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A Novel Scene of Viral Marketing for
Complementary Products

Jianxiong Guo

Abstract— Viral marketing, the method of using a small set
of users in social networks to propagate products through
cascades, is a well-known and extreme research problem in
recent years. Then, influence maximization (IM) is formulated,
which aims to select the most influential seeds to maximize the
expected total adoption eventually. IM expresses viral marketing
perfectly. However, almost all prior work focused on cardinality
constraint or considers only simple comparative products model.
They neglected that composite complementary products (CCP)
are widespread. In other words, when a customer adopts products
A and B at the same time, it is possible for him to adopt
product C. Therefore, we design a multi-layer network model
under independent cascade (IC) model to adapt to multiple
complementary products and define the seed selection problem
for complementary products model [IM for complementary
products (IMCP)] and CCP model (IMCCP) under knapsack
constraint. Here, the seed for different products has a different
cost. In this paper, we propose two efficient techniques to solve
IMCP problem, called Greedy and general-TIM. The Greedy
uses simple Greedy Hill-Climbing algorithm under knapsack
constraint and obtain (1/2)(1 — (1/e))-approximation, but the
time complexity is hard to accept. The second algorithm, general-
TIM, forms a weighted set cover problem by means of random-
ized sampling (close to Greedy in practice), which reduces the
time-consuming significantly. For IMCCP problem, it is difficult
to handle because no ready-made algorithms exist to optimize
a function that is nonsubmodular and nonsupermodular. Then,
we need to get help from sandwich method by finding an upper
and lower bound. Finally, our algorithms are evaluated on several
real data sets, which prove the correctness of our algorithms.

Index Terms— Composite complementary products (CCP),
influence maximization (IM), knapsack, sandwich approximation,
social network, viral marketing.

I. INTRODUCTION

HE online social medias, such as Facebook, Twitter,

Flickr, Google++, and Linkedln, were booming rapidly
in last decades, which provided a platform for communication
for many people, and the opportunities were provided by the
applications of online social networks for fast information
propagation. Viral marketing uses public enthusiasm and inter-
personal network to make marketing information spread like
a virus. Marketing information is quickly copied to tens of
thousands and millions of viewers, penetrate the human brain
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like a virus, and spread information to more audiences in a
short time. Viral marketing was first introduced into public
eyes by Domingos and Richardson [1], [2], which resulted in
a large number of product adoptions eventually by means of
giving free or coupon samples to most influential customers.

Motivated by the notable effect of viral marketing on
product adoptions, influence maximization (IM) occurred as
a widespread problem about the dissemination of trust, adver-
tisements, or innovations through social graph [3]-[5]. The
IM problem was formulated formally by Kempe er al. [3]
as a discrete optimization problem. Given a directed graph
G = (V,E), V is users set and E is the relationship of
users, and a positive integer k, IM selects a seed set S* of
k nodes from V to make the expected spread of influence
0 (S) maximized under a given model m. There were two
classical dissemination models [3], accepted by the most
researcher, called independent cascade (IC-model) and the
linear threshold (LT)-model. The details of these two models
will be described in Section III.

om(S) can be regarded as the expected number of activated
nodes under the model m after the termination of propagation
under the seed set S, namely, no new nodes are activated in
this step. Under both IC and LT models, the expected spread
of influence function o,,(S) is monotone and submodular [3].
A set function f : 2" — R is monotone if f(S) < f(T) for
any § € T C V. A set function f is submodular if f(SU{u})—
f(S) = f(TUi{u}) — f(T) for any S € T < V and
u ¢ V\T.If we can know that a function has the property
of monotonicity and submodularity, we can optimize it easily
with the help of existing theory. Therefore, it is important
for us to find a submodular objective function to solve the
problems related to IM.

Even if IM has been studied extremely, a majority of the
previous work focused on studying IM problem for single
diffusion, which means that there is only one targeted product.
However, it is impossible for a company to popularize only one
product through social networks. Instead, they always supply
their customers with products from different production line
to meet the demands of different users. For example, Apple
produces both cheaper iPhone 7 and expensive iPhone X;
Intel produces ordinary CPU for personal computers and high-
speed CPU for servers. Sometimes, people tend to select
multiple different products at the same time, typically fast-
moving daily necessities like food and clothes. For some
products that can be used for a long time, people still like
to adopt more because of different function or appearance.
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Moreover, there is a special kind of product portfolio, called
complementary products. Complementary products are those
that tend to be purchased together. If a user uses the product A,
he/she is very likely to adopt the product B recently, such as
iPhone and its accessories, computer hardware and software,
and so on. Therefore, from the inspect of companies, viral
marketing of complementary products is of great importance.
Given a limited budget and a certain number of complementary
products with different costs, it is a realistic problem for a
company to know how to allocate the budget for the sake of
maximizing influence spread.

The comparative IC (Com-IC) model, which combines both
competitive and complementary products, was put forward by
Lu et al. [6]. It told us the diffusion of multiple products
in which competitive and complementary relationships exist
simultaneously. However, this model is too complex and only
suitable for two products to extend to multiple products.
In order to design an optimal viral marketing strategy under
a budget constraint, we construct a scene of viral marketing
for complementary products (VMCP) to simulate that mul-
tiple complementary products propagate on social networks.
We formulate IM for complementary products (IMCP) prob-
lem, which seeks for initial seeds set under limited budget to
achieve the goal of maximizing the complementary products
influence. The difficulty of solving IMCP is from two aspects.
First, the budget needs to be allocated to each product, which
is called knapsack constraint, and the existing solution for IM
for a single product cannot be applied directly to our case.
Second, Monte Carlo (MC) method to estimate the expected
influence spread is time-consuming, there are not existing
randomized sampling algorithm to solve IM under knapsack
constraint. This prompted us to find ways to solve these
problems. In addition, considering a more special happening,
If a user uses the products A and B, he/she is very likely
to adopt the product C recently. We call the tuple (A, B, C)
as composite complementary products (CCP), which means
that products A and B together can increase the possibility
of purchasing product C. For example, if a customer buys a
computer and a monitor at the same time, he/she is very likely
to buy relative after-sales service. Then, we formulate IMCCP
problem, which seek for an initial seeds set under limited
budget to achieve the goal of maximiziong the CCP. The
difficulty of solving IMCCP is that the objective function is not
submodular and supermodular because of existing hyperedge;
thus, we need to solve this problem by developing lower
bound and upper bound, and then use sandwich approximation
framework. Our contributions in this paper are summarized as
follows.

1) This is the first attempt to study the viral marketing
for multiple complementary products and CCP in social
networks. More than one different diffusion propagates
upon the networks, limited budget and different costs
for different products are considered.

2) We propose a Greedy algorithm for IMCP, which main-
tains a approximation ratio of (1/2)(1 — (1/e)) to the
optimal solution. Even if the existing technique can be
used to improve running time, it is hard to be applied
to large-scale networks. We propose the general-TIM

algorithm, a weighted set cover problem by means of
randomized sampling, which improve its scalability.

3) We solve IMCCP problem, whose objective function is
not submodular and supermodular, by sandwich approx-
imation framework.

4) Our algorithms are evaluated on two real-world data
sets. The results show both Greedy and general-TIM are
better than heuristics, and the influence of Greedy and
general-TIM is extremely close. In addition, Sandwich
framework is a valid approximation for IMCCP problem.

Organization: Section II discusses related work. Section III

describes the VMCP model and defines IMCP problem.
Section IV presents the algorithms for IMCP problem.
Section V defines IMCCP problem and prove related proper-
ties. Section VI describes sandwich approximation framework
to solve IMCCP problem. Section VII discusses experiments,
and Section VIII is the conclusion.

II. RELATED WORK

Viral marketing was first proposed by Domingos and
Richardson [1], [2], and Markov random fields (MRFs)
were used to simulate the process of viral marketing.
Kempe et al. [3] studied IM as a discrete optimization prob-
lem. They proved IM to be NP-hard under both IC-model and
LT-model and obtained a (1 — (1/¢))-approximation solution
by a natural Greedy algorithm [7]. The Greedy algorithm [7]
begins with an empty set and selects the node with the largest
marginal gain in each step if |S| < k.

However, it is #P-hard, proved by Chen et al. [8], to com-
pute the expected influence o (S) of a seed set S under the
IC-model. Thus, a common method to calculate the expected
influence ¢ (S) is MC simulation. Then, the approximation
ratio for IM drops to (1 — (1/e) —¢),& > 0. Chen et al. [9]
analyzed the relation between the number of round r for MC
and relative error ¢; therefore, we obtain the theoretical basis
for the number of r to let ¢ be small enough. However, most
existing methods based on simulation are too slow for large-
scale social networks. Some people attempted to reduce the
number of MC simulation. Leskovec et al. [10] proposed
an improved method called CELF, which estimate the upper
bounds of influence function because of its submodularity.
Most nodes with few influences will not be considered in the
later iteration. CELF++, proposed in [11], improve CELF to
get better time complexity.

Although there are ways to improve MC, it is difficult
to achieve the desired effect. TIM/TIM+ [12] and IM with
martingales (IMM) [13] occurred, which makes the IM being
scalable under the premise of guaranteeing the approximate
ratio. These methods are based on the reverse influence
sampling (RIS), proposed by Borgs et al. [14], and deter-
mine the number of the random reverse reachable set (RR-
set) needed to ensure approximation ratio. It required OPT,
the optimal expected influence of valid seed set, to estimate
the number of RR-set. However, OPT is difficult to determine,
Tang et al. [12] proposed a bunch of parameter estimation
technique to estimate OPT. Then, IMM appeared, which uses
a martingale analysis to estimate OPT more efficiently. This
better parameter estimation improves TIM/TIM+.



GUO AND WU: NOVEL SCENE OF VMCP

Later, Lu et al [6] proposed the comparative IC
(Com-IC), which combines both competitive and complemen-
tary products. There are two problems of how to maximize
the own and incremental influence to others defined in [6].
The problem mentioned earlier is NP-hard, and they used a
method similar to TIM to solve the two problems. Interactive
LT (ILT) model was proposed by Ou et al. [15], who adapted
LT-model to the scene that multiple diffusions exist.

Although there is a large number of existing work for IM
problem, nearly all of them considered the optimization prob-
lem with submodularity. A few methods can be used directly
for nonsubmodular optimization problem. For monotone non-
submodular maximization, there are several choices of meth-
dology, such as supermodular degree [16]-[18], sandwich
approximation framework [6], [19], [20], and algorithms
based on difference of submodular function decomposition:
submodular—supermodular algorithm [21], modular-modular
algorithm [22], and iterated sandwich method [23].

III. PROBLEM DEFINITION

In this section, we give the preliminaries, including influ-
ence model and notation, to this paper, then the problem is
formulated.

A. Influence Model

A social network can be expressed as a directed graph
G' = (V', E'), generally, the users are denoted as V' and
edge e = (u,v) € E’ denotes the relationship between user
u and user v. The number of nodes and edges in graph G’
is n and m, respectively. The set of incoming neighbors and
outgoing neighbors of node v is denoted as N~ (v) and N*(v),
respectively. Let node set and edge set in the directed graph
G’ be denoted as V(G’) and E(G’), respectively. In order
to represent the spreading of new information or technology,
Kempe et al. [3] proposed two classical diffusion model,
IC-model and LT-model.

1) Independent Cascade Model: Each node v is attempted
to be activated independently by its incoming neighbors
N~ (v), and the activation probability is p,,,u € N~ (v).
Given an activation probability p,, for each pair of edges
(u,v), the propagation process can be described in discrete
rounds. In round ¢, each node u activated in round ¢ — 1
will has one chance to activate the nodes in its outgoing
neighbors Nt (1), which is inactive in round ¢, with activation
probability p,,. Then, the propagation process terminates
when there are no nodes become active in this round.

2) Linear Threshold Model: For each edge e = (u,v) €
E(G), a weight by, is correlated with it. Each node v € V(G)
satisfies that X,cy-()buw =< 1. In addition, each node
v € V(G) is correlated with a threshold 6,, which is uni-
formly distributed in interval [0, 1]. Given that, the propagation
process can be described in discrete rounds. In round #,
the nodes that have been activated in round #—1 are still active.
Any inactive node » will become active if the total weight
associated with active nodes in its incoming neighbors N~ (v)
is greater than 6,. Then, the propagation process terminates
when there are no nodes become active in this round.
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Although both IC-model and LT-model can be applied to our
problem, LT-model is hard to construct multi-layer network
later, because we need to add edges among different layers,
it is difficult to define weight corresponding to these edges,
which will be clear after defining our problem formally. Thus,
our diffusion model is based on IC-model.

B. Problem Definition

Assuming that there are ¢ products, we are interested in a
problem with viral marketing for these ¢ products. Considering
t products h = {hy, ha, ..., h;} with costs ¢ = {c1, c2, ..., ¢},
respectively, there are some complementary products in £,
which means that influence propagation for any two comple-
mentary products happen dependent of each other, in other
words, a customer # who adopts product /;, may adopt product
hj, hj € h\h; as well, and that a customer can get influenced
by any number of products. Here, we suppose that a node
u who adopts product /; would also adopt product /; with
probability p;;, where i € {1,2,...,t} and j € {1,2,...,t}.
We define the VMCP as follows.
Definition 1 VMCP: Given a budget B, find a set of
customers for giving free samples within the budget B to
maximize the expected total sales of the product. For this
problem, there are two types of influences to each node v
for each product /; at each step of the information diffusion
process as follows.
1) The influence from a node u who adopts product /; and
has the probability p,, for the success of the influence
to node v.

2) The influence from a product /; because node v adopts
h; at the previous step and has the probability p;; for
the success of the influence to product 4;.

Theorem 2: The problem of VMCP in G’ = (V', E') is
equivalent to weighted IM problem in G = (V, E). Here, for
each node u, assigning a cost c(u) to choose u as a seed for
influence propagation. Given budget B, find a set of nodes as
seeds within the budget B to maximize the expected number
of active nodes.

Proof: Let G' = (V’/, E") be the original social network
in the problem of VMCP. For each product /;, make a
copy G' of G'. Here, we define u' in G' is the copy of
corresponding node # in G’. Considering the graph G' U
G?U---UG", for each corresponding nodes u’ and u/, which
come from different layers G' and G/, adding an edge (u’, u’)
associated with a probability p;; if they are complementary.
Here, the edge (u',u/) means that customer u is likely to
adopt product j with probability p;; after adopting product i.
The new adding edge set, we call it as complementary edge
set, denoted by CES. Let G = G' UG* U --- U G' U CES,
the problem of VMCP in G’ = (V’, E") would be equivalent
to the IM on constructed network G = (V, E) with cost
function c¢(u’) = c;, u' € V(G'). We take Fig. 1 as an
example to show how to construct the new multi-layer network
G = (V, E). Fig. 1 shows a realization g of G, which is a
subgragh of G where V(g) = V(G) and E(g) € E(G). For
each edge ¢ = (u,v) € E(G), it appears in realization g
with probability p,,. There edges appear in realization g are



800 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 6, NO. 4, AUGUST 2019

GE a3 b3
Cz..\. dz-
Gz az- bz >

1 a' bt

Fig. 1. Form of expression to constructed graph, where each layer represents
one product and the nodes in the same column can be connected by
complementary probabilities.

referred as to “live” edges, whose propagation probability is
equal to 1. The propagation in a realizaiton g is a deterministic
process. Considering there are three products & = {h1, ha, h3},
where h; and hy are complementary products, we need to
add CES from G! to G2, shown as orange arrow in Fig. 1.
We select customer a for product /11 (node a') as seed, then the
node set being activated is {al, b, db, b2, 2, dz}. From here,
we can see that there are some customers adopting product %,
because of complementary property, even if we do not select
any seeds for product /5. [ ]

On constructed graph G = (V, E), the objective is to select
the seed set S = S US> U---US,, where S; C V(G') € V(G)
is the seed set for product /4;, subject to the budget constraint
2£:10i|5i| < B. In addition, 7(S;) is considered as the node
set being activated (including the seed S;) by selecting the
seed set S;. Because the diffusion process is dependent to
each different product, the total eventually influenced nodes
[1(S)| is not equal to the sum of each separate influenced
node |1(S;)|, namely, [1(S)| # Z!_,11(S;)|, because of I(S;)N
1(S;) # . Therefore, we define the total eventually influenced
nodes as I(S) = U!_,1(S;) and define o (S) as its expected
value. We aim to select the best S to maximize this expected
influence o (S). We are now ready to define the IMCP on
constructed graph G as follows.

Definition 3 IMCP: Given the constructed graph G =
(V, E), costs ¢ = {c1, 2, ..., ¢} and budget B, find the seed
set S =851USU---US;, where S; C V(Gi) C V(G), which
satisfies budget constraint, 2§:1Ci|5i| < B, and maximize
o (S). Here, we define total cost as c(S) = 2;:1ci|Si|,
so budget constraint is ¢(S) < B.

It is obvious to see that the IMCP is a generalization
of standard IM problem in [3], when setting ¢; = ¢ =

- = ¢; = 1. Hence, this problem is NP-hard, monotone
nondecreasing, and submodular, which can be classified as a
monotone submodular maximization problem with knapsack
constraint. Nemhauser et al. [7] proved that the simple Greedy
algorithm has a performance guarantee (1 — (1/e)) with
cardinality constraint.

IV. SOLUTION FOR IMCP

From above, we have known that IMCP is a nondecreas-
ing submodualr maximization problem under the knapsack
constraint. In this section, we want to know how to solve it
efficiently.

A. Simple Greedy Algorithm

We now introduce our first technique, call simple Greedy,
to solve the IMCP problem. The main idea is to use simple
Hill-Climbing algorithm to the complementary products, sub-
ject to the knapsack constraint. At each step, it selects a node
u' from V(G') such that adding u’ to S; give the maximum
increase (o (S)/c;) to overall influence. We repeat this until
it violates the knapsack constraint. The pseudocode of simple
Greedy algorithm is shown in Algorithm 1.

Algorithm 1 Simple Greedy (G, ¢, B)

Input: Graph G = (V, E), costs ¢ and budget B

Output: Seed set S

1: Initialize S < ¢

2: while V # ¢ do

3:  select u'l from
(c(SUfu'}) —a(S)/ci)

4: if ¢(S) +¢; < B then

S: S; <~ S; U {ul}

6

7

V(GY) that maximize

end if
V<V {u}
8: end while
9: return §

It is obvious that the simple Greedy that selects at each
step, a node u' that maximize (¢ (S U {u'}) — o (S)/c;) has an
unbounded approximation factor. For example, there are two
products together, c; = 1 and ¢; = p + 1, and p12 =0.
Considering an realization g of the constructed graph G,
we assume that there are no edges in the subgraph G', namely,
E(G") = #, and exists a node u? in subgraph G2 such that
o ?) = p and other nodes v € V(G?) \ u?, 6 (v?) < p.
The budget B = p + 1. The optimal solution should be u?
and has influence p, while the solution selected by simple
Greedy algorithm should be a node u' from V(G') and
has influence 1, because of (o (u')/c1) > (o (u?)/c2). The
approximation ratio for this example 1/p. It is extremely bad
when p — oo. Therefore, the simple Greedy algorithm is not
suitable for us to solve IMCP problem, however, we are able
to revise it slightly to get avoid extreme bad happening and
get a valid approximation factor.

B. Greedy Algorithm

Although extremely bad approximation ratio may be occurs
in simple Greedy algorithm, a small modification can
achieve a constant approximation ratio for a nondecreas-
ing submodular function under the knapsack constraint.
Khuller et al. [24] proposed a Greedy algorithm with (1/2)
(1 — (1/e))-approximation, whose first part is the same as
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simple Greedy algorithm, but they select a node u that max-
imize (¢ (S U {u'}) — o (S)/c;) later, compare with the result
of simple Greedy algorithm and then select the larger one.
Leskovec er al. [10] proposed another effective methods,
called cost-effective forward (CEF) selection to get the same
approximation. They compute the solution Agpc using sim-
ple Greedy algorithm and also compute Agyc using stan-
dard Greedy algorithm within cardinality constraint (setting
¢; = 1). CEF returns the better solution and state that
max{o (Agcp), o (Aguc)} = (1/2)(1—(1/e))-OPT. However,
our Greedy algorithm is slightly different with above, which
learn from Algorithm 1-B in [25]. From [25], knapsack
problem can be formulated as a 0 — 1 integer programming
problem: given n items with volume s; and value ¢;, we aim to
maximize Y ;_, ¢;jx; subjectto > i, six; < S and x; € {0, 1},
where 1 <i < n. Greedy algorithm can be described as:

1) sorting all items in the nonincreasing order of ¢;/s;,

we can assume that c1/s; > c2/s2 > -+ > Cp/sn
holds;
2) if Z?:l si < S then output ¢ <« Z?:l ¢, else k <

max{ j|Z{:1 5i < 8§ < Z{:ll si}. Eventually, output

cG < max{cit1, Zle ¢l
Du et al. [25] have proven that cg is a two-approximation
solution to knapsack problem. It is easy to extend this idea to
solve nondecreasing submodualar function under the knapsack
constraint. The pseudocode of the Greedy algorithm is shown
in Algorithm 2.

Algorithm 2 Greedy (G, ¢, B)

Input: Graph G = (V, E), costs ¢ and budget B
Output: Seed set S

1: Initialize S <« ¢

2: Initialize last_item < (

3: while ¢(S) < B do

4:  select u' from V(GY) that maximize
(0(S U {u'}) — o (8)/c:)

5 S; <« S;U{u'}

6V« V\{u'}

7. last_item < {u'}

8: end while

9: result <— S\ last_item

10: return arg max{c (result), o (last_item)}

Theorem 4: Greedy algorithm has an approximation of
(1/2)(1 — (1/e)) for nondecreasing submodular maximization
under the knapsack constraint.

Proof: Let {v1, v2, ..., vr+1} be generated by
Algorithm 2 and denote A; = {v1,v2,...,0;}. Then, vj4] =
argmaxye(v\a,} Ao f(Ai)/c(v) and c(Ax) < B =< c(Ag41).
Here, we define A, f(A;) = f(A; U{v}) — f(A;). Given set

S, T ={t,t,...,ty}, and T; = {1, 12, ..., 1;}, it is easy to
know that
n
FSUT) = f($)+ D Ay f(SUTi-). (1)

i=1
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Therefore, supposing optimal A* = {uy, uz, ..., uy}, we have
f(AY) < f(A; UAY) = f(A) + Ay, f(A) + Ay, f(A; U
{ur}) + - + Ay, f(A; U {ur,...,up—1}) < f(A) +
A (AD) + Au f(A) + - + Ay, f(A) < f(A) +
(c(u1)/cix1)) Npiyy f(AD) + (c(u2)/c(it1))Avyy f(AD) +
coot (cup)/cit1) Apy, f(AD) = f(AD) + (c(A%)/c(vit1))
(f(Ait1) — f(A).

Then, we denoting a; = f(A*) — f(A;), and from above,
we know that o; < (c(A*)/c(vi+1))(a; — ait+1). We have

dip1 < (1 - Cc(?;l))) o < e—<0i/By, 2)
since 1 + x < ¢* for any real number x and c(A*) < B.
Thus, we have ag) < e Wkt)/Byy < g=c@rnito)/By, | <
e~ A)/By < o1 £(A*) recursively. Now, we know that
f(A%) = f(Agr1) < e 'f(A%) and f(Agy1) = (1 —
e - f(A*). Since f(AQ) + fUoee1)) = f(Aer1) +
f@ > f(Ar4+1) by submodular property, we have
max{ £ (Ag), f (s} = (1 —e~1) /2 F(4%). m

Even though there are algorithm with better approximation
factor existing, they are at the expense of consuming more
time. For example, Algorithm 2 by Khuller et al. [24] proved
that it is a (1 — 1/e) approximation algorithm to solve maxi-
mum coverage problem, which use the enumeration technique.
Let d be some fixed integer number, we consider all the subsets
of V with cardinality d under the constraint of budget B, then
continue to compute each of these subsets by Greedy method.
In reality, the extremely bad case hardly appears unless the
difference of cost for different products is very large. Thus,
the Greedy algorithm is enough to get a satisfactory solution
in most case.

C. General-TIM Algorithm

In Section III, we have shown that the objective function
o of IMCP is nondecreasing and submodular under the knap-
sack constraint, thus the Greedy algorithm can get a (1/2)
(1 — (1/e))-approximation solution. However, the computa-
tional cost of Greedy algorithm is too high because the objec-
tive function o (S) is #P-hard to compute given seed set S, and
the usual method to compute is MC simulation. The time com-
plexity of the Greedy algorithm is O ((max;ec | (B/ci]))mnr),
where r is simulation times using a MC method. This drives
us to design a more desirable approach, which can obtain a
similar solution set in a timely manner.

For IM, Tang et al. [12] proposed the two-phase IM (TIM)
algorithm that produces a (1 — 1/e — ¢)-approximation with at
least (1 — n~%) probability in O((k + £)(m + n)logn - ¢2).
It is based on a technique called RIS. First, we need to
introduce two important concepts, RR-set and random RR-
set, proposed by Brogs et al. [14]. Given a realization g of
G and a node v in g, the RR-set is a set in which all the
nodes in g can reach v. The random RR-set is an RR-set
generated on a realization g sampled from the distribution of
realization, and a node which is selected from V (G) randomly.
In TIM algorithm, we need to obtain a certain number of
random RR-set. Then, in the problem of IM, for a given
node, if it appears more times in these random RR-sets, this
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Algorithm 3 General-TIM (G, ¢, B)

Input: Graph G = (V, E), costs ¢ and budget B
Output: Seed set S

1: Initialize a set R = @

: Generate ¢ random RR-set R

: Initialize S < @

. Initialize last_item < ¢

: while ¢(S) < B do

Select u' from V (G') that maximize (1/c;)-(the number
of RR-sets in R covered by u;)

Si < S; U {u'}

V <« V\ {u'}

: R < R\ {RR-sets covered by u;}

100 last_item < {u'}

11: end while

12: result <— S\ last_item

13: return arg max{o (result), o (last_item)}

o Vv AR W

% 3

node has a larger influence than others with high probability.
We can expand this technique to solve our IMCP problem
under knapsack constraint, the pseudocode of general-TIM is
shown in Algorithm 3. Let Fr(S) be the fraction of RR-sets
in R covered by S, we have [12]

Elnt - FR(S)] =0 (S) 3)

where ¢ is the number of different products. Now, IMCP
probem can be transformed into the budgeted maximum cov-
erage problem and general-TIM produces a (1/2)(1 — (1/e))-
approximation to the solution that maximizes the coverage of
‘R under the cost constraint, because Fr(S) is nondecreasing
and submodular with respect to S.

Next, we need to discuss how to estimate € so that it is
large enough to ensure that our solution is accurate with high
probabiltiy. We can consider that the maximum number of
selected nodes k from the nodes of constructed graph V(G)
under limited budget B is maxgec[(B/c;)], in other words,
we select the nodes with minimum cost as seeds, then we can
get the most number of seeds. Thus, we have the following.

Lemma 5: Define k = maxge:|(B/c;)] and suppose
6 > A/OPT, where

(8 4 2¢)(nt) - (€log(nr) + log (') + log2)
= 2 4)

and 7 is the number or different products. Then, for any seed
set S under the limited budget B, |nt- Fr(S)—0o (S)| < (¢/2)-
OPT holds with at least 1 — (nt)_f/(’;(t) probability.

Proof: The proof is very similar to [12, Lemma 3] by
means of Chernoff bound, but ¥k = maxec[(B/c;)] and
nt instead of n. The reason for the correctness of the total
number of nodes in G is nt. IMCP problem is equivalent to
IM problem, which has been proven in Theorem 3.1. Here,
we need to explain why ( ) happens. Because it is NP-hard
to find the number of possible seed sets under the knapsack
constraint, we attempt to find an upper bound for the number
of valid seed sets. Considering constructed network G, there
are nt nodes, and under budget constraint, the number of nodes
in a valid seed set cannot be larger than k. Thus, the number

of valid seed sets is at most ('}'), which is an upper bound of
the number of valid seed sets. [ ]

Theorem 6: Given 0 that satisfies # > 1/OPT, Algorithm 3
returns a ((1/2)(1 — (1/e)) — &)-approximation solution for
IMCP problem with at least 1 — (nr)~¢ probability.

Proof: Let Sp be the seed set returned by Algorithm 4,
and S;; be the node set that maximizes Fg(-) under limited
budget. As Fr(Sp) is a (1/2)(1 — (1/e))-approximation solu-
tion for the budgeted maximum converage problem, we have
Fr(Sp) = (1/2)(1 — (1/e)) - Fr(S}). Let S is the optimal
solution for the IMCP problem on G, hence o (S%) = OPT.
We have Fgr(S%) > Fr(S%), which leads to Fr(Sp) > (1/2)
(1 - (1/e)) - Fr(S}).

Assume that @ that satisfies & > A/OPT. From Lemma 5,
|nt - Fr(S) — a(S)| < (&/2) - OPT holds with at least
1—(nt)~t) (']’(’) probability for any valid seed sets under limited
budget B. We can assume that the number of valid seed
sets under knapsack constraint as f. By the union bound,
|nt - Fr(S) — o (S)] < (¢/2) - OPT should be held for all seed
sets under knapsack constraint with at least 1 — f(nt)~¢/ (']’;)
Because the number of nodes in a valid seed set is at most k,
we can know that < (), so 1 —g(nt) /() = 1—(n)~".
In that case, we have

o(Sp) > nt - Fr(Sg) — f . OPT

%( i) - Fr(Sh) — &
%( i) - Fr(sh) — &
~((10)- (%)) orm
((-2)-) o

From above, the theorem is proven, we obtain a theoretical
bound for this problem. [ ]

Even if we get a theoretical bound, we need to estimate the
value of OPT. There are some existing methods to estimate
the value of OPT, whose ideas are to get a lower bound of
OPT. For example, Tang et al. [12] stated that KPT < OPT,
so we can use KPT instead of OPT. Suppose that we select
k-size node set according to a probability distribution based
on its in-degree for each node, KPT is the mean of expected
spread for this node set. In addition, IMM [13] used martingale
analysis and a more efficient estimation method on OPT. These
methods can be extended to our problem easily. Because it is
not the focus of this paper, we will not expand in depth here.
We can determine the value of # by the use of experimental
simulation later.

v

Vv

V. CoMPOSITE COMPLEMENTARY PRODUCT

We have introduced the CCP in Section 1. If a node adopts
the influence of A and B, it has a higher probability to adopt C.
We refer to this triad (A, B, C) as a CCP. How can we deal
with it in our constructed graph G = (V, E) above if there
exists CCP? We formulate our problem as follows.
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Given the constructed graph G = (V, E) above, we can
obtain hypergraph G = (V, E) by adding some hyperedge
into G. The influence from the product h; and h; because
customer v adopts both h; and h; at the previous step and
has the probability p;;_ for the success of the influence to
adopt product hi. In constructed graph, for each corresponding
nodes u’, u/ and u*, which come from different layers G?,
G/ and Gk, addlng an hyperedge ({u’, u’}, u*) associated
with a probability p;j_x. We can obtain the new constructed
hypergragh G = (V, E). For a hyperedge ¢ = (H,,v),
the head set is H, and the tail node is v. py,,, is the probability
that H, influences v when all the nodes in head set are active.
The propagation process is the same as IC-model. We are
now ready to define the IMCCP on new constructed graph G
as follows.

Deﬁmnon 7 (IMCCP): Given the constructed hypergraph

= (V,E), costs ¢ = {c1,¢2,...,c;} and budget B, find
the seed set S that satisfies budget constraint, ¢(S) < B, and
maximize the expected spread o (S).

It is obvious to see that the IMCCP is a generalization of
standard IM problem in [3], when setting ¢ = ¢ = -+ =
¢ = 1 and no CCP (hyperedge) exists. Hence, this problem is
NP-hard, but it is not submodular or supermodular as follows.

Theorem 8: o (S) is not submodular function in hypergraph
G = (V, E) under IC-model.

Proof: We prove by a counterexample. Constructed hyper-
graph G = (V, E) has V = {u!,u?, 43} in different layers
of G, E = ({ul,uz},u3) and ppp-3 = 1. Let A = ¢ and
B = {u'}, we have o (A) = 0 and o (B) = 1. Putting > into
A and B, we have o(A U {#2}) = 1 and o (B U {u?}) = 3.
Then, 6 (AU{u?})—o (BU{u?}) < o (A)—o (B) when A C B.
Thus, ¢ (S) is not a submodular function. [ |

Theorem 9: ¢ (S) is not supermodular function in hyper-
graph G = (V, E) under IC-model.

Proof: We prove by a counterexample. Constructed hyper-
graph G = (V,E) has V = u', 0! in the same layers of
G,E= @' v")and py = 1. Let A =0 and B = {u'},
we have o(A) = 0 and ¢(B) = 2. Putting »! into A and
B, we have 0 (AU {v'}) = 1 and o(B U {v'}) = 2. Then,
c(AUP') —e(BU{{®'}) > 0(A) —a(B) when A C B.
Thus, ¢ (S) is not a supermodular function. [ |

From above, we prove IMCCP is not submodular or super-
moduler. For a nonsubmodular function, there are no general
methods to get a solution with a certain approximation ratio.
Lu et al. [6] provide us with a sandwich approximation
solution, which needs us to find the lower bound and upper
bound of objective function.

A. Upper Bound

Upper bound can be obtained easily by replacing hyper-
edge influence with separate node-to-node influence that has
the same activation probability with hyperedge influence,
which amplifies the activation probability [26]. For constructed
hypergraph G = v, E) consider upper bound constructed
graph G, = (V, E,), E, is directed edge set, as follows.
Considering node u and node v in V(G), a directed edge
(#,v) with probability p, is generated if © € H, and
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Fig. 2. Example of converting hyperedge to common edges to get upper
bound.

hyperedge e = (H,, v) exists. Suppose there are n head set
of (Hi,v), (H»,0),...,(H,,v) in G that contain node u,
the new influence probability p,, = 1 —[]/_, (1 — p#,.) [26].
This method is equivalent to connect each node in H, to
v with probability p., and then combine multiple edge set
M between two nodes to one edge with probability p =
1—-[1,,ep (1—pm). However, it is not the best thought to obtain
the upper bound because the activation probability to » will
become 1 — (1 — p.)!fl when all the node in H, is activated,
which is extremely bad when |H,| is very large. If the nodes
in H, cannot be activated together eventually, it will be worse
than above that all the nodes in H, are activated.

From above, we can know that it is not a good idea to
connect all nodes in H, to v with probability p.. Therefore,
we need to minimize the new probability from each node in H,
to v. Instead, we replace each node in H, to v with a smaller
probability pycm,, = 1—(1— pe)(l/‘H‘?'), then combine multi-
ple edge set M between two nodes to one edge with probability
p = 1—[1,,cps (1= pm). Then, we can think about the problem
like this, each node u € H, activates v independently, and the
eventual activation probability of v is p, when all the nodes in
H, have been activated. A clear example is shown in Fig. 2.
First, we decompose hyperedge ({u2,u3}, ;) with p3_; to
directed edge (u2,u1) and (u3,u1) with py; and pj,. Here,
pr=py=1-010- p23_1)'/2. Then, merging the multiple
edge (u2,u1), we have p)y = 1 — (1 — pa)(1 — pa1) =
1—(1—pa1)((1 = pa3_1)"/?). Then, the upper bound problem
for IMCCP is formulated.

Definition 10 (Upper Bound Problem): Given the graph

G, = (V,E)),c={c1,ca,...,c;} and budget B, find the seed
set S that satisfies budget constraint, ¢(S) < B, and maximize
the expected spread v (S).
Here, we transform hypergraph G = (V, E) to directed graph
G, = (V, E,), which is equivalent to the constructed graph
in IMCP problem; thus, it is nondecreasing and submodular.
We can use Algorithm 2 and Algorithm 3 to solve it and get
a (1/2)(1 — (1/e)) approximation ratio.

Theorem 11: Given G, = (V, E,), v(S) is an upper bound
of ¢ (S) with respect to seed set S.

Proof: v(S) > o (S) for S C V if v(S) is an upper bound
of ¢(S). We define that S; and S} are the activated node in
G and G, at the time step 7. At any time step, S; should be
the subset of S}.
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When ¢ = 0, we need to prove So = Sj = S =0 =
S1 C S}’. For each node u which is not activated, we define
activation probability p(u) in G and p,(u) in G,. Then,
the probability that u can be activated in G is p(u) = 1 —
HH,-CS(l — PH;.u), Where there exists n hyperedges {(Hy, u),
(Ha, u), ..., (Hy,,u)} in G. The probability that u can be

activated in Gy is pv () = 1= [T esnmnumu-un,) (1 = Puwu)-
Then, we have

polu) =1 - [I  a-rw
weSN(H\UH,U---UH,,)
> 1 — H (1 - pwu)
wEUHieS H;
=1-J] [T~ puw
H;eS weH,;
1
H;eS weH,;
BRNLA
N IETD
H;eS weH,;
=1- H (1 - pHi,u)
H;eS
= pu).

Therefore, for each inactivated node u, p,(u) > p(u), we can
know that S; C Sf after the first round.

When ¢t # 0, we need to prove S; € S} = S;41 © S;’H.
Then, for each inactivated node u, the probability that u can
be activated in G is p(u) = 1 — [T.c5,(1 = pa;.u), where
there exists n hyperedges {(H1, u), (H2, u), ..., (Hy, u)} in G.
The probability that u can be activated in G, is p,(u) =

1— HweS,"ﬂ(HlquU---UHn)(l — pwu). Then, we have

pou) =1 - I1 (1= puu)
wES;)ﬂ(HlUHZU”'UHn)
> 1 — H (1 - pwu)
weSN(HUH,U---UHy)
> 1 — H (1 - pwu)
wEUH;es, H;
=1—- H H(I_Pwu)
H;eS; weH;
1
=1-J1 1 (1 — (1 —(1 —pHi,L,)'Hf'))
H;eS; weH;
1 ‘Htl
== 1T (1 rmar )
H;eS; weH;
= 1_ H (1 _pH,-,u)
H;ES;
= pu)

Therefore, for each inactivated node u, p,(u) > p(u), we can
know that S, C S/ after # + 1 round. [ |

B. Lower Bound

The main idea in [26] to get a lower bound is to keep
only such hyperedge whose nodes in head set have the same
head set, otherwise delete it. Suppose that there are a head
set W such that for each u € H,, (W,u) exists in G,
this hyperedge (H,,v) is reserved. Otherwise, we delete it.
In addition, H, and W can be replaced by super node, and
the new directed edges (w,h) and (h,v) should be added
into graph. The weight of super node will be 0 and other
common nodes will be 1. Therefore, the problem transform
into IM with weighted case [26]. This method is suitable for
us to construct directed graph G u=(, E ) for lower bound.
Because we deleted these hyperedges whose head set cannot
be activated simultaneously, so the eventual expected influence
will be reduced. Then, the lower bound problem for IMCCP
is formulated.

Definition 12 (Lower Bound Problem): Given the graph
G, = (V,E,), ¢ = {c1,¢2,...,¢;} and budget B, find the
seed set S that satisfies budget constraint, ¢(S) < B, and
maximize the expected spread u(S).

Here, we transform hypergraph G = (V, E) to directed
graph G u =V, E «)» which is equivalent to the constructed
graph in IMCP problem; thus, it is nondecreasing and submod-
ular. We can use Algorithms 2 and 3 to solve it and obtain a
(1/2)(1 — (1/e)) approximation ratio.

Theorem 13: Given Gﬂ =(V, Eﬂ), «(S) is a lower bound
of ¢ (S) with respect to seed set S.

Proof: u(S) <o (S) for § C V if u(S) is an lower bound
of ¢ (S). We define that S; and S/ are the activated node in
G and G, at the time step ¢. At any time step, S;* should be
the subset of S;. The proof is very similar to [26], thus we
will not go into details here. [ ]

VI. SANDWICH FRAMEWORK

Sandwich approximation strategy was first proposed by
Lu et al. [6], which is an algorithm with data-dependent
approximation factor when the objective function is not
submodular. The objective function o (-) is not submodualr,
we define u(-) and v(-) on the same ground set V such that
w(S) <o(S) <v(S) for § € V. If u(-) and v(:) are sub-
modular function under the knapsack constraint, they can be
approximated within (1/2)(1 —(1/e)) by Algorithms 2 and 3.
Then, we can sandwich o () with x(-) and v(-) to maximize
o (+) as follows:

a(S) (&)

max

Ssand = arg
Se{Su, 5,5}

where S,, S;, and S, be the solution from u(-), o(-),
and v(-). From Section V, we obtain the submodular upper
bound v(-) and lower bound () for o (-). Then, the sandwich
approximation framework is shown in Algorithm 4.

Theorem 14: Let Ssang be the seed set returned by Sandwich
approximation framework, then we have

o(S) u(sH) 1/, 1 .
v(S»’a(S*)]'i(l_E)'”(S) ©

where S* is the optimal solution for maximizing o (S) subject
to budget ¢(S*) < B.

O'(Ssand) > max [
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Algorithm 4 Sandwich Approximation Framework
Input: Graph G = (V, E), budget B and costs ¢
Output: Seed set Ssand

1: Initialize upper bound graph G, = (V, E,)
. Initialize lower bound graph G w=, E 0)
. S, = argmaxv(S) in G, = (V, E,)

S =argmaxo(S) in G = (V, E)

: Sy = argmax u(S) in Gﬂ =(V, Eﬂ)

: Ssana = arg maxs,e(s,,s,s,) o (So) by Algorithm 2 or 4
: return S 4

Proof: Let S; and S be the optimal solution to max-
imizing x(S) and v(S) subject to budget ¢(S;) < B and
c(S}) < B, respectively. We have

a(Sy) 1 1 .
=y 3 (172) )

a(Sy) 1 1 .
=

o(Sy) 1 1 .

Then, observed slightly from lower bound, we can get that as
follows:

v

O'(S,u) #(S,u)

1 1
=5 (1 - ;) 1 (S)
3 (1-1) e

u(s" 1 1 .
ST 5(1‘;)'”“ )

v

Therefore,

0 (Ssand) = max{c (Sy), o (S), O'(S,u)}
> max{o (Sy), o (Su)}

_ o(S) u(SH] 1 1\
_max[v(S,,)’a(S*)]'Z(l e) o (SY).

The theorem is proven. [ |

VII. EXPERIMENT

In this section, we show the effectiveness and efficiency
of our proposed algorithms on two real social networks. Our
goal is to evaluate Algorithms 2 and 3 with some commonly
used baseline algorithms. In addition, we evaluate sandwich
approximation framework on predefined hypergraphs.

A. Data Set Description and Statistics

Our experiments are based on the data set from net-
workrepository.com, which is an online network repository
containing different kinds of network. There are two data
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TABLE I
STATISTICS OF TWO DATA SETS

Dataset n m Type Average degree
dataset-1 | 379 914 directed 4
dataset-2 | 914 | 2914 | directed 6

sets in our experiments. The data set-1 is a coauthorship net-
work [27], namely, coauthorship of scientists in network theory
and experiments. The data set-2 is a Wiki-vote network [27],
namely, Wikipedia who-votes-on-whom network. They are
classified as social networks in networkrepository.com. Basic
statistics of these data sets are summarized in Table I, where
n denotes the number of nodes and m denotes the number of
edges in the original graph. However, the real networks are
different from these basic information, which are related to
the number of products, we will describe in detail later.

B. Experimental Setup

Two experiments are performed for each data set. The
first experiment is performed to obtain expected influence
o (S) for a given budget B (range from O to 40) for IMCP.
The second experiment is to solve IMCCP by use of sandwich
approximation framework. These experiments are based on
IC-model, so we need to set the propagation probability for
each edge and the cost for each product. In the first experiment,
it can be divided into three subcases as follows.

1) Assuming there are two products A and B, the con-
structed graph G = (V, E) has two layers, one is
product A and the other is product B. The propagation
probability for A is pa = 0.1, B is pp = 0.12,
pa—p = 0.11, and pp—4 = 0.11. The costis c4 = 1,
cp = 1.2. Therefore, the total nodes and edges in data
set-1 network are 758 and 2586, respectively, and in data
set-2 network is 1778 and 7606.

2) Assuming there are three products A, B, and C, the con-
structed graph has three layers. Except A and B,
the propagation probability for C is pc = 0.14 and
pa—c = 0.11. The cost is cc = 1.3.

3) Assuming there are four products A, B, C, and D, their
constructed graph has four layers. Except A, B, and C,
the propagation probability for D is pp = 0.15 and
pp—c = 0.11. The cost is cp = 1.5. We compare both
of our algorithms (Greedy and general-TIM) with some
common baseline algorithms. The algorithm Random
selected the seeds randomly with the restraint of budget
from the constructed graph, and max-degree selects
nodes with the highest out-degree as the seeds.

In the second experiment, it can be divided into two

subcases as follows.

1) Assuming there are three products A, B, and C, so the
constructed graph G = (V, E) has three layers, one is
product A, one is for product B, and the other is product
C. The propagation probability for A is pg = 0.12,
B is pp = 0.1, pc = 0.1, and ppc—a = 0.2.
Here, hyperedge ({up, uc}, ua) exists in the constructed
graph. The cost is ¢4 = 1.2, cg = 1, and c¢¢c = 1.
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Fig. 3. Performance comparison achieved by different algorithms with budget
40 under the data set-1 in the first experiment. Here, the left column is the
expected influenced achieved by general-TIM with different 6. (a) Subcase:
two products. (b) Subcase: three products. (c¢) Subcase: four products.

In addition, in upper bound constructed graph G,
(V, E,), we replace ({up,uc},us) with (up,un) and
(uc,ua), here pp_,4 = 0.1056 and pp_.c = 0.1056.
Then, in lower bound constructed graph G w=, E )
we remove hyperedge ({up, uc}, ua) directly.
Assuming there are four products A, B, C, and D,
Except A, B, and C, shown as subcase 1), the propaga-
tion probability for D is pp = 0.13 and ps—p = 0.11.
The cost is cp = 1. We use sandwich approximation
framework to get approximation solutions, then compare
with their upper bound and lower bound.

2)

C. Experimental Results

Figs. 3 and 4 draw the performance comparison achieved
by different algorithms with budget 40 under data set-1 and
data set-2 in the first experiment. Fig. 5 draws the expected
influence achieved by the sandwich approximation framework
with budges 40 in the second experiment.

Obviously, from Figs. 3 and 4, & = 20 k is large enough
to make sure the solution is a good estimation, Because the
difference between € = 20 k and 6 = 50 k is extremely
small in two networks. In addition, the expected influence

Fig. 4.  Performance comparison achieved by different algorithms with
budget 40 in the first experiment. Here, the left column is the expected
influenced achieved by general-TIM with different 6. (a) Subcase: two
products. (b) Subcase: three products. (c) Subcase: four products.

TABLE I
TIME CONSUMING IN THE FIRST EXPERIMENT

Dataset-1
Greedy | General-TIM | Max-Degree | Random
(a) | 286.12 21.82 0.64 0.35
(b) | 466.85 32.97 0.87 0.36
(c) | 564.40 42.50 0.80 0.35
Dataset-2
Greedy | General-TIM | Max-Degree | Random
(a) | 2356.07 48.08 2.57 0.91
(b) | 4685.78 79.84 3.37 0.89
(c) | 6602.19 99.95 3.5 1.34

of the Greedy algorithm and general-TIM algorithm is very
close in two networks under the different setting, which prove
the effectiveness of the randomized sampling by RR-sets
under the knapsack constraint. However, the general-TIM is
much faster than Greedy, so it is more suitable in large
networks. The time-consuming in the first experiment is shown
in Table II, where the 6 value of general-TIM is 20 k.
Both the Greedy and general-TIM algorithms outperform other
technique, which prove their effectiveness. Comparing with
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Fig. 5. Expected influence achieved by the sandwich approximation frame-
work with budget 40 in the second experiment. (a) Subcase: two products.
(b) Subcase: three products.

max-degree algorithm, which is the best baseline algorithm,
Greedy and general-TIM algorithms are 20% better than it.
From the above figures, we can see that comparing with the
results of data set-1, the results of Greedy and general-TIM
algorithms in data set-2 are better than baseline algorithm more
clearly. This may be related to its network structure.

Although existing Com-IC model [6] solves influence dif-
fusion from competition to complementarity. From above
experiments and theoretical analysis before, we can see that
our work is very different from Com-IC, mainly includes the
following aspects: 1) we use multi-layer network structure,
which is more flexible and tractable; 2) com-IC is only
suitable to solve two products, and it cannot be extended to
deal with multiple products because their model is based on
original network; 3) the objective function of Com-IC is not
submodular, which increases the complexity of the model; and
4) com-IC is impossible to solve the composite complementary
problem. Thus, our model is better than Com-IC.

From Fig. 5, it is observed that the expected influence
o (S) of sandwich approximation framework lies in between
its upper bound and lower bound for the two networks.
In addition, we can see that the upper bound is very close
to o (S), which is better than the method in [26].

VIII. CONCLUSION

In this paper, we modeled the VMCP by using multi-layer
constructed networks. IMCP was formulated to select initial
users to adopt different products to maximize the expected
influence with knapsack constraint under the IC-model.
We proved that IMCP is NP-hard and submodular. In order
to get better scalability, we put forward the general-TIM algo-
rithm with the help of random RR-set. Considering CCP exist-
ing, IMCCP was formulated to adapt to CCP. We proved that
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IMCCP is NP-hard, nonsubmodular, and nonsupermodular.
We use sandwich approximation framework to solve it because
upper bound and lower bound can be acquired and obtained
an approximation ratio. Finally, we tested our algorithm on
two real-world data sets. The experimental result verified the
effectiveness of general-TIM algorithm and sandwich approx-
imation framework.

In future research, our research can be divided into two
parts. The first part is to get better randomized sampling
methods to solve submodular problem under the knapsack
problem or prove a theoretical lower bound to . The second
part is to solve nonsubmodular optimization (containing
hyperedges) better by different methods.
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