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Abstract—In this paper, we consider an underlay radar-
massive MIMO spectrum sharing scenario in which massive
MIMO base stations (BSs) with elevation beamforming capa-
bilities are allowed to operate outside a circular exclusion zone
centered at the radar. Modeling the locations of the massive
MIMO BSs as a homogeneous Poisson point process (PPP), we
derive an analytical expression for a tight upper bound on the
average interference at the radar due to cellular transmissions.
The challenge lies in bounding the worst-case elevation angle for
each massive MIMO BS, for which we devise a novel construction
based on the circumradius distribution of a typical Poisson-
Voronoi (PV) cell. While these worst-case elevation angles are
correlated for neighboring BSs due to the structure of the PV
tessellation, it does not explicitly appear in our analysis because of
our focus on the average interference. We also provide an estimate
of the nominal average interference by approximating each cell
as a circle with area equal to the average area of the typical
cell. Using these results, we demonstrate that the gap between
the two results remains approximately constant with respect to
the exclusion zone radius. Our analysis reveals useful trends
in average interference power, as a function of key deployment
parameters such as radar/BS antenna heights, number of antenna
elements per radar/BS, BS density, and exclusion zone radius.

Index Terms—Stochastic geometry, radar-massive MIMO
coexistence, 3D beamforming, Rician channels, exclusion zones,
average interference.

I. INTRODUCTION

Spectrum sharing and massive MIMO are two key spectral
efficiency enhancing techniques that have been included in
the Third Generation Partnership Project (3GPP) Release 15
specifications. While massive MIMO enhances spectral effi-
ciency by increasing the dimension of spatial multiplexing
by an order of magnitude, spectrum sharing improves it by
sharing spectrum between different wireless technologies in
the spatial and temporal dimensions. Spectrum sharing is
particularly attractive in the sub-6 GHz frequency bands,
where spectrum is under-utilized due to conservative policies
[1]. Among the various incumbents, radars are the biggest
consumer of spectrum in the sub-6 GHz bands. In underlay
radar-cellular spectrum sharing scenarios where the estab-
lishment of an exclusion zone limits cellular interference to
the radar, coordination is often impossible due to security
concerns, or unfeasible due to practical limitations. The lack
of coordination can potentially exacerbate the interference due
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to receive and transmit beamforming capabilities of the radar
and BS, respectively. Therefore, it is important to understand
the worst-case interference at the radar as a function of key
deployment parameters in such scenarios.
Related Work: Multi-antenna techniques have been well-

explored in the radar-communications coexistence literature.
In the case of coordination between the primary and secondary
users, MIMO techniques have been investigated in the context
of spectrum sharing between a MIMO radar and the MU-
MIMO downlink [2], MIMO radar and full-duplex cellular
systems [3], and MIMO radar and a MIMO communication
system [4], under performance and power constraints. Even
though secondary user interference mitigation is possible using
multi-antenna radars in uncoordinated scenarios [5], its feasi-
bility in the presence of a large multi-cell network of massive
MIMO BSs is limited to scenarios of sparse deployments
and/or large exclusion zone radii.
Owing to its tractability, tools from stochastic geometry

have been used recently to analyze spectrum sharing systems
[6], [7]. Authors in [8] considered a radar-WiFi spectrum
sharing scenario, where WiFi access points (APs) were mod-
eled as a homogeneous PPP. The exclusion zone radius was
computed for different scenarios based on side-information
available at the APs. In [9], the authors evaluated the mean ag-
gregate interference from Wi-Fi APs to radar using tools from
stochastic geometry. However, these works consider azimuth-
only beamforming, and do not model the impact of elevation
beamforming, which is a prominent feature introduced in
5G NR. While [10], [11] considered the elevation angle, the
focus of these works is on antenna height optimization and
interference mitigation in cellular networks.
Contributions: In this work, we develop a novel and

tractable analytical framework to analyze the average in-
terference power in radar-massive MIMO spectrum sharing
scenarios, which is a key metric that has been used in drafting
spectrum sharing policies in recent years [12]. Incorporating
elevation beamforming into the stochastic geometry frame-
work is challenging, since Voronoi cells of the BSs can
be arbitrarily large. To overcome this, we devise a novel
formulation based on the circumradius distribution of the
Voronoi cell [13]. In addition, the presence of sidelobes result
in a beamforming gain that is a non-monotonic function of the
elevation angle. We derive an upper bound on the beamforming
gain that monotonically decreases with the elevation angle,
which is crucial to deriving the upper bound on the average
interference. We also derive the nominal average interference
power by modeling each Voronoi cell as a circle of area equal
to the average area of a typical cell. Finally, we provide



Fig. 1. Illustration of the radar-massive MIMO spectrum sharing scenario,
(a) the radar is protected from massive MIMO downlink interference by an
exclusion zone of radius rexc, (b) Top View: the boresight of each BS is
aligned along the direction of the radar, and the radar receives interference
from the azimuth

[−π
2

, π
2

)
depicted by the shaded region, (c) the line of

sight component has elevation angle of departure (θt,L) and arrival (θr,L)
close to 0◦, i.e. the horizon. In our convention, −π/2 ≤ ϕ < 0◦ for
elevation angles above the horizon, and 0 < ϕ ≤ π/2 for elevation angles
below the horizon.

approximations, that lead to the development of intuitive
system design insights regarding the worst-case exclusion zone
radius, scaling laws, and the difference between the worst-case
and nominal average interference values.

II. SYSTEM MODEL

We consider the radar-massive MIMO spectrum sharing
scenario shown in Fig. 1. The radar is the primary user
(PU), equipped with a N (rad)

az × N
(rad)
el uniform rectangular

array (URA) with λ
2 -spacing, mounted at a height of hrad

m. The massive MIMO downlink is the secondary user (SU),
with each BS serving K users with equal power allocation
using multi-user MIMO (MU-MIMO). Each BS is equipped
with a N

(BS)
az × N

(BS)
el URA with λ

2 -spacing, mounted
at a height of hBS m. The subscripts az (el) are used to
denote the azimuth (elevation) elements respectively, and
superscripts rad (BS) denote the radar (BS) antenna elements
respectively. The radar is protected from SU interference by a
circular exclusion zone of radius rexc. The exclusion zone is
chosen to be circular since there is no coordination between
the cellular network and the radar system, and the radar is
assumed to search for a target uniformly at random in the
azimuth [−π

2 ,
π
2 ), as shown in Fig. 1.

A. Channel Model

In quasi-stationary channel conditions, the spatial channel
between each BS and the radar is given by [14]

HR =
√

β(d)
1+KR

(√
KRa(θt,L, ϕt,L)a

H(θr,L, ϕr,L)+√
1
Nc

Nc∑
i=1

γia(θt,i, ϕt,i)a
H(θr,i, ϕr,i)

)
, (1)

where β(d) = PL(r0)d
−α is the path loss, PL(r0) is the

path-loss at reference distance r0, α is the path-loss exponent
(α > 2), d is the 3D distance between the BS and the radar,
and Nc is the number of discrete multipath components
(MPCs). The Rician factor KR ≫ 1, where propagation is
dominated by the line of sight component1. In addition, the
random small-scale fading amplitude satisfies E[γi] = 0 and
E[|γi|2] = 1. The azimuth and elevation angles of arrival
(departure) of the ith MPC at the radar (from the BS) is
denoted by θr,i (θt,i) and ϕr,i (ϕt,i) respectively. Similarly,
the azimuth and elevation angles of departure (arrival)
of the LoS component is given by θt,L (θr,L) and ϕt,L
(ϕr,L) respectively as shown in Fig. 1. The steering vector
a(θt, ϕt) ∈ CN(BS)

az N
(BS)
el (BS), and a(θr, ϕr) ∈ CN(rad)

az N
(rad)
el

(radar) is defined in Appendix A.

B. Massive MIMO Downlink Beamforming Model

The massive MIMO downlink serves K users located in
clusters with mutually disjoint angular support using joint
spatial division multiplexing (JSDM) [15]. We consider a
highly spatially correlated downlink channel, given by the
one-ring model as hi =

√
βiUiΛ

1/2
i zi ∈ CM [15], where

M = N
(BS)
az N

(BS)
el , βi is the large-scale pathloss for the

ith user, Ui ∈ CM×r is the orthonormal matrix of eigen-
vectors, Λi ∈ Rr×r is the diagonal matrix of eigenvalues,
and zi ∼ CN (0, Ir) ∈ Cr is a complex Gaussian random
vector, where r ≪M is the channel rank in the high spatially
correlated downlink channel [15]. For the sake of simplicity,
we consider that all users in the network have the same channel
rank. The received signal y ∈ CK can be written as

y = HHWRFWBBd+ n, (2)

where WRF = [wRF,1 wRF,2 · · ·wRF,K] ∈ CM×K is
the RF beamformer that groups user clusters with disjoint
angular support using nearly orthogonal beams, and WBB =
[wBB,1 wBB,2 · · ·wBB,K] ∈ CK×K is the baseband pre-
coder [15]. If the azimuth and elevation angular support of the
kth user cluster is given by Θk = [θ

(min)
k , θ

(max)
k ] and Φk =

[ϕ
(min)
k , ϕ

(max)
k ], then without loss of generality we consider

that the RF beamformer is given by wRF,k = 1√
M
a(θk, ϕk),

where θk = (θ
(min)
k + θ

(max)
k )/2 and ϕk = (ϕ

(min)
k + ϕ

(max)
k )/2.

The data d = [d1 d2 · · · dK ]T ∈ CK , such that E[d] = 0
and E[ddH ] = PBS

K I, where dk is the symbol intended for
the kth UE and PBS is the total transmit power per BS. The
noise n ∈ CK is spatially white with n ∼ CN (0, σ2

nI).

Proposition 1. For the massive MIMO BS in the asymptotic
regime, the baseband precoding matrix for Zero-Forcing (ZF)
and Maximum Ratio Transmission (MRT) can be approximated
as WBB ≈ I, when K users from different clusters with
mutually disjoint angular support are served.

Proof. (Sketch) The MRT and ZF precoders are W
(MRT)
BB =

WH
RFH and W

(ZF)
BB = (HHWRF)

−1 respectively. In the

1Such propagation scenarios are observed in (a) coastal deployments (where
the terrestrial BSs is sharing spectrum with a naval radar), and (b) terrestrial
deployments in flat rural/suburban terrain (terrestrial BSs sharing spectrum
with terrestrial radar systems).



asymptotic regime WH
RFWRF ≈ I [15]. For users in clusters

with mutually disjoint angular support, UH
i wRB,j ≈ 0, i ̸= j

[15]. Therefore, HHWRF ≈ Υ = diag[υ1 υ2 · · · υK ], a
diagonal matrix. Since E[ddH ] = PBS

K I, when the sum-power
constraint E[∥WRFWBBd∥2] = PBS is imposed, we obtain
the desired result. �

Remark 1. The above is true when N (BS)
az , N

(BS)
az → ∞. In

the case of finite number of antenna elements, we consider a
scheduler where the BS co-schedules K users from clusters
such that the above approximation is accurate.

III. INTERFERENCE AT THE RADAR DUE TO A SINGLE BS

The radar is assumed to be searching/tracking a target above
the horizon (ϕ < 0) using a receive beamformer wrad ∈
CN(rad)

az N
(rad)
el . The received signal prior to beamforming is

yrad = HH
RWRFWBBd, where HR is the high-KR Rician

channel between the BS and the radar from (1). Upon receive
beamforming, the interference signal is given by

irad = wH
radH

H
RWRFWBBd. (3)

Using equation (1) in the above and simplifying, we get

irad =
√

β(d)
KR+1

(√
KRGrad(θr,L, ϕr,L)e

−jα0aH(θt,L, ϕt,L)+∑Nc

i=1

√
Grad(θr,i,ϕr,i)

Nc
γ′ia

H(θt,i, ϕt,i)
)
WRFWBBd,

where γ′i = γ∗i e
−jαi , the radar beamforming gain

Grad(θj , ϕj) = |wH
rada(θj , ϕj)|2, and α0 is the residual phase.

The specular component can be ignored if Grad(θr,L, ϕr,L) ≫
Grad(θr,i, ϕr,i). For a tractable worst-case analysis model, we
make the following assumptions.

Assumption 1. (LoS beamforming gain dominance) The radar
is scanning above the horizon with wrad = a(θ,ϕ)√

N
(rad)
az N

(rad)
el

such that Grad(θr,L, ϕr,L) > Grad(θr,i, ϕr,i) ∀ 1 ≤ i ≤ Nc.

Assumption 2. (Boresight assumption) Boresight of the an-
tenna array of each massive MIMO BS is aligned along the
direction of radar (θt,L = 0) as shown in Fig. 12.

Assumption 3. The cellular downlink is exactly co-channel
with the radar system, and radar and cellular operating band-
widths are equal. Hence, the frequency-dependent rejection
(FDR) factor of the radar is unity3.

Assumption 4. In each cell, the scheduler allocates resources
to users in different clusters, where all but one cluster has
disjoint angular support with the boresight of the BS URA.

Based on the above assumptions, we have the following
lemma.

Lemma 1. (Dominant interfering user cluster) The inter-
ference to the radar from each BS is only due to data

2As we will discuss in Appendix A, Assumption 2 does not impact the
worst-case analysis.

3The FDR is dependent on the radar receiver architecture, spectrum of the
interfering signal, and is independent of other parameters. The interference
power at the radar is inversely proportional to the FDR. Interested readers are
referred to [8] for more details.

transmissions towards a single cluster whose angular support
overlaps with the boresight of the URA.

Proof. Let the K clusters have azimuth and elevation angles
of support given by Θk and Φk respectively, for 1 ≤ k ≤ K.
In the asymptotic regime, if there is only one k such that
Θk ∩ {0◦} ̸= ∅, then we get aH(θt,L, ϕt,L)wRF,j ≈ 0 for
j ̸= k and aH(θt,L, ϕt,L)wRF,k ̸= 0 [15]. The cluster that has
its angular support overlapping with the BS boresight is termed
as the ‘Dominant Interfering User Cluster’ (DIUC). �
Based the above, we have the following key result.

Theorem 1. The worst-case average interference power at the
radar due to the DIUC is given by

Īrad < I
(w)
rad =

β(d)Grad(θr,L,ϕr,L)|aH(0,ϕt,L)a(θk,ϕk)|2PBS

N
(BS)
az N

(BS)
el K

.

(4)

Proof. Under the realistic assumption that each MPC is un-
correlated with the others, the average interference power
Īrad = E[|irad|2] is given by

Īrad =
β(d)KRGrad(θr,Lϕr,L)E[∥aH(0,ϕt,L)WRFWBBd∥2

2]
KR+1 +

Nc∑
i=1

β(d)Grad(θr,iϕr,i)E[γ′2
i ∥aH(θt,i,ϕt,i)WRFWBBd∥2

2]
Nc(KR+1) . (5)

Using Assumption 1, we get Īrad < β(d)Grad(θr,L, ϕr,L) ·
E[∥aH(θt,L, ϕt,L)WRFWBBd∥22] since E[|γ′i|2] = 1. In
addition, by Proposition 1, Assumption 2 and Lemma 1, we
get Īrad < E[|aH(0, ϕt,L)wRF,kdk|2]β(d)Grad(θr,L, ϕr,L).
Finally, using E[|dk|2] = PBS/K and substituting the RF
beamformer for the DIUC, we obtain the desired result. �
In summary, the worst-case average interference in high-

KR Rician channels in the asymptotic regime resembles
the Friis transmission equation, with the power scaled by
the beamforming gains, and the power allocation factor to
the DIUC. With this general result, we analyze the average
interference due to the cellular network in the next section.

IV. ANALYSIS OF AVERAGE INTERFERENCE AT THE
RADAR DUE TO THE MASSIVE MIMO DL

We model the spatial distribution of the massive MIMO
BSs and radars as independent PPPs ΦBS and Φrad of
intensity λBS and λrad respectively, such that λrad ≪ λBS .
The typical radar is located at the origin, with an exclusion
zone of radius rexc within which the BSs are prohibited
from operating. While the range of azimuth of a randomly
selected point in the cell is independent of the cell size, the
elevation angle depends on the cell size and hence, on λBS .
Compared to prior works [8], [9] which focus on beamforming
in the azimuth, mathematical modeling of elevation beamform-
ing presents technical challenges due to (a) lack of radial
symmetry in the Voronoi cell, (b) possibility of arbitrarily
large Voronoi cells, and (c) correlation between adjacent cells,
which can affect the elevation distribution. While correlation
between adjacent cells does not deter the analysis since we are
interested in the average interference power, the lack of radial
symmetry and possibility of arbitrarily large cells need a more



thoughtful treatment. In addition, the presence of sidelobes in
the beamforming pattern complicates the problem since it is
non-trivial to express the worst-case beamforming gain as a
function of the cell-size. Below, we develop the techniques to
address these issues, and present the worst-case and nominal
average interference analysis.

Lemma 2. (Monotonic beamforming gain function) For the
Naz×Nel BS URA with λ/2-spacing, if ϕ ∈ [−π/2, π/2), 0 ≤
ϕm ≤ π

2 , and θ ∈ [−π/2, π/2), then the upper bound of the
beamforming gain is given by

G
(max)
BS (ϕ, ϕm) = max

ϕk∈[ϕm,π/2)
θk∈[−π/2,π/2)

GBS(θ, ϕ, θk, ϕk) (6)

=


NazNel, if ϕm ≤ ϕ,

GBS(0, ϕ, 0, ϕm), if sinϕm ≤ 1+Nel sinϕ
Nel

Naz/Nel

sin2
(π(sinϕm−sinϕ)

2

) , otherwise

where GBS(θ, ϕ, θk, ϕk) = 1
NazNel

|aH(θ, ϕ)a(θk, ϕk)|2.

Proof. See Appendix A. �

A. Circumcircle-based Cell (CBC) Model

To induce radial symmetry in the setup, the Voronoi cell
needs to be modeled as a circle. In addition, the worst-case
interference to the radar occurs when the BS beamforms to
the farthest point in the cell, according to Lemma 2. Since the
circumradius determines the distance to the farthest point in a
cell, we propose a circumcircle-based construction as shown
in Fig. 2, with the following probability density function.

Proposition 2. The probability density function of the circum-
radius rc (rc > 0) of a Poisson-Voronoi cell is

fRC
(rc) = 8πλBSrce

−4πλBSr
2
c

[
1 +

∑
k≥1

{
(−4πλBSr

2
c)

k

k! ·(
ψk(rc)

8πλBSrc
− ζk(rc)

)
− (−4πλBSr

2
c)

k−1ζk(rc)
(k−1)!

}]
,

ζk(rc) =

∫
∥u∥1=1,ui∈[0,1]

[ k∏
i=1

F (ui)
]
e
4πλBSr

2
c

k∑
i=1

ui∫
0

F (t)dt
du,

ψk(r) =
dζk(r)
dr , F (t) = sin2(πt)1(0 ≤ t ≤ 1

2 ) + 1(t > 1
2 ),

where 1(·) denotes the indicator function.

Proof. The result is obtained by differentiating the CDF of the
circumradius (FRC

(rc)) [13] w.r.t. rc using Leibniz’s rule. �

Using fRC
(rc) and Lemma 2, we obtain the upper bound

on the average interference in the following key result.

Theorem 2. The worst-case average interference at the radar
is given by

Īrad,cbc =
λBSPBSPL(r0)

K

∫ π
2

−π2

∫ ∞

rexc

∫ ∞

0

Grad(θr,L,−ϕt,L(r))·

rG
(max)
BS (ϕt,L(r),ϕm(rc))

(r2+(hrad−hBS)2)α/2 fRC
(rc)drcdrdθr,L, (7)

ϕt,L(r) = tan−1
(
hBS−hrad

r

)
, ϕm(rc) = tan−1

(
hBS

rc

)
.

Proof. See Appendix B. �

Fig. 2. Radial symmetry can be induced by modeling the Voronoi cell as
a (a) circumcircle, or (b) circle of area equal to that of the average typical cell.

Corollary 1. The approximate worst-case average interfer-
ence at the radar is given by

Ī
(approx)
rad,cbc = λBSPBSPL(r0)

K(α−2)rα−2
exc

[ ∫ π
2

−π2

Grad(θr,L, 0)dθr,L

]
·[ ∫ ∞

0

G
(max)
BS (0, ϕm(rc))fRC

(rc)drc

]
. (8)

Proof. Since r ≫ hBS and r ≫ hrad, we have ϕt,L(r) =

−ϕr,L(r) ≈ 0, and (r2 + (hBS − hrad)
2)
α
2 ≈ rα. Using

these approximations in Īrad,cbc, grouping the integrands, and
integrating over r yields the desired result. �

B. Average Area-Equivalent Circular Cell (AAECC) Model

The circumcircle-based cell model results in a conservative
value for average interference. A simpler, more optimistic
model is to replace the Voronoi cell by a circle with an area
equal to the average area of a typical cell given by 1

λBS
. In

this case, the cell radius rc = ra = 1√
πλBS

, and the nominal
average interference is given by the following theorem.

Theorem 3. The nominal average interference at the radar is

Īrad,aaecc =
λBSPBSPL(r0)

K

∫ π
2

−π2

∫ ∞

rexc

Grad(θr,L, ϕr,L(r))·

rG
(max)
BS

(
ϕt,L(r),ϕm(ra)

)
(r2+(hrad−hBS)2)α/2 drdθr,L. (9)

Proof. This model is a special case of Theorem 2, where
fRc

(rc) = δ
(
rc − 1√

πλBS

)
. Using the sifting property of the

Dirac delta function δ(·), we obtain the desired result. �
Corollary 2. The approximate nominal average interference
is given by

Ī
(approx)
rad,aaecc =

λBSPBSPL(r0)G
(max)
BS

(
0,ϕm(ra)

)
K(α−2)rα−2

exc

∫ π
2

−π2

Grad(θ, 0)dθ.

Proof. The proof follows the same steps as Corollary 1. �

C. System Design Insights from Analytical Results

1) Scaling of average interference power with BS density:
From (7) and (9), we see that λBS impacts the average
interference through the linear, and the BS beamforming gain
(GBS) terms. It is related to the cell size via the circumradius
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Fig. 3. Worst-case average interference power at the radar, as a function of
exclusion zone radius for hrad = 20 m, hBS = 50 m, and different base
station densities λBS (km−2).

distribution and the average area of the typical cell, which
impacts the minimum elevation angle (ϕm). Note that this
dependence is not observed in azimuth-only beamforming
models. However, when hBS ≪ rc, ϕm(rc) → 0 and hence,
GBS → N

(BS)
az N

(BS)
el . In this regime, the worst-case average

interference power scales linearly with λBS .
2) Exclusion Zone Radius: In practice, exclusion zones are

defined based on the average aggregate interference power (for
e.g. see [12]). Using Corollaries 1 and 2, for an average in-
terference threshold Īth, the worst-case exclusion zone radius
can be obtained using

r(wor)exc ≈
(
λBSPBSPL(r0)
K(α−2)Īth

[ ∫ π
2

−π2

Grad(θr,L, 0)dθr,L

]
·

[ ∫ ∞

0

G
(max)
BS (0, ϕm(rc))fRC

(rc)drc

]) 1
α−2

, α > 2.

3) Constant Gap in Average Interference Predicted by CBC
and AAECC Models: By Corollaries (1) and (2), we observe
that the ratio of average interference powers is nearly inde-
pendent of rexc, given by

η =
Ī
(approx)
rad,cbc

Ī
(approx)
rad,aaecc

=
∫ ∞
0
G

(max)
BS (0,ϕm(rc))fRC

(rc)drc

G
(max)
BS

(
0,ϕm

(
1√
πλBS

)) .

Note that η → 1 when hBS
√
πλBS → 0 due to BS gain

saturation.

V. NUMERICAL RESULTS

In this section, we validate the worst-case interference
expressions using Monte-Carlo simulations. We consider a
typical radar operating at fc = 5 GHz, located at the origin
equipped with a 40 × 40 URA, mounted at a height of
hrad = 20 m. The radar is assumed to be scanning a region
above the horizon at (θ, ϕ) = (60◦,−10◦). We consider a
finite massive MIMO network in a circular region around the
origin with a radius of 100 km. The BSs are distributed as

TABLE I
APPROXIMATE VALUES OF η

hBS
√
πλBS 0.0089 0.0198 0.028 0.044 0.0886 0.1253
η 1.004 1.022 1.045 1.254 1.608 2.905

a PPP, with varying intensities. Each massive MIMO BS is
co-channel with the radar, and is equipped with a 10 × 10
URA deployed at a height of hBS = 50 m. The circular
exclusion zone around the radar has a minimum radius of
r
(min)
exc = 5 km. The boresight of each massive MIMO BS URA
is aligned along the direction of the radar (θk = 0 in the LCS).
In each cell, the massive MIMO BS transmits a total power
of PBS = 1 W, equally allocated among co-scheduled UEs
from K = 4 clusters with mutually disjoint angular support.
To model the pathloss in the downlink and the BS to radar
channels, we assume the 3GPP 3D Urban Macro (3D UMa)
LoS pathloss model [14],

PL(d) = P (hBS , hrad) + 20 log10(fc) + 40 log10(d) (dB),

P (hBS , hrad) = 28− 9 log10((hBS − hrad)
2) (dB),

where fc (GHz), and d (m).
Fig. 3 plots the average interference power derived in this

paper under different cell models, as a function of exclusion
zone radius for different BS intensities. We observe that the
upper bound is remarkably tight, especially for low values
of λBS ≤ 0.1. For reference, we also plot the approximate
average interference power from corollary 1. It can be seen that
its accuracy improves as rexc increases, due to the accuracy
of the underlying approximations regarding d and ϕr,L. The
approximately linear scaling of average interference power
with λBS can also be observed.
From Fig. 3, we observe that the ratio of average interfer-

ence powers η is approximately constant, and is tabulated for
the elevation parameter hBS

√
πλBS in Table I. For 3GPP

UMa deployments with inter-site distance rISD, the typical
hBS/rISD = 0.05 [14]. The corresponding hBS

√
πλBS =

0.095, for which 2 dB < η < 4.6 dB (Table I). Thus
the bound is remarkably tight, which makes it useful for
worst-case analysis of practical radar-5G NR spectrum sharing
deployments.

VI. CONCLUSION AND PROPOSED WORK

In this paper, we presented a novel construction based
on modeling a Poisson Voronoi cell by its circumcircle, to
analyze the worst-case average interference at a typical radar
due to a co-channel massive MIMO downlink in a high KR-
Rician channel. The proposed model accounted for elevation
beamforming capabilities of the massive MIMO BS and the
radar, and uncovered the relationship between the BS density
and the worst-case BS transmit beamforming gain. We also
proposed and analyzed the nominal average interference using
an alternate, simpler model, where each cell is replaced by a
circle of area equal to the average area of a typical cell. Finally,
we provided useful insights regarding the worst-case exclusion
zone radius, scaling of interference power with BS density,
and the approximate gap between the worst-case and nominal
average interference power. Our analysis was validated using



Monte-Carlo simulations, and we demonstrated that the upper
bound using the circumcircle-based model is remarkably tight
for realistic deployment parameters. The analytical framework
presented in this work establishes important baselines to ana-
lyze worst-case scenarios in future radar-NR spectrum sharing
deployments. Incorporation of radar-specific parameters into
the analysis, and characterization of the interference distribu-
tion are natural extensions of this work, and are currently being
investigated by the authors.

APPENDIX

A. Proof of Lemma 2

The steering vector of a Naz × Nel URA is a(θ, ϕ) =
aaz(θ, ϕ) ⊗ ael(ϕ), where ⊗ is the Kronecker product. For
λ
2 -spacing,

aaz(θ, ϕ) = [1 e−jπ sin θ cosϕ · · · e−jπ(Naz−1) sin θ cosϕ] ∈ CNaz ,

ael(ϕ) = [1 e−jπ sinϕ · · · e−jπ(Nel−1) sinϕ] ∈ CNel .

Using the properties of the Kronecker product, we get
GBS(θ, ϕ, θk, ϕk) =

|aH(θ,ϕ)a(θk,ϕk)|2
NazNel

=
|aH

az(θ,ϕ)aaz(θk,ϕk)|2
Naz

·
|aH

el(ϕ)ael(ϕk)|2
Nel

. After expanding and simplifying, we get

GBS(θ, ϕ, θk, ϕk) =
sin2

(
π
2Naz(sin θ cosϕ−sin θk cosϕk)

)
Naz sin2

(
π
2 (sin θ cosϕ−sin θk cosϕk)

)×
sin2

(
π
2Nel(sinϕ−sinϕk)

)
Nel sin2

(
π
2 (sinϕ−sinϕk)

) ≤ NazNal.

Since sin2(Na)
sin2 a

≤ N2 for a ∈ R, the universal upper bound
is obtained above, and is achieved when a = 0. To obtain a
tighter bound G(max)

BS defined in (6), we consider the following.
1) Case 1: If ϕm ≤ ϕ ≤ π

2 , GBS(θ, ϕ, θk, ϕk) is maximized
by ϕk = ϕ, θk = θ, yielding G(max)

BS (ϕ, ϕm) = NazNel.
2) Case 2: By upper bounding the azimuth beam-

forming gain in GBS(·), we get GBS(θ, ϕ, θk, ϕk) ≤

Naz
sin2

(
π
2Nel(sinϕ−sinϕk)

)
Nel sin2

(
π
2 (sinϕ−sinϕk)

) . The RHS monotonically de-

creases w.r.t. ϕk when 0 ≤ sinϕm ≤ 1+Nel sinϕ
Nel

≤ π
2 and

hence, the upper bound will be given by G
(max)
BS (ϕ, ϕm) =

Naz
sin2

(
π
2Nel(sinϕ−sinϕm)

)
Nel sin2

(
π
2 (sinϕ−sinϕm)

) .
3) Case 3: If 1+Nel sinϕ

Nel
≤ sinϕm, the numerator of

G
(max)
BS (·) in case 2 can be upper bounded as sin2(b) ≤ 1 ∀ b ∈

R, resulting in a monotonically decreasing function of ϕm.
Hence, G(max)

BS (ϕ, ϕm) =
Naz

Nel sin2
(
π
2 (sinϕ−sinϕm)

) .
Remark 2. The upper bound on the beamforming gain is
independent of the azimuth angle, since the maximum azimuth
beamforming gain can be upper bounded by Naz . Therefore
for the sake of simplicity, we consider that the boresight of
each BS is aligned along the direction of the radar, which
corresponds to θ = 0◦ as discussed in Assumption 2.

B. Proof of Theorem 2

Since the radar and massive MIMO BSs are independent
PPPs Φrad and ΦBS of intensities λrad and λBS respectively

with λrad ≪ λBS , the worst-case average interference at the
typical radar is given by Campbell’s theorem using

Īrad,cbc = E
[
E
[ ∑
X∈ΦBS\Φexc

{I(w)rad(Xi, hBS , hrad)|rc}
]∣∣∣rc]

= E
[ ∫

x∈R2\Φexc

λBS{I(w)rad(x, hBS , hrad)|rc}dx
∣∣∣rc],

where x = [r cos θr,L r sin θr,L], Φexc = {r|r ≤ rexc}
denotes the circular exclusion zone, and rc is the cell radius
that determines G(max)

BS (ϕ, ϕm) in equation (6). Substituting (4)
above, noting that ϕr,L(r) = −ϕt,L(r) = tan−1

(
hrad−hBS

r

)
,

and converting to polar coordinates we get

Īrad,cbc = E
[ ∫ ∞

rexc

∫ π
2

−π2

λBSβ(d)Grad(θr,L, ϕr,L(r))·

G
(max)
BS (ϕt,L(r), ϕm(rc))

PBS

K rdrdθr,L

∣∣∣rc], (10)

where d =
√
r2 + (hBS − hrad)2, and β(d) = PL(r0)d

−α

is the pathloss model. Using these and integrating over rc ∼
fRc(rc), we get the desired result.
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