
 1 

 
Abstract— As an ultra-wide bandgap semiconductor, β-Ga2O3 
has attracted great attention for high power, high voltage, and 
optoelectronic applications. However, until now, high 
frequency performance of Gallium Oxide devices has been 
limited to relatively low current gain cutoff frequencies below 
5 GHz. Here we show that highly localized delta-doping 
designs can enable high sheet charge density to enable devices 
with short gate lengths that allow high frequency operation. 
Field effect transistors with a gate length of 120 nm on such 
delta-doped β-Ga2O3 are reported here with extrinsic unity 
current gain frequency of 27 GHz. The device has a peak drain 
current of 260 mA/mm, transconductance (gm) of 44 mS/mm, 
and 3-terminal off-state breakdown voltage of 150 V.  These 
results demonstrate the potential of β-Ga2O3 for future RF and 
millimeter-wave device applications. 

Index Terms— Ga2O3 MESFET, High frequency, RF 
device, MBE, wide bandgap 

I. INTRODUCTION 
β-Ga2O3 has recently attracted attention as an ultra-wide 

bandgap (4.5-4.9 eV) semiconductor that can be controllably 
doped, and grown directly from the melt in single crystal form. 
Commercially available melt-grown β-Ga2O3 wafers can be 
obtained with crystal surfaces oriented along various directions. 
The ease of n-type doping with tetravalent cations, a wide 
variety of bulk single crystal [1,2,3,4], and epitaxial film 
growth techniques [5,6,7,8,9,10,11] have triggered worldwide 
interest in β-Ga2O3. The predicted breakdown electric field (6-
8 MV/cm) [12] is higher than that of GaN or SiC (~3 MV/cm), 
which when combined with electron mobility (predicted ~250-
350cm2/Vs [13]) and electron velocity (1.2×107 cm/s [14]) 
yields amongst the best figures of merit for power electronic 
and high frequency devices. As a result, β-Ga2O3 possesses 
potential for future electronic and optoelectronic [15] 
applications.  

Excellent performance has been reported for early β-Ga2O3 
devices, including Schottky diodes [16,17], MOSFETs 
[18,19,20], MESFETs [11,21] and HEMTs [22,23,24]. In 
particular, experimental observations of high breakdown fields 
above 5 MV/cm [16,17,25,] have been reported for both lateral 
MOSFET transistors and vertical Schottky diodes. Ga2O3 RF 
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MOSFET with current gain cut-off frequency of 5.1 GHz has 
been demonstrated [26]. To maintain high electron mobility, 
most previous work on β-Ga2O3 employed thick channels (> 
200 nm) with low n-type doping (< 1×1018 cm-3) [12,18,25,27]. 
However, due to aspect ratio considerations, such thick channel 
designs are not optimal for higher frequency applications of β-
Ga2O3 transistors. In high frequency devices, where the gate 
lengths would need to be scaled well into the sub-micron 
regime, the gate would not be able to control the thick channel 
because of the poor aspect ratio. Therefore, in this work, our 
objective is to realize vertically and laterally scaled field effect 
transistors with high sheet-charge density delta-doped 
channels. These results demonstrate the potential of β-Ga2O3 
for future high power RF and millimeter-wave device 
applications. 

 
Figure 1 (a) Device schematics (b) Energy band diagram of delta 
doped MESFET 

II. DEVICE GROWTH AND FABRICATION 
The structure (Figure 1) used in this work was grown by O2 

plasma assisted molecular beam epitaxy on commercially 
available Fe-doped semi-insulating Ga2O3 (010) substrate. 
Before starting growth, the substrate was cleaned by O2 plasma 
(300 W, 1.5x10-5 Torr) at 800 °C for 20 min for interface 
impurity removal. The substrate was kept at 700 °C during 
growth. 300 W O2 plasma, 1.55x10-5 Torr chamber pressure, 
and Ga beam equivalent pressure of 8.2x10-8 Torr were 
maintained to achieve an O-rich growth condition with 2.7 
nm/min growth rate. 450 nm of unintentionally doped Ga2O3 
was first grown on the substrate. Then the Si shutter was opened 
for 3 seconds to realize a sub-monolayer of Si doping. The Si 
cell temperature was kept at 950 °C. 20 nm of unintentionally 
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doped Ga2O3 was continuously grown for 7.4 min after Si delta 
doping for the gate barrier. Smooth surface morphology with an 
RMS of 0.9 nm was obtained.  

Heavily doped n-type Ga2O3 with doping concentration of 
2x1020 cm-3 was regrown by MBE in source and drain region to 
achieve low contact resistance. The ohmic contact regrown 
process was discussed in our previous report [19].  A Ti/Au/Ni 
metal stack (30 nm/ 100nm/ 30nm) was deposited by e-beam 
physical vapor deposition followed by annealing at 470 °C for 
1 min. 160 nm mesa recessing was carried by BCl3 based ICP-
RIE dry etching (ICP power = 200 W, RIE power = 30 W, 
Pressure = 15 mTorr). Vistec EBPG5000 electron beam 
lithography system was used to define a T-shaped gate on 
PMMA/MMA/PMMA resist stack. The Schottky gate contact 
was formed with an e-beam evaporated Ni/Au metal stack (30 
nm/ 150 nm). The fabricated device is shown in Figure 2 by 
scanning electron microscope imaging.  

 
Figure 2 (a) Plan-view SEM image of the fabricated device (b) Side-
view SEM image of 120nm T-shaped gate   

III. RESULTS AND DISCUSSION 

Contact resistance of 0.4 Ω-mm and sheet resistance of 7.5 
kΩ/□ were measured from transfer length method (TLM) 
patterns defined on MESFET structure. Measurements of a 
TLM pattern on n+ regrown layer showed 0.1 Ω-mm metal to 
semiconductor contact resistance. Hall measurements carried 
out on isolated van der Pauw structures revealed a sheet carrier 
density of 1.13x1013 cm-2 with Hall mobility of 70 cm2/Vs at 
room temperature. Small-signal capacitance-voltage 
measurements were carried out using an Agilent B1500A at a 
frequency of 100 kHz. The gate capacitance (Figure 3) shows 
accumulation characteristics with nominal depletion distance at 
zero gate bias of 20 nm, as expected from the epitaxial design. 
The carrier density profile extracted (inset of Figure 3) shows a 
narrow electron distribution corresponding to a 2-dimensional 
electron gas with an integrated sheet carrier density of 9.9 x 1012 
cm-2

 (Figure 3) at zero gate bias. 

 
Figure 3 Capacitance-voltage characteristics of delta doped 
MESFET and (inset) electron concentration profile extracted from 
CV measurements 
DC electrical characteristics of the delta doped MESFET 

were measured on a 0.12 um gate length device. The device 
reported here was a two finger structure (2x50 μm), with 
source-drain spacing of 1.9 μm, and gate-drain spacing of 1.4 
μm. A maximum drain current IDS, MAX of 0.26 A/mm was 
measured at VGS =2 V and VDS =12 V, and maximum 
transconductance gm,max of 44 mS/mm measured at gate bias of 
-2.5 V (Figure 4(a), (b)). The channel conduction was pinched 
off at VG= -6 V, which is more negative than the pinch-off 
voltage from capacitance measurements. This is attributed to 
short channel effects. An ION/IOFF ratio of 108 was measured at 
a drain bias of 12 V. The three-terminal breakdown voltage 
(using 0.1 mA/mm drain current as breakdown condition) was 
estimated to be 150 V (Figure 5) at gate bias of -10V, while the 
two-terminal Schottky gate-drain breakdown voltage was 164 
V on the same device. Gate current remained 8 µA/mm when 
three terminal breakdown happened. This suggests that the 
breakdown is caused by source-drain punch through due to non-
ideal gate-to-channel aspect ratio. 

 
Figure 4 (a) Measured output characteristics (b) Transfer 
characteristics of delta doped MESFET showing FET operation (d) 
Three terminal breakdown characteristics 
 

 
Figure 5 Three terminal breakdown characteristics showing 
breakdown voltage of 150 V 
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The high frequency small-signal performance was 
characterized between 1 GHz and 40 GHz using an Agilent 
8722ES vector network analyzer, and on-wafer ground-signal-
ground (GSG) probes. Network analyzer calibration was 
carried out using the through-reflect-load (TRL) method on a 
standard calibration substrate (Cascade Microtech). The 
parasitic pad capacitances were de-embedded using an isolated 
GSG device patterns on the device wafer. Figure 6(a) shows the 
short-circuit current gain (h21) and unilateral power gain (U). 27 
GHz peak current gain cut-off frequency (fT) and associated 
peak maximum oscillation frequency (fMAX) of 16 GHz were 
measured at gate bias of -2 V and drain bias of 12 V. The cutoff 
frequency without de-embedding pad capacitance was 26 GHz. 
The dependence of the cutoff frequency on gate bias (shown in 
Figure 6(b)) follows the same trend as the transconductance. 

 
Figure 6 (a) Measured small signal performance of 120 nm gate 
length delta doped MESFET (b) Measured cutoff frequency fT as a 
function of gate voltage measured at 12 V drain bias.  
We now discuss the effect of parasitic resistance on the 

performance of the device. To estimate the device source 
resistance the following method was used [28]. The source 
current was swept from 25 mA/mm to 175 mA/mm while the 
gate was forward biased to keep a 1 μA/mm forward current. 
The source resistance was estimated as the differential of the 
gate voltage with respect to source current (Figure 7). Based on 
this method, a source resistance of 7.4 Ω-mm was extracted. 
This resistance is significantly higher than that estimated from 
TLM measurement (3 Ω-mm), and we attribute it to either 
surface depletion in the source access region or mobility 
degradation at high fields [29]. Further investigations are 
needed to understand the physical phenomenon that cause the 
resistance increase. Equivalent RF gate resistance of 233 Ω/mm 
[30] was extracted using test structures fabricated on the same 
substrate. The relatively high gate resistance is attributed to a 
thin gold layer used in the gate, as well as a narrow T-gate cap 
layer. Using these measured parameters for the source and gate 
resistance, a small-signal circuit model was extracted [31], and 
the parameters at 10 GHz are shown in Table 1. Based on the 
simplified analytical expression for the power gain cutoff 
frequency fMAX 
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, where rds is output resistance, the high gate and source 
resistance were found to be the principal reasons for the fMAX 
/fT ratio being 0.6. Future design of the transistor to reduce 
source resistance (by increasing access region conductance), 

and gate resistance (through gate design), could enable higher 
power gain cutoff frequency. 

 
Figure 7 Dynamic source resistance measurement. Gate bias 
applied to keep a constant 1 μA/mm gate forward current with drain 
changing from 25 mA/mm to 175 mA/mm 

 
The current gain cut-off frequency of 27 GHz measured here 

corresponds to fT.LG product of 3.2 GHz-μm, whereas, based on 
the predicted saturated electron velocity in Ga2O3 (greater than 
1x107 cm/s [13,32]), it is expected to be significantly higher. 
We attribute the discrepancy to the large dynamic source 
resistance, which leads to depletion of the charge at the source 
edge of the gate. The device performance is therefore limited 
by source choking effect instead of electron saturation velocity. 
Further study is needed to understand the mechanism of the 
source resistance for future high-frequency Ga2O3 field effect 
transistor. 

IV. CONCLUSION 
In conclusion, we have demonstrated a delta-doped β-Ga2O3 

MESFET with cut-off frequency of 27 GHz. A peak 
transconductance of 44 mS/mm and peak current density of 
0.26 A/mm were obtained. While the performance of this 
device represents significant progress for this material 
technology, our work also shows that further understanding of 
the device and material physics are needed to fully explain the 
device characteristics. The device structure discussed here 
demonstrates a promising platform to study the fundamental 
transport properties of β-Ga2O3, and to explore the potential of 
this material system for RF and millimeter-wave device 
applications.  
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