o Initial states: x¥ € Iy, x) = 0,u=0,t=0;
e Flow:
- F(q) =[xF = 0,4/ =0,u=0,i=1];



HSCC *19, April 16-18, 2019, Montreal, QC, Canada

(a) Example DNN.

R. Ivanov et al.

(b) Equivalent hybrid system.

Figure 2: Small example illustrating the transformation from a DNN to a hybrid system.

- F(g) =[P =xoxP o1 -xF)x/ =0u=0i=1]
forief{1,...,L-1};

- F(qr) =[P = 0,5/ = 0,2 =0,i = 0];

Transitions: E = {(q0,q1), - - -»(qL-1,9L) };

Invariants:

- I(qo) = {t < 0}

- Ig;)=f{t<1)forie(1,....,.L-1};

- Iqr)={t <0k

e Guards:
- G(qo0,q1) = {t =0}
- G(qi,qi+1) ={t =1} forie{1,...,L—1};
® Resets:
- R(qi,qi+1) = {xP =0.5,x) = W,-xP +bj,t =0}
forief{o,...,L-2};

- R(qr-1,q1) = {u = WrxP +br}.

ProOE. First note that the reachable set of x¥ in mode ¢; at time
t = 1is exactly the image of I under hy, the first hidden layer.
This is true because at t = 1, x takes the value of the sigmoid
function. Applying this argument inductively, the reachable set of
xF in mode gy_; at time t = 1 is exactly the image of Iy under
hp_1 0 --- o hy. Finally, u is a linear function of x* with the same
parameters as the last linear layer of h. Thus, the reachable set for
u in mode gy is the image of I under Ay o ---ohy = h. ]

We emphasize that the “time” in the sigmoid dynamics is local
to the DNN. When the DNN’s hybrid system is composed with the
plant’s, a separate time variable will be used to store global time
(which is paused during the sigmoid computation). This captures all
common CPS where the controller is either time- or event-triggered.

4.3 Illustrative Example

To illustrate the transformation process from a DNN to a hybrid
system, this subsection presents a small example, shown in Figure 2.
The two-layer DNN is transformed into an equivalent three-mode
hybrid system. Since all the weights are positive and the sigmoids
are monotonically increasing, the maximum value for the DNN’s
output u is achieved at the maximum values of the inputs, whereas
the minimum value for u is achieved at the minimum values of the
inputs, i.e,u > 30(0.3-2+0.2-1+0.1) +506(0.1-2+0.5-1+0.2)
andu < 30(0.3:-34+0.2-2+0.1) +50(0.1-3+0.5-2+0.2). The
same conclusion can be reached about state u in the hybrid system.
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4.4 Hybrid System Verification Tools

Depending on the hybrid system model and the desired precision,
there are multiple tools one might use. In the case of linear hybrid
systems, there are powerful tools that scale up to a few thousand
states [9]. For non-linear systems, reachability is undecidable in
general, except for specific subclasses [2, 18]. Despite this negative
result, multiple reachability methods have been developed that have
proven useful in specific scenarios. In particular, Flow™ [4] works by
constructing flowpipe overapproximations of the dynamics in each
mode using Taylor Models; although Flow™ provides no decidability
claims, it scales well in practice. Alternatively, dReach [17] provides
d-decidability guarantees for Type 2 computable functions; at the
same time, dReach is not as scalable and could not handle more than
a few dozen variables in the examples tried in this paper. Finally,
one can also use SMT solvers such as z3 [22]; yet, SMT solvers are
not optimized for non-linear arithmetic and do not scale well either.

In this paper, we use Flow™ due to its scalability; as shown in the
evaluation, it efficiently handles systems with a few hundred states,
i.e., DNNs with a few hundred neurons per layer. Furthermore, the
mildly non-linear nature of the sigmoid dynamics suggests that the
approximations used in Flow™ are sufficiently precise so as to verify
interesting properties. This is illustrated in the case studies as well
as in the scalability evaluation in Section 6.

Finally, note that all existing tools have been developed for large
classes of hybrid systems and do not exploit the specific properties
of the sigmoid dynamics, e.g., they are monotonic and polynomial.
For example, in some cases it is possible to symbolically compute the
reachable set of monotone systems [5], although directly applying
this approach to our setting does not work due to the large state
space. Thus, developing a specialized sigmoid reachability tool is
bound to greatly improve scalability and precision; since this paper
is a proof of concept, developing such a tool is left for future work.

5 CASE STUDY APPLICATIONS

This section presents two case studies in order to illustrate possi-
ble use cases for the proposed verification approach. These case
studies were chosen in domains where DNNs are used extensively
as controllers, with weak worst-case guarantees about the trained
network. This means it is essential to verify properties about these
closed-loop systems in order to assure their functionality. The first
case study, presented in Section 5.1, is Mountain Car, a benchmark
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Figure 3: Mountain Car problem [23]. The car needs to drive
up the left hill first in order to gather enough momentum.

problem in RL. Section 5.2 presents the second case study in which
a DNN is used to approximate an MPC with safety guarantees.

5.1 A Reinforcement Learning Case Study

This subsection illustrates how Verisig could be used on a bench-
mark RL problem, namely Mountain Car (MC). In MC, an under-
powered car must drive up a steep hill, as shown in Figure 3. Since
the car does not have enough power to accelerate up the hill, it
needs to drive up the opposite hill first in order to gather enough
momentum. The learning task is to learn a controller that takes as
input the car’s position and velocity and outputs an acceleration
command. The car has the following discrete-time dynamics:

Pk+1 = Pk + Uk
Vg1 = Uk + 0.0015u — 0.0025 * cos(3pg),

where uy is the controller’s input, and p; and vy are the car’s
position and velocity, respectively, with py chosen uniformly at
random from [—0.6, —0.4] and vy = 0. Note that v} is constrained to
be within [-0.07, 0.07] and py is constrained to be within [-1.2, 0.6],
thereby introducing (hybrid) mode switches when these constraints
are violated. We consider the continuous version of the problem
such that u is a real number between -1 and 1.

During training, the learning algorithm tries different control
actions and observes a reward. The reward associated with a control
action uy is —O.lu,zc, i.e,, larger control inputs are penalized more
s0 as to avoid a “bang-bang” strategy. A reward of 100 is received
when the car reaches its goal. The goal of the training algorithm is
to maximize the car’s reward. The training stage typically occurs
over multiple episodes (if not solved, an episode is terminated after
1000 steps) such that various behaviors can be observed. MC is
considered “solved” if, during testing, the car goes up the hill with
an average reward of at least 90 over 100 consecutive trials.

Using Verisig, one can strengthen the definition of a “solved” task
and verify that the car will go up the hill with a reward of at least
90 starting from any initial condition. To illustrate this, we trained
a DNN controller for MC in OpenAl Gym [23], a toolkit for devel-
oping and comparing algorithms on benchmark RL problems. We
utilized a standard actor/critic approach for deep RL problems [19].
This is a two-DNN setting in which one DNN (the critic) learns
the reward function, whereas the other one (the actor) learns the
control. Once training is finished, the actor is deployed as the DNN
controller for the closed-loop system. We trained a two-hidden-
layer sigmoid-based DNN with 16 neurons per layer; the last layer
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Initial condition | Verified | Reward | # steps | Time
[-0.41, -0.40] Yes >=90 | <=100 | 1336s
[-0.415, -0.41] Yes >=90 | <=100 | 1424s
[-0.42, -0.415] Yes >=90 | <=100 | 812s
[-0.43, -0.42] Yes >=90 | <=100 | 852s
[-0.45, -0.43] Yes >=90 | <=100 | 886s
[-0.48, -0.45] Yes >=90 | <=100 | 744s
[-0.50, -0.48] Yes >=90 | <=100 | 465s
[-0.53, -0.50] Yes >=90 | <=100 | 694s
[-0.55, -0.53] Yes >=90 | <=100 | 670s
[-0.57, -0.55] Yes >=90 | <=100 | 763s
[-0.58, -0.57] Yes >=90 | <=109 | 793s
[-0.59, -0.58] Yes >=90 | <=112 | 1307s
[-0.6, -0.59] No N/A N/A | N/A

Table 1: Verisig+Flow™ verification times (in seconds) for dif-
ferent initial conditions of MC. The third column shows the
verified lower bound of reward. The fourth column shows
the verified upper bound of the number of dynamics steps.

Verisig+Flow* Approximation Sets Over Time

04 -

02

-0.2 - B

0.4 - 4

Car Position

08 ]

\\WM//// . . . L

-1 0.5 0 0.5 1
DNN Control Input

Figure 4: Verisig+Flow™ approximation sets over time.

has a tanh activation function in order to scale the output to be
between -1 and 1. Note that larger networks were also trained in
order to evaluate scalability, as discussed in Section 6.

To verify that the car will go up the hill with a reward of at
least 90, we transform the DNN into an equivalent hybrid system
using Verisig and compose it with the car’s hybrid system. We use
Verisig+Flow™ to verify the desired property on the composed sys-
tem, given any initial position in [-0.6, -0.4]. Note that we split the
initial condition into subsets and verify the property for each subset
separately. This is necessary because the DNN takes very different
actions from different initial conditions, e.g., large negative inputs
when the car is started from the leftmost position and small nega-
tive inputs for larger initial conditions. This variability introduces
uncertainty in the dynamics and causes large approximation errors.
As part of future work, we will investigate a refinement procedure
in order to optimize the partitioning of the initial condition.

Table 1 presents the verification times for each subset. Most
properties are verified within 10-15 minutes; the properties at either
end of the initial set take longer to verify due to branching in the
car’s hybrid system as caused by the car reaching the minimum
allowed position. For most initial conditions, we verify that the car
will go up the hill with a reward of at least 90 and in at most 100
dynamics steps. Interestingly, after failing to verify the property for
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Overview of the quadrotor case study

. e e o [l [ ] [ [ I
5 g------------ -.I
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—Initial condition
Verified bounds
Example trajectory
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p

15 2

x

Figure 5: Overview of the quadrotor case study, as projected
to the (px, py)-plane. The quadrotor follows its plan in order
to reach the goal (star) without colliding into obstacles (red
circles). We verify that, starting from any initial condition in
the black box, the quadrotor does not deviate from its plan
by more than 0.32m and does not collide into obstacles.

the subset [-0.6, -0.59], we found a counter-example when starting
the car from py = —0.6: the final reward was 88. This suggests that
Verisig is not only useful for verifying properties of interest but it
can also be used to identify areas for which these properties do not
hold. In the case of MC, this information can be used to retrain the
DNN by starting more episodes from [-0.6, -0.59] since the likely
reason the DNN does not perform well from that initial set is that
not many episodes were started from there during training.
Finally, we illustrate the progression of the approximation sets
created by Flow™. Figure 4 shows a two-dimensional projection of
the approximation sets over time (for the case pg € [-0.5, —0.48]),
with the DNN control inputs plotted on the x-axis and the car’s
position on the y-axis. Initially, the uncertainty is fairly small and
remains so until the car goes up the left hill and starts going quickly
downhill. At that point, the uncertainty increases but it remains
within the tolerance necessary to verify the desired property.

5.2 Using DNNs to Approximate MPCs with
Safety Guarantees

To further evaluate the applicability of Verisig, we also consider a
case study in which a DNN is used to approximate an MPC with
safety guarantees. DNNs are used to approximate controllers for
several reasons: 1) the MPC computation is not feasible at run-
time [12]; 2) storing the original controller (e.g., as a lookup table)
requires too much memory [14]; 3) performing reachability analysis
by discretizing the state space is infeasible for high-dimensional
systems [26]. We focus on the latter scenario in which the aim is to
develop a DNN controller with safety guarantees.

As described in prior work [26], it is possible to train a DNN to
approximate an MPC in the case of control-affine systems whose
goal is to follow a piecewise-linear plan. In this case, the optimal
controller is “bang-bang”, i.e., it is effectively a classifier mapping a
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Initial condition on (pf, py) Property Time
[-0.05,-0.025] X [—0.05, —0.025] | ||r3]lcc < 0.32m | 2766s
[-0.025,0] x [-0.05,—0.025] lIrslleo < 0.32m | 2136s
[0,0.025] x [-0.05, —0.025] lIrslleo < 0.32m | 2515s
[0.025,0.05] x [-0.05, —0.025] lIr3lleo < 0.32m | 897s
[=0.05,-0.025] x [-0.025, 0] lIrslleo < 0.32m | 1837s
[-0.025,0] x [—0.025, 0] lIrslleo < 0.32m | 1127s
[0,0.025] x [—0.025, 0] lI73]le0 < 0.32m | 1593s
[0.025,0.05] x [-0.025, 0] Irslleo < 0.32m | 894s
[-0.05,—0.025] x [0, 0.025] lIr3lleo < 0.32m | 1376s
[-0.025,0] x [0,0.025] lI73]leo < 0.32m | 953s
[0,0.025] x [0, 0.025] lIrslleo < 0.32m | 1038s
[0.025,0.05] x [0,0.025] Ir3lleo < 0.32m | 647s
[-0.05,-0.025] x [0.025,0.05] [I73]lc0 < 0.32m | 3534s
[-0.025,0] x [0.025,0.05] lIrslleo < 0.32m | 2491s
[0,0.025] x [0.025, 0.05] lIrslleo < 0.32m | 2142s
[0.025,0.05] x [0.025, 0.05] [I73]lc0 < 0.32m | 1090s

Table 2: Verisig+Flow™ verification times (in seconds) for
different initial conditions of the quadrotor case study. All
properties were verified. Note that r3 = [p}, py, p7].

system state to one of finitely many control actions. Once the DNN
is trained, it can be used on the system instead of the MPC. Although
worst-case deviations from the planner can be obtained for specific
initial points, it is not known whether the DNN controller is safe
for a range of initial conditions. Thus, we use Verisig to verify the
safety of such a closed-loop system.

In this case study, we consider a six-dimensional control-affine
model for a quadrotor controlled by a DNN and verify that the
quadrotor reaches its goal without colliding into nearby obstacles.
Specifically, the quadrotor follows a planner, given as a piecewise-
linear system, and tries to stay as close to the planner as possible.
The setup, as projected to the (px, py)-plane, is shown in Figure 5.
The quadrotor and planner dynamics models are as follows:

p v P b
Pg vg P‘;‘g b;
N AN P A S
o} gtanf |’ oF o |’
z')g —gtang ob 0
ol T—g .U% 0

where p¥, pg ,pd and p?, piy), pL are the quadrotor and planner’s posi-

tions, respectively; v, UZ ,vd and vﬁ, vg , vf are the quadrotor and

planner’s velocities, respectively; 6, ¢ and 7 are control inputs (for
pitch, roll and thrust); g = 9.81m/s? is gravity; by, by, b, are piece-
wise constant functions of time. The control inputs have constraints
¢,0 € [-0.1,0.1] and 7 € [7.81, 11.81]; the planner velocities have
constraints by, by, b, € [-0.25,0.25]. The controller’s goal is to en-
sure the quadrotor is as close to the planner as possible, i.e., stabilize
the system of relative states r := [p. py. p7. v}, vy, oI1T =q-p.
To train a DNN controller for the model in (9), we follow the
approach described in prior work [26]. We sample multiple points
from the state space over a horizon T and train a sequence of DNNs,
one for each dynamics step (as discretized using the Runge-Kutta
method). Once two consecutive DNNs have similar training error,
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(a) 16 neurons per layer. (b) 32 neurons per layer.
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(c) 64 neurons per layer. (d) 128 neurons per layer.

Figure 6: Comparison between the verification times of Verisig+Flow” (V+F) and the MILP-based approach with Gurobi (M+G)
for DNNs of increasing size. In each figure, the number of neurons is fixed and number of layers varies from two to 10.

we interrupt training and pick the last DNN as the final controller.
The DNN takes a relative state as input and outputs one of eight
possible actions (the “bang-bang” strategy implies there are two
options per control action). We trained a two-hidden layer tanh-
based DNN, with 20 neurons per layer and a linear last layer.

Given the trained DNN controller, we verify the safety property
shown in Figure 5. Specifically, the quadrotor is started from an
initial condition (p;(O),p;(O)) € [-0.05,0.05] X [-0.05,0.05] (the
other states are initialized at 0) and needs to stay within 0.32m
from the planner in order to reach its goal without colliding into
obstacles. Similar to the MC case study, we split the initial condition
into smaller subsets and verify the property for each subset.

The verification times of Verisig+Flow™ for each subset are shown
in Table 2. Most cases take less than 30 minutes to verify, which is
acceptable for an offline computation. Note that this verification
task is harder than MC not because of the larger dimension of the
state space but because of the discrete DNN outputs. This means
that Verisig+Flow™ needs to enumerate and verify all possible paths
from the initial set. This process is computationally expensive since
the number of paths could grow exponentially with the length of
the scenario (set to 30 steps in this case study). One approach to
reduce the computation time would be to use the Markov prop-
erty of dynamical systems and skip states that have been verified
previously. We plan to explore this idea as part of future work.

In summary, this section shows that Verisig can verify both safety
(avoiding obstacles) and bounded liveness (going up a hill) proper-
ties in different and challenging domains. The plant models can be
nonlinear systems specified in either discrete or continuous time.
The next section shows that Verisig+Flow™ also scales well to larger
DNNs and is competitive with other approaches for verification of
DNN properties in isolation.

6 COMPARISON WITH OTHER DNN
VERIFICATION TECHNIQUES

This section complements the Verisig evaluation in Section 5 by
analyzing the scalability of the proposed approach. We train DNNs
of increasing size on the MC problem and compare the verification
times against the times produced by another suggested approach to
the verification of sigmoid-based DNNs, namely one using a MILP
formulation of the problem [7]. We verify properties about DNNs
only (without considering the closed-loop system), since existing
approaches cannot be used to argue about the closed-loop system.
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As noted in the introduction, the two main classes of DNN veri-
fication techniques that have been developed so far are SMT- and
MILP-based approaches to the verification of ReLU-based DNNs.
Since both of these techniques were developed for piecewise-linear
activation functions, neither of them can be directly applied to
sigmoid-based DNNGs. Yet, it is possible to extend them to sigmoids
by bounding the sigmoid from above and below by piecewise-linear
functions. In particular, we implement the MILP-based approach
for comparison purposes since it can also be used to reason about
the reachability of a DNN, similar to Verisig+Flow™.

The encoding of each sigmoid-based neuron into an MILP prob-
lem is described in detail in [7]. It makes use of the so called Big M
method [33], where conservative upper and lower bounds are de-
rived for each neuron using interval analysis. The encoding uses a
binary variable for each linear piece of the approximating function
such that when that variable is equal to 1, the inputs are within
the bounds of that linear piece (all binary variables have to sum up
to 1 in order to enforce that the inputs are within the bounds of
exactly one linear piece). Thus, the MILP contains as many binary
variables per neuron as there are linear pieces in the approximating
function. Finally, one can use Gurobi to solve the MILP and compute
a reachable set of the outputs given constraints on the inputs.

To compare the scalability of the two approaches, we trained
multiple DNNs on the MC problem by varying the number of layers
from two to ten and the number of neurons per layer from 16 to 128.
A DNN is assumed to be “trained” if most tested episodes result in
areward of at least 90 — since this is a scalability comparison only,
no closed-loop properties were verified. For each trained DNN, we
record the time to compute the reachable set of control actions
for input constraints py € [-0.52,—0.5] and vy = 0 using both
Verisig+Flow™ and the MILP-based approach. For fair comparison,
the two techniques were tuned to have similar approximation error;
thus, we used roughly 100 linear pieces to approximate the sigmoid.

The comparison is shown in Figure 6. The MILP-based approach
is faster for small networks and for large networks with few layers.
As the number of layers is increased, however, the MILP-based
approach’s runtimes increase exponentially due to the increasing
number of binary variables in the MILP. Verisig+Flow™, on the
other hand, scales linearly with the number of layers since the
same computation is run for each layer (i.e., in each mode). This
means that Verisig+Flow™ can verify properties about fairly deep
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networks; this fact is noteworthy since deeper networks have been
shown to learn more efficiently than shallow ones [31].

Another interesting aspect of the behavior of the MILP-based
approach can be seen in Figure 6c. The verification time for the nine-
layer DNN is much faster than for the eight-layer one, probably
due to Gurobi exploiting a corner case in that specific MILP. This
suggests that the fast verification times of the MILP-based approach
should be treated with caution as it is not known which example can
trigger a worst-case behavior. In conclusion, Verisig+Flow™ scales
linearly and predictably with the number of layers and can be used
in a wide range of closed-loop systems with DNN controllers.

7 CONCLUSION AND FUTURE WORK

This paper presented Verisig, a hybrid system approach to verifying
safety properties of closed-loop systems with DNN controllers. We
showed that the verification problem is decidable for networks
with one hidden layer and decidable for general DNNs if Schanuel’s
conjecture is true. The proposed technique uses the fact that the
sigmoid is a solution to a quadratic differential equation, which
allows us to transform the DNN into an equivalent hybrid system.
Given this transformation, we cast the DNN verification problem
into a hybrid system verification problem, which can be solved by
existing reachability tools such as Flow™. We evaluated both the
applicability and scalability of Verisig+Flow™ in two case studies.

For future work, it would be interesting to investigate whether
one could use sigmoid-based DNNs to approximate DNNs with
other activation functions (with analytically bounded error). This
would enable us to verify properties about arbitrary DNNs and
would greatly expand the application domain of Verisig.

A second direction for future work is to speed up the verifica-
tion computation by exploiting the fact that the sigmoid dynamics
are monotone and quadratic. Although the proposed technique is
already scalable to a wide range of applications, it still makes use of
a general-purpose hybrid system verification tool, i.e., Flow™. That
is why, developing a specialized sigmoid verification tool might
bring significant benefits in terms of scalability and precision.
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