
The Role of Public Policy in Technology Diffusion: The case of Plug-in Electric Vehicles

Julio C. Zambrano-Gutiérrez^{*,†}, Sean Nicholson-Crotty[†], Sanya Carley[†], Saba Siddiki[‡]

Abstract

7 The plug-in electric vehicle (PEV) is regarded by many as a viable alternative to the
8 internal combustion engine, so long as the disruptive technology is able to overcome technical
9 and financial shortcomings that dictate consumer acceptance. States have instituted a variety of
10 policies aimed at mitigating these shortcomings and simultaneously increasing consumer demand
11 for PEV vehicles. Motivated by a limited body of literature on the effects of these policies, and a
12 significant need for information about policy efficacy, in the present study we evaluate the
13 relationship between a suite of state-level policies and PEV registrations. Results reveal that tax
14 credits for individuals, grants programs for charging infrastructure and PEV purchases, and
15 incentives for state-owned PEVs fleets increase PEV registrations. The observed impact of grant
16 incentives is mediated by charging capacity or, alternative phrased, much of the influence of
17 grants on registrations is through the channel of first improving the charging infrastructure
18 within a state.

Abstract Art

²¹ [†] Indiana University Bloomington, [‡] Syracuse University

22 * Corresponding author's email: jczambr@indiana.edu

23

Introduction

24 The plug-in electric vehicle (PEV) is a classic case of a disruptive technology. It is touted
25 for its potential to compete with, and potentially displace, the internal combustion engine (ICE)
26 as a dominant vehicle technology. As with other “disruptive” technologies (1), however, this
27 technological shift will require a confluence of policy, infrastructural, and behavioral
28 developments in its favor. Generally speaking, scholars interested in the adoption and diffusion
29 of product innovations have long recognized that government policies can facilitate the
30 adaptation of consumer expectations (2-4). Work on disruptive technologies suggest that these
31 “pushes” from government are particularly important when an innovation represents something
32 truly new or disruptive to the current technological regime with which consumers are familiar (5-
33 6).

34 The first mass-marketed PEVs hit the U.S. automobile market in 2010. As of 2016, the
35 stock of PEVs had grown to 563,710 (7), with uneven distributions of these vehicles across
36 states. A number of factors are known to dissuade potential consumers from adopting PEVs,
37 including cost, range, and battery recharging requirements (8-9). PEVs tend to have an upfront
38 cost that is 50 to 100% higher than similar internal combustion engine vehicles, though the level
39 of subsidies offered by government affects what the consumer pays (8). The range of most
40 current PEVs on a fully-charged battery without a hybrid engine is typically between 70 and 100
41 miles, significantly less than the 250- to 350-mile range of a conventional ICE. These distance
42 limitations contribute to “range anxiety” (8), a fear that one’s battery will die when on the road.
43 Finally, PEVs require specific charging infrastructure that must be installed in an owners’ home
44 or an accessible public facility. Previous work on the intent to purchase PEVs (10) find that

45 perceptions of these disadvantages damage consumer interest in adoption more than any other
46 factor.

47 States and municipalities have adopted a number of policies designed to overcome these
48 barriers and facilitate PEV consumption, though this policy response has been very
49 heterogeneous across the country. Not surprisingly, there have been a number of studies of the
50 relationship between these policy incentives and the spread of PEVs; but these studies have
51 reached mixed conclusions about policy impacts. For example, several studies have focused
52 exclusively on the most prominent policy incentives for PEV purchase – direct financial
53 incentives and charging infrastructure. Sierzchula et al. (2014)¹¹ find that both are important, but
54 that neither has a particularly large impact on PEV purchases. Lutsey et al. (2015)¹² identify an
55 interactive effect between these variables, suggesting that financial incentives are positively
56 associated with PEV sales, but only in states with sufficient charging availability. A key
57 drawback to both of these studies, however, is that they are estimated in a single year of data
58 and, as such, cannot include fixed effects to account for time or unmeasured state-level
59 characteristics, including other policies.

60 Li et al. (2017)¹³ also focus on tax incentives, in the form of the federal income tax credit,
61 and municipal level charging capacity. They adopt a more sophisticated design, examining
62 quarterly sales over a two-year period and explicitly accounting for endogeneity between
63 previous PEV sales and investment in charging infrastructure. Because of the longer time frame,
64 they are also able to estimate a two-way fixed effects model, which helps to isolate within-
65 jurisdiction effects. However, it is important to note that fixed effects cannot account for state-
66 level policy incentives that are time-variant but otherwise omitted from the analysis, such as
67 grant programs and incentives for state-owned PEVs fleets. Li et al. found that federal incentive

68 does increase sales, but that almost half of the effect is due to charging capacity, and that a direct
69 incentive for charging station deployment would have a larger overall effect on PEV
70 consumption.

71 Some studies have also sought to analyze the impact of a larger suite of PEV related
72 policy incentives, but again, with varying results. Studies have found a positive association
73 between financial incentives, investment in charging infrastructure, high occupancy vehicle
74 (HOV) lane access, and, in one case, emissions testing exceptions (14-15). Santini and
75 colleagues^{16, 17} find that DOE grants affected state-level registrations in the absence of other
76 policies, while activities by public utilities to promote PEVs only worked in conjunction with
77 other state-level incentives. Unfortunately, all of these studies employ a cross-sectional research
78 design and, thus, cannot isolate within-jurisdiction effects.

79 Clinton et al. (2015)¹⁸ analyze sales over a slightly longer time period—two years—and
80 find that tax credit and charging infrastructure are significant predictors, while direct rebates and
81 HOV lane access are not. These authors use an instrumental variables approach to deal with
82 endogeneity between sales and charging infrastructure. Unfortunately, the financial incentives
83 analyzed by Clinton et al. do not vary over the short time span of their study, so they were unable
84 to estimate within-state effects.

85 We suggest that mixed findings in previous research, along with uncertainty regarding
86 the best way for governments to incentivize the spread of PEVs, are due to inconsistencies in the
87 design of previous studies. Studies to date tend to focus on sales in a single year or limited
88 number of years, evaluate a limited number of policy incentives, or employ methodological
89 approaches that compromise internal validity. In the present analysis, we seek to build on the
90 foundation of these studies with the analysis of a larger number of policies, more PEV models,

91 over a much longer period of time, and using an identification strategy aimed at causal inference
92 and the use of mediated or indirect impacts of policy on the spread of PEVs.

93 More specifically, we analyze the effect of nine policy incentives on the spread of PEVs
94 between 2010 and 2016. We find that tax credits for individuals, grants programs targeting
95 charging infrastructure and the purchase of PEVs, and incentives for state-owned PEVs fleets
96 increase registrations even when controlling for other incentives. We also find that the observed
97 impact of grant incentives is mediated by charging capacity or, more specifically that much of
98 their influence on registrations comes through their role in improving the charging infrastructure
99 within a state. The paper concludes with a discussion of the implications of these results for our
100 understanding of the diffusion of disruptive technologies and the ability for systems to overcome
101 technological “lock-in” (19).

102 **Methods**

103 We examine PEV registrations in the American states between 2010 and 2016, a time
104 frame that spans from the introduction of modern PEVs through the last year for which data are
105 currently available. Our dataset is a longer time series than has been used in previous studies and
106 the set of PEV adoption policies—nine in total—is more extensive than those studied previously.
107 Following the precedent set by previous scholars (13,18), we employ a methodological approach
108 that accounts for endogeneity between charging infrastructure and PEV sales. We also employ a
109 research design that allows us to investigate the degree to which the impact of policy on PEV
110 diffusion actually operates through its impact on charging infrastructure.

111

112

113 *Dependent Variable: PEV Registrations*

114 The data for new PEV registrations come from IHS Markit²⁰, a private provider. They
115 include information for battery electric vehicles (BEV) and plug-in hybrid electric vehicles
116 (PHEV) registrations for each year between 2010 and 2016 by state. This study includes 50 PEV
117 models but does not include data on low-speed electric vehicle registrations, since their
118 technology is not comparable with the mass marketed PEVs.

119 The primary dependent variable for this study is the number of annual new PEV
120 registrations by state. As displayed in Figure 1, the spread of PEVs has been unequal between
121 states. The state of California accounts for 48% of the total PEVs registrations during 2010-2016,
122 followed by Georgia with 5%; and Washington, New York, and Florida each one with
123 approximately 4% of the PEV registrations. The rest of states have a participation between
124 0.02% (Wyoming) and 3.19% (Texas).

125 [Figure 1 here]

126 *Independent Variables: Public Policies*

127 Data on PEV related policies come from LexisNexis State Capital²¹, which provides
128 access to legislative statutes from the fifty states. Using keywords “low emission vehicles OR
129 zero emission vehicles OR electric vehicles”, we found 150 out of 557 relevant results
130 containing information related to PEV incentives between 1990 and 2016. Search results that are
131 not part of this study only provide definitions about our keywords (70%) or do not contain new
132 information about policy incentives (30%). The history of the modifications in the statutory
133 codes are available and linked to a respective bill; the latter of which contains the year the policy
134 went into effect. In some occasions (30% of the useable cases), the bill only contains the
135 adoption year, in which case this study assumes that the following year is the effective year.

136 Our data extraction technique identified a total of 24 different types of PEV incentives at
137 the state level. Many of these policies, however, had diffused to only a single state or were
138 adopted long before modern PEVs hit the market, making assessments of their causal impacts
139 impossible. In our analyses, we chose to focus on nine public policies that diffused to two or
140 more states and were adopted by at least two states after 2010. Figure 1 reveals that, like PEVs,
141 the spread of these 9 policies among the states has been very heterogeneous. The policies include
142 financial incentives, infrastructure related incentives, and symbolic policies as fully described in
143 Table 1.

144 [Table 1 here]

145 We use data on PEV incentives to create two different types of independent variables.
146 First, we create dichotomous indicators coded 1 if a state has a particular policy and 0 otherwise,
147 which allows us to estimate the impact of adopting an individual policy while controlling for the
148 adoption of other policies. Afterwards, we code the dollar amounts of grants and tax credits to
149 explore whether the size, rather than simply the presence, of a financial incentive influences the
150 number of PEV registrations within a state.

151 ***Control Variables***

152 We control for internal state characteristics that may influence both PEV diffusion and
153 PEV policy adoption. The control variables represent obstacles and motivations to the adoption
154 of new technology by consumers within a state. All data sources are outlined in Table 2. One of
155 the primary impediments to the spread of PEVs identified in previous research is extent of the
156 charging infrastructure within a jurisdiction. In order to capture that capacity, we create a
157 measure of the number of charging stations in each state and year.

158 Because of their expense, both in terms of purchase price and investment required by
159 communities, there are also likely to be a number of socioeconomic obstacles to the spread of
160 PEVs. We capture these with measures of wealth, education and, employment. Specifically, we
161 measure gross state product (GSP) per capita, the proportion of the population with at least high
162 school education, and the unemployment rate.

163 Citizens may also purchase PEVs in an effort to reduce negative environmental
164 consequences of ICEs, such as carbon dioxide (CO₂) emissions. This analysis includes the CO₂
165 emissions produced by the transportation sector as a proportion of the total CO₂ emissions at
166 each state. States with higher proportion of CO₂ emissions are expected to have a higher level of
167 PEV registrations. The data for CO₂ emissions are only available until 2014, therefore we
168 interpolate the values for 2015 and 2016 as a function of the GSP. One remark about PEVs is
169 that their combustion emission take place during the stage of electricity generation (22-23). For
170 that reason, we include renewable energy use within a state to capture the readiness of each state
171 to embrace less pollutant technologies.

172 Of course, the level of concern over issues such as CO₂ emissions and the willingness to
173 embrace technologies such as PEVs more broadly is likely to be partially a function of the
174 environmental ideology of state residents. We capture this orientation with two political
175 measures. The first is the percent of Democratic legislators in the Senate and House of
176 Representatives. We also include the total number of victories of members from the Green Party
177 across different popularly elected positions in each state.

178 If one extends the literature on conventional hybrids to the context of the PEV, we could
179 hypothesize that consumers in states with higher gasoline prices are more likely (motivated) to
180 accept PEVs as an ICE alternative than those that live in states with lower gasoline prices (24-

181 25). We include annual data for average gasoline price per gallon, which incorporates federal and
182 state gasoline taxes, but excludes local taxes. In a related argument, previous work has assumed
183 that the price of electricity will influence the decisions of consumers considering PEVs.
184 Therefore, we control for the average price for electricity (cents/kilowatt-hour) in each state and
185 year. Finally, the number of licensed drivers operationalize the size of the potential market for
186 PEV at each state.

187 [Table 2 here]

188 ***Design and Estimators***

189 For the primary analysis, this study exploits variation in the timing and extent of PEV
190 policy adoption in the American states in order to estimate a generalized difference-in-
191 differences model. As is standard in these estimators, the model includes two-way fixed effects
192 (FEs) which allows for the estimation of the within-state effects of a policy on PEV registrations
193 in the period following its adoption. Standard errors are clustered at the state level in this
194 specification.

195 As noted above, previous work suggests that charging infrastructure within a jurisdiction
196 not only incentivizes potential consumers of PEVs but may also be endogenous to previous sales.
197 Diagnostics reveal that this is also the case in our sample of states and years. In order to correct
198 for potential bias arising from this endogeneity, we implement an instrumental variables
199 approach with the differences-in-differences framework. Following the suggestion of Li et al.
200 (2017)¹³, we instrument the number of charging stations with the interaction between the number
201 of stations in all states other than the state-year observation under analysis and the number of
202 grocery stores in each state (lagged one year). The first stage shows an F-test for the excluded
203 instrument of 10.01, suggesting that the instrument is acceptable.

Finally, we run a mediating variables analysis in order to determine whether the observed impact of PEV policies on sales is in part a function of their impact on charging infrastructure. Evidence of mediation requires us to show that: 1) the number of charging stations influences registrations; 2) policies influence the number of charging stations; 3) policies influence registrations in the absence of a control for charging stations; and 4) the impact of policies on registrations changes when we include the mediator in the model. The first of these requirements can be met in our primary analysis presented in Table 3 (Column 1). We test for number 2 in a two-way fixed effects model where number of charging stations is the dependent variable, which is presented in the first column of Table 4. The last two requirements are tested with difference-in-difference models of registrations presented in columns 2 and 3 of that table. We instrument for charging stations in each of the last two models because we still need to correct for diagnosed endogeneity. Thus, the final analysis in Table 4 is identical to the main model presented in Table 3 (Column 1), but we present it again in order to facilitate the observation of any mediating effects.

Results

219 The first column of Table 3 contains the difference-in-differences analysis of the impact
220 of nine policy incentives on PEV registrations between 2010 and 2016. Consistent with previous
221 work, instrumented charging infrastructure has a significant and positive impact on registrations.
222 The results suggest that a 1-standard deviation increase in charging stations is associated with an
223 increase of PEV registrations between 5,052 and 5,131 units.

224 In terms of policy impact, the results suggest that grant programs to finance the
225 installation of PEV charging infrastructure and the purchase of PEVs respectively, and tax
226 credits for individuals both have a positive impact on the number of new PEV registrations in

227 each state. Substantively, the findings suggest that the presence of PEV-related grants within a
228 state increases PEV registrations by 7862.54, which is a 1.2 standard deviation increase.
229 Interestingly, when controlling for these other incentives over a longer period of time, tax credits
230 for individuals—a policy that has been shown to increase sales in other studies—has a positive
231 effect on PEV registrations. However, its incidence, at least in terms of average treatment effect,
232 is lower than the one from grant programs and symbolic incentives as state-owned PEV fleets. In
233 fact, a 1-standard deviation increment in tax credits for individuals is associated with an increase
234 of 191 PEV registrations. Meanwhile, an increment of 1-standard deviation in grant programs is
235 associated with an increase of 5,394 PEV registrations. Likewise, an increment of 1-standard
236 deviation in state-owned PEV fleets is associated with an increase of 2,053 PEV registrations.

237 [Table 3 here]

238 In order to check the robustness of the results in discussed above, the second column of
239 Table 3 presents models testing whether it is the dollar amounts of grants and tax credits, rather
240 than simply the presence of these financial incentives, that influences the number of PEVs per
241 registered driver within a state. Both monetary incentives are associated with an increase in PEV
242 registrations. Importantly, the incidence of grant programs is higher than the ones for tax credits
243 to individuals since that a 1-standard deviation increase in grants (US\$4.95 million) is associated
244 with an increase of 6,439 PEV registrations while a 1-standard deviation increase in tax credits
245 for individuals (US\$1,466.19) is associated with an increase of 140 PEV registrations.

246 Before moving on, it is important to note that 2 policies had a *negative* and significant
247 impact on PEV sales. Specifically, models suggest that states that adopted regulations intended
248 to standardize public charging stations within a state and those that adopted policies reserving
249 special parking spots for PEV drivers actually saw a decrease in new registrations following

250 those adoptions. We will return to these negative findings in the discussion section, where we
251 offer some potential explanations.

252 ***Exploring the mediating impact of charging infrastructure***

253 The results thus far suggest that policies designed, at least in part, to contribute to a
254 state's charging infrastructure may have an influence on PEV registrations. This raises the
255 possibility that this observed impact is in fact mediated by the degree to which these policies
256 actually increase the number of stations available to PEV owners.

257 The analyses presented in Tables 3 and 4 provide the information necessary to test that
258 possibility. First, the primary analysis presented in the first column of Table 3 confirms that
259 charging stations (instrumented) have a positive and significant impact on PEV registrations.
260 Turning now to Table 4, the two-way fixed effects model of charging stations in the first column
261 shows that public policies do have an impact on charging infrastructure, which is the next
262 prerequisite for demonstrating a mediating effect. Specifically, the analysis suggests that the
263 presence of grants that can be used to enhance charging capacity are positively associated with
264 the number of charging stations within a state.

265 [Table 4 here]

266 The final piece in the mediating variables analysis is to compare the impact of these
267 policies on registrations when the potential mediator—number of charging stations—is excluded
268 versus included in the models. Looking at the final two columns of Table 4 we can see that
269 grants increase registrations in both models, but that the impact shrinks significantly when the
270 instrumented charging station variable is included in the model. Specifically, the results suggest
271 that 52% of the total impact of PEV grant policies on new registrations actually comes through
272 the increase in available charging capacity that the policy stimulates.

273

Discussion

274 There has been significant growth in the ownership of PEVs since the first mass-
275 marketed models became available in 2010. That diffusion has, however, been very
276 heterogeneous across states. Incentives to facilitate the spread of PEVs have also varied
277 dramatically across the states and we test whether heterogeneity in the latter can explain the
278 observed variation in the former. This study represents a contribution to existing research on this
279 subject because it investigates a larger number of PEV related policies, over a longer time
280 period, using causal identification strategies that explores both direct and mediated effects of
281 public policy.

282 Analyses of PEV ownership and nine PEV statutory policy-incentives across all 50 states
283 between 2010 and 2016 provide some evidence for the positive role of government incentives on
284 PEVs uptake. Specifically, they suggest that the adoption of grants targeting infrastructure and
285 ownership, as well as policies creating special financing for PEV-related equipment increase
286 PEV registrations within a state. These policies remain the significant predictors of registrations
287 even if we use the dollar amounts of financial incentives, such as grants and tax credits, as the
288 independent variables.

289 These results offer an important confirmation of previous findings which suggest that
290 individual tax credits can spur PEV diffusion, even when we control for a much larger number of
291 policies and analyze registrations over a much longer time period. They also add significantly to
292 previous work by suggesting that other policies can also influence PEV registrations. Indeed, the
293 findings indicate that states may be able to overcome the observability problem inherent in new
294 technologies such as PEVs simply by putting these vehicles on the road in public fleets.
295 Interestingly, the influence of incentives for state-owned electric fleets on new registrations is

296 *larger* than the impact for individual tax incentives, which have been one of the most widely
297 touted mechanisms for incentivizing uptake of PEVs.

298 The findings also suggest the import of another heretofore unexplored state-level
299 incentive for PEV diffusion. Specifically, they suggest that grants targeted at improving charging
300 infrastructure and providing better financing for PEV purchases have a positive and significant
301 impact on new PEV registrations in the states that adopt them. Intuitively, we would expect that
302 part of this impact would occur because they actually do improve charging capacity and a
303 mediating variables analysis suggests that this is the case. The grants are positively associated
304 with the number of charging stations, which in turn is positively associated with PEV
305 registrations. The final part of the mediating variable analysis suggests that more than half of the
306 observed treatment effect of adopting a PEV grants policy is, in fact, working through the impact
307 of those policies on charging capacity.

308 Before moving on, it is important to note that the impacts of individual tax credits or
309 policies to grow state-owned PEV fleets are *not* moderated by charging infrastructure. This is
310 what we would expect, because these policies are not designed to overcome the barriers to PEV
311 ownership by improving charging capacity. The fact that they are not mediated by the number of
312 stations provides a good falsification test and, therefore, increase our confidence in the validity
313 of the results of the mediating variables analysis.

314 Our results also suggest that numerous policy incentives *do not* appear to directly
315 increase PEV registrations. Of course, we exercise caution in interpreting these nonfindings, as
316 well as the positive results discussed above, with caution because we are analyzing only six years
317 of data at the very outset of diffusion period for PEVs. Nonetheless, the failure of some of these
318 policies, like laws authorizing feasibility studies (i.e., planning) or those providing some funding

319 to PEV manufacturers for R&D, to influence sales should not, perhaps, be surprising. The
320 mechanisms by which these policies might influence consumer behavior in a meaningful way are
321 difficult to imagine.

322 It is harder to understand why policies that seek to improve charging infrastructure by
323 standardizing charging stations within a state would not have a positive impact on PEV
324 registrations. However, it is possible that the failure of these public charging station policies to
325 incentivize potential consumers can be explained by the fact that they *do not* actually increase
326 the number of charging stations (see Column 1, Table 4). As such, these policies do not do
327 anything to reduce anxiety among those consumers about the range of PEVs. The fact that these
328 policies appear to cause a significant reduction in new registrations is more difficult to explain. It
329 is possible that the debate over these policies makes consumers aware that even if they find a
330 charging station, they may not be able to plug their new vehicle into it, which creates additional
331 uncertainty and hampers the diffusion of the technology. Obviously, however, more research is
332 needed to understand the mechanisms underlying this counter-intuitive result.

333 Previous research on PEVs suggests that price and range anxiety are the two major
334 factors that keep potential consumers from these vehicles. Older work also suggests that
335 observability is one of the key impediments to the spread of any truly innovative or novel
336 product (see Rogers 1962²). Our findings indicate that policies that directly address these barriers
337 are most effective at facilitating the spread of this disruptive technology. Tax incentives directly
338 reduce the higher price of PEVs; grants targeting charging infrastructure likely reduce range
339 anxiety because they actually increase the number of available charging stations; finally, policies
340 that grow state-owned PEV fleets allow consumers to see and become accustomed to the new
341 technology.

342 **Acknowledgments**

343 We thank the National Science Foundation for financially supporting this study.

344 **References**

345 (1) Christensen CM, Overdorf M. Meeting the challenge of disruptive change. *Harvard business*
346 *review*. **2000**. 78 (2), 66-77.

347 (2) Rogers EM. Diffusion of innovations. **1962**.

348 (3) Kolodinsky, J.M., J.M. Hogarth and M.A. Hilgert, 2004. The adoption of electronic banking
349 technologies by US consumers. *Int. J. Bank Market*, 22: 238-259.

350 (4) Newell, R.G., Jaffe, A.B. and Stavins, R.N., 2006. The effects of economic and policy
351 incentives on carbon mitigation technologies. *Energy Economics*, 28(5-6), pp.563-578.

352 (5) Unruh GC. Escaping carbon lock-in. *Energy policy*. **2002**. 30 (4), 317-325.

353 (6) Kemp RP. Governance of environment-enhancing technical change: past experiences and
354 suggestions for improvement. MERIT Research Memorandum 20-013. **2000**.
355 <https://cris.maastrichtuniversity.nl/portal/files/710228/guid-e3def8ba-a50f-4382-a270-99f642a797d8-ASSET1.0> (accessed February 2018).

357 (7) International Energy Agency. Global EV Outlook 2017: Two million and counting. **2017**.
358 <https://www.iea.org/publications/freepublications/publication/GlobalEVOoutlook2017.pdf>
359 (accessed February, 2018).

360 (8) Graham-Rowe E, Gardner B, Abraham C, Skippon S, Dittmar H, Hutchins R, Stannard J.
361 Mainstream consumers driving plug-in battery-electric and plug-in hybrid electric cars: A
362 qualitative analysis of responses and evaluations. *Transportation Research Part A: Policy*
363 *and Practice*. **2012**. 46 (1), 140-153.

364 (9) Sperling D. Future drive: Electric vehicles and sustainable transportation. Island Press; 2013.

365 (10)Carley S, Krause RM, Lane BW, Graham JD. Intent to purchase a plug-in electric vehicle: A
366 survey of early impressions in large US cites. *Transportation Research Part D: Transport*
367 *and Environment*. **2013**. 18, 39-45.

368 (11)Sierzchula W, Bakker S, Maat K, van Wee B. The influence of financial incentives and other
369 socio-economic factors on electric vehicle adoption. *Energy Policy*. **2014**. 68, 183-194.

370 (12)Lutsey, N., Searle, S., Chambliss, S., and Bandivadekar, A. Assessment of leading PEV
371 promotion activities in United States cities. *International Council on Clean Transportation*.
372 http://www.theicct.org/sites/default/files/publications/ICCT_EV-promotion-UScities_20150729.pdf

374 (13)Li S, Tong L, Xing J, Zhou Y. The market for electric vehicles: indirect network effects and
375 policy design. *Journal of the Association of Environmental and Resource Economists*. **2017**.
376 4 (1), 89-133.

377 (14)Narassimhan E, Johnson C. The Effect of State Incentives on Plug-in Electric Vehicle
378 Purchases. Presentation. **2014**. <https://www.nrel.gov/docs/gen/fy15/62884.pdf> (accessed
379 February 2018).

380 (15)Jin, L., Searle, S., and Lutsey, N. Evaluation of state-level U.S. PEV incentives. *International*
381 *Council on Clean Transportation*. **2014**.

382 (16)Santini, D., Zhou, Y., and Marcy, R. Electric drive technology market trends. Argonne
383 National Laboratory. White paper for DOE Clean Cities Strategic Planning. **2015a**.

384 (17)Santini, D., Zhou, Y., and Marcy, R. PEV adoption pattern and utility outreach study.
 385 Presentation. **2015b**.

386 (18)Clinton B, Brown A, Davidson C, Steinberg D. Impact of Direct Financial Incentives in the
 387 Emerging Battery Electric Vehicle Market: A Preliminary Analysis. Presentation. **2015**.
 388 <https://www.nrel.gov/docs/fy15osti/63263.pdf> (accessed February, 2018).

389 (19)Unruh GC. Understanding carbon lock-in. *Energy policy*. **2000**. 28 (12), 817-830.

390 (20)IHS Markit. Electric Vehicles Registrations by state. Dataset. **2017**.

391 (21)LexisNexis State Capital. Statutes. State Statutes by Keyword. Dataset. **2017** (accessed
 392 October 2017).

393 (22)Brinkman GL, Denholm P, Hannigan MP, Milford JB. Effects of plug-in hybrid electric
 394 vehicles on ozone concentrations in Colorado. *Environmental science & technology*.
 395 **2010**.44(16), 6256-6262.

396 (23)Ji S, Cherry CR, J. Bechle M, Wu Y, Marshall JD. Electric vehicles in China: emissions and
 397 health impacts. *Environmental science & technology*. **2012**. 46(4), 2018-2024.

398 (24)Diamond D. The impact of government incentives for hybrid-electric vehicles: Evidence
 399 from US states. *Energy Policy*. **2009**. 37(3), 972-983.

400 (25)Gallagher KS, Muehlegger E. Giving green to get green? Incentives and consumer adoption
 401 of hybrid vehicle technology. *Journal of Environmental Economics and management*. **2011**.
 402 61(1), 1-5.

403 (26)United States Census Bureau. 2012 Retail Trade (NAICS Sector 44-45). **2018**.
 404 <https://www.census.gov/data/tables/2012/econ/census/retail-trade.html> (accessed January
 405 2018).

406 (27)Alternative Fuels Data Center. Alternative Fuel Stations. Dataset. **2018**.
 407 https://www.afdc.energy.gov/data_download (accessed February 2018).

408 (28)Bureau of Economic Analysis. Regional Economic Accounts. Dataset. **2017**.
 409 <https://www.bea.gov/regional/index.htm> (accessed October 2017).

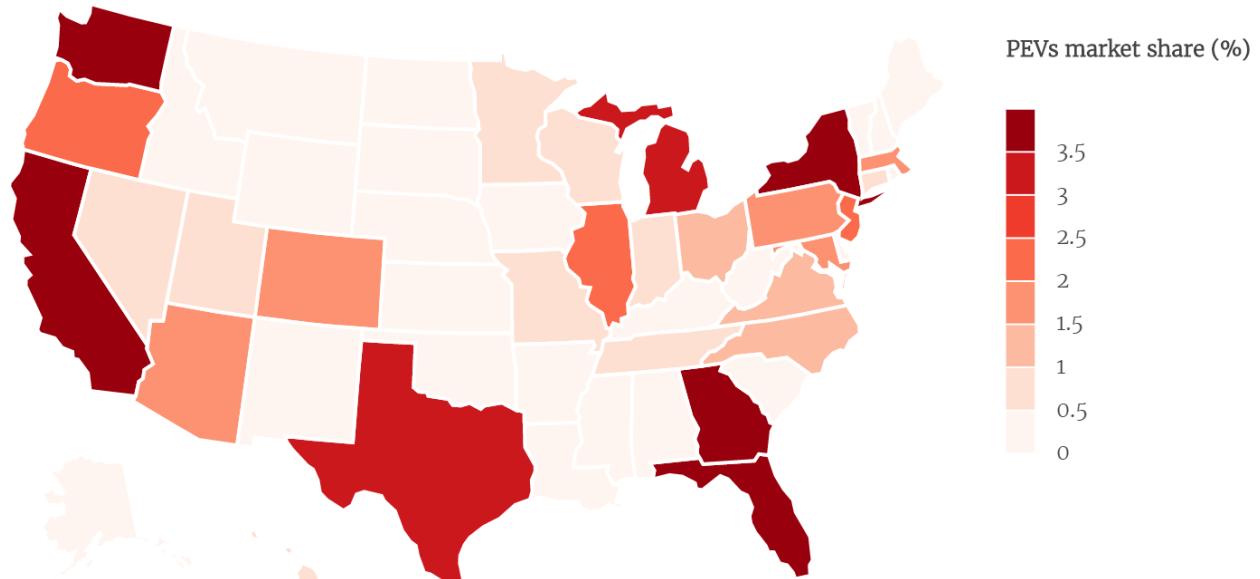
410 (29)American Community Survey. IPUMS. **2017**. <https://usa.ipums.org/usa/> (accessed October
 411 2017).

412 (30)Environmental Protection Agency. State CO₂ Emissions from Fossil Fuel Combustion, 1990-
 413 2014. **2017**. <https://archive.epa.gov/epa/statelocalclimate/state-co2-emissions-fossil-fuel-combustion-1990-2014.html> (accessed October 2017).

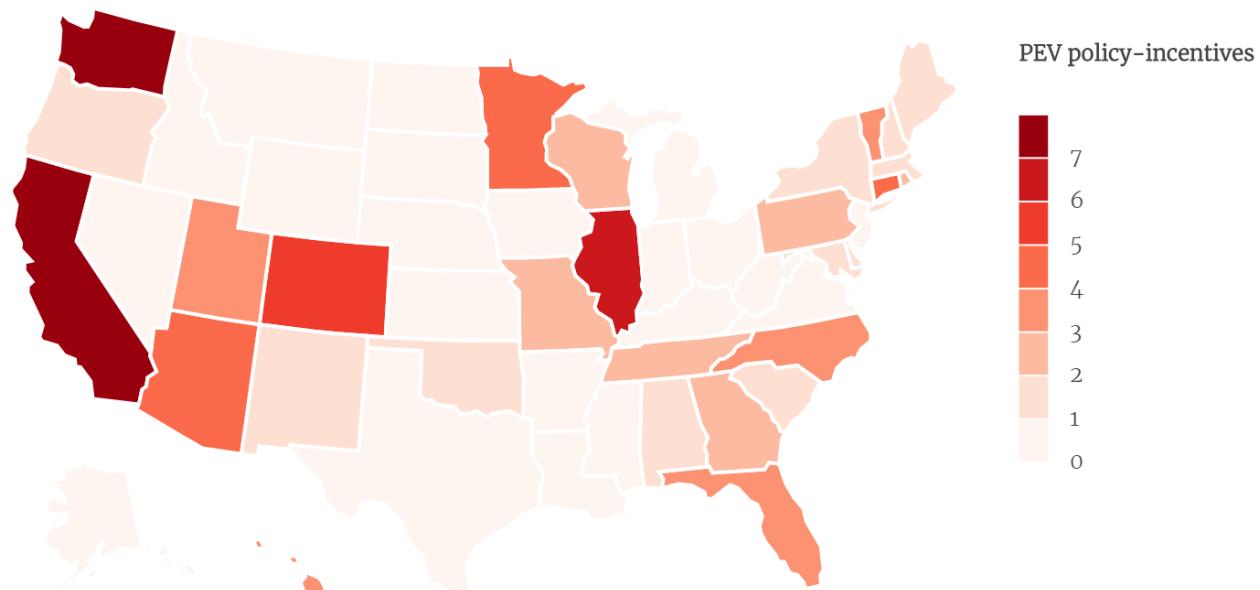
414 (31)U.S. Energy Information Administration. Electricity. **2017**.
 415 <https://www.eia.gov/electricity/data.php#sales> (accessed October 2017).

416 (32)National Conference of State Legislatures. State Partisan Composition. **2017**. Available at
 417 <http://www.ncsl.org/research/about-state-legislatures/partisan-composition.aspx#2016>.

418 (33)Green Party U.S. GPUS Elections Database. **2017**. <https://www.gpelections.org/> (accessed
 419 October 2017).


420 (34)U.S. Energy Information Administration. State Energy Data System (SEDS): 1960-2015. All
 421 prices and expenditures estimates. **2017**. <https://www.eia.gov/state/seds/seds-data-complete.php?sid=US#CompleteDataFile> (accessed October 2017).

422 (35)Federal Highway Administration. Highways Statistics 2015. **2017**.
 423 <https://www.fhwa.dot.gov/policyinformation/statistics/2015/> (accessed October 2017).


424

425

426 *Figure 1. Plug-in electric vehicles (PEVs) statutory policy-incentives and market share (%)*
427 (2010-2016)

428

429

430 *Table 1. Plug-in electric vehicle policy-incentives*

Category	Incentive	Description	Example
Financial	Grants	Grant programs to finance the installation of electric vehicle charging infrastructure and the purchase of plug-in electric vehicles	California with its Alternative and Renewable Fuel and Vehicle Technology Program and its Air Quality Improvement Program provides funding for electric charging infrastructure and electric vehicle deployment up to \$40 million per year
	Tax credits for individuals	Tax credits for individuals to purchase or lease plug-in electric vehicles, and to convert internal combustion engine vehicles into plug-in electric vehicles	Colorado offers tax credits to individuals who own low-emission vehicles, including PEVs, for an amount up to \$6,000
	Electric vehicle supply equipment financing	Programs to issue bonds, notes and other types of financial instruments to finance the installation of electric vehicle charging station, electric vehicle conversions, and to support the deployment of plug-in electric vehicles	Alabama authorizes local governments to issue bonds, notes, or other type of financing methods to increase charging stations deployment
	Research and development	Financing research to facilitate the development and commercialization of electric vehicles and their parts, and the investment in technologies to improve load management of electric vehicle charging stations	South Carolina with its Distributed Energy Resource Program invests in technologies to improve the load management of electric vehicle charging
Infrastructure	Public charging stations availability	Reduction of administrative barriers to install electric vehicle charging stations, requirements to have charging stations in interstate highway rest areas, and compatibility requirements to use charging stations for any type of electric vehicle	Minnesota requires that any installed electric vehicle charging station must be compatible for utilization with any type of electric vehicle (make, model)

	Private charging stations availability	Reduction of administrative barriers to install electric vehicle charging stations for personal residential use	Oregon forbids homeowners associations to prohibit the installation of charging stations in a parking lot or in another area subject to the exclusive use of the owner
	Parking availability	Assignation of parking spaces to plug-in electric vehicles and parking enforcement with monetary penalties	Hawaii mandates places with at least one hundred parking spaces to designate no less than 1% of the parking spaces to electric vehicles
Symbolic	Planning	Studies to evaluate the feasibility to deploy electric vehicles infrastructure, to purchase state-owned electric vehicle fleets, to reduce electricity rates to charge electric vehicles, and to use grid technology to facilitate the use of electric vehicles	Massachusetts requires an action plan to increase access to electric vehicle infrastructure, increment the purchase of PEV by reducing the cost of PEV purchase and identifying strategies to remove barriers to PEV deployment
	Incentives for state-owned electric vehicles fleets	Prioritize the purchase of new state-owned fleet to be plug-in electric vehicles and to increase progressively the proportion of plug-in electric vehicles in the state-owned fleet	Connecticut requires that alternative fuel cars must represent 50% of the light-duty trucks purchase by the state after 2008 and 100% after 2010

431

432

433 *Table 2. Descriptive Statistics*

Variable	Mean	Std. Dev.	Min	Max	Source
<i>Dependent Variable</i>					
PEV registrations	1570.91	6577.50	0.00	74749.0	IHS Markit ²⁰
<i>Independent Variables</i>					
Financial incentives					LexisNexis ²¹
Grants	0.17	0.68	0.00	5.00	
Grants (Million US\$)	0.83	4.95	0.00	40.20	
Tax credits for individuals	0.05	0.22	0.00	1.00	
Tax credits for individuals (US\$)	263.57	1466.19	0.00	15000	
Electric vehicle supply equipment financing	0.06	0.24	0.00	1.00	
Research and development	0.04	0.24	0.00	2.00	
Infrastructure incentives					
Public charging stations availability	0.07	0.25	0.00	1.00	
Private charging stations availability	0.01	0.11	0.00	1.00	
Parking availability	0.06	0.24	0.00	1.00	
Symbolic incentives					
Planning	0.20	0.47	0.00	2.00	
Incentives for state-owned electric vehicles fleets	0.24	0.55	0.00	3.00	
<i>Instrumental Variable</i>					
Grocery stores and supermarkets	1322.86	1817.68	105.00	10073	US Census Bureau ²⁶
<i>Control Variables</i>					
Charging Stations	55.05	103.73	0.00	1180	Alternative Fuels Data Center ²⁷
GDP (2010 USD Millions per capita)	0.05	0.01	0.03	0.08	Bureau of Economic Analysis ²⁸
Unemployed (%)	3.90	1.08	1.36	7.07	American Community Survey ²⁹
High school education (%)	29.01	2.95	23.00	38.23	American Community Survey ²⁹
C0 ₂ Transportation sector (% total emission)	35.78	11.70	11.44	60.17	Environmental Protection Agency ³⁰
Renewable energy (% total energy)	30.27	23.13	0.92	99.77	U.S. Energy Information Administration ³¹
Democrats in the legislature (%)	48.09	17.31	13.33	91.14	National Conference of State Legislature ³²

Green party victories	4.13	8.99	0.00	69.00	Green Party Elections Database ³³
Gasoline price (USD)	3.21	0.56	2.20	4.57	U.S. Energy Information Administrati on ³⁴
Price of electricity (USD Cents/kilowatthour)	10.42	3.87	6.08	34.04	U.S. Energy Information Administrati on ³¹
Licensed drivers (Millions)	4.26	4.43	0.41	25.53	Federal Highway Administrati on ³⁵

435 *Table 3. The effect of plug-in vehicle incentives on plug-in electric vehicle registrations*
 IV-FEs IV-FEs

	IV-FEs	IV-FEs
Grants	7862.5387** (2409.2195)	
Tax credit for individuals	877.1572* (431.7596)	
Grants (US\$)		0.0013** (0.0005)
Tax credit for individuals (US\$)		0.0956** (0.0343)
Electric vehicle supply equipment financing	4594.7453 (2930.5983)	4473.8535 (3327.8942)
Research and Development	4954.3477+ (2971.1035)	2836.3378 (2171.7783)
Public charging stations availability	-7176.0570*** (1632.3650)	-5557.0787*** (1215.0968)
Private charging stations availability	-3573.9159+ (2164.3250)	-3053.4600 (2090.1183)
Parking availability	-3940.3049** (1428.0746)	-3576.8604* (1642.3609)
Planning	-1527.4875+ (928.2332)	-692.4387 (633.9805)
Incentives for state-owned PEVs fleets	3729.3722** (1345.6598)	3285.5945** (1201.3677)
Charging stations	48.7103*** (8.3990)	49.4636*** (9.0757)
GDP (2010 USD Millions per capita)	6544.0788 (59898.0928)	9249.5432 (61428.6736)
Unemployed (%)	576.8853 (454.2844)	706.3882 (502.6291)
High school education (%)	112.9551 (166.4937)	164.8302 (178.2132)
CO ₂ Transportation sector (% total emissions)	-40.4975 (27.5456)	-43.0483 (29.4087)

Renewable energy (%total energy)	27.2314 ⁺ (14.5346)	22.5939 (14.1543)
Democrats in the legislature (%)	12.3645 (34.6580)	29.5103 (37.6318)
Green Party Victories	87.3069 ⁺ (50.6592)	35.4120 (40.7957)
Gasoline price (USD)	3951.2146 (2457.5954)	2195.0821 (2179.1032)
Price of electricity (USD Cents/kilowatt-hour)	4.0680 (184.2635)	-47.2342 (177.9960)
Licensed drivers (Millions)	897.7637 (1104.5166)	307.6121 (913.2021)
Constant	-21503.7454* (8727.8439)	-16839.7090* (8301.0355)
Observations	350	350
Clusters	50	50
State and Year fixed-effects	Yes	Yes
First-stage F statistic	10.01	11.52
R ₂ within	0.8251	0.8349
Intra-class correlation	0.9654	0.9536

436 Cluster robust standard errors in parentheses: ⁺ $p < 0.10$, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.
 437 Note: all variables are lagged one period except tax credits for individuals

438 *Table 4. Mediating analysis: How charging stations affect PEV registrations?*

	Charging Stations FEs	Registrations FEs	Registrations FEs-IV
Grants	248.3892*** (65.5210)	16438.4662*** (4617.9133)	7862.5387** (2409.2195)
Tax credit for individuals	-2.2546 (23.0667)	819.4993 (768.6576)	877.1572* (431.7596)
EVs supply equipment financing	99.9639 ⁺ (50.7483)	8952.9378 (5581.6256)	4594.7453 (2930.5983)
Research and Development	129.4755 (85.6547)	9788.4881 ⁺ (5772.8445)	4954.3477 ⁺ (2971.1035)
Public charging stations availability	-53.2136 (54.3208)	-8379.9627* (3507.3582)	-7176.0570*** (1632.3650)
Private charging stations availability	18.9983 (52.5305)	-3157.5700 (2184.7551)	-3573.9159 ⁺ (2164.3250)
Parking availability	58.9670 (50.6744)	-868.8000 (2428.0111)	-3940.3049** (1428.0746)
Planning	-11.2461 (20.5676)	-2184.8530 (1376.7589)	-1527.4875 ⁺ (928.2332)
Incentives for state-owned PEVs fleets	0.8489 (33.8284)	3614.4064 ⁺ (2091.4976)	3729.3722** (1345.6598)
Charging stations			48.7103*** (8.3990)
GDP (2010 USD Millions per capita)	1390.5219 (2016.7421)	77400.5163 (64494.4128)	6544.0788 (59898.0928)
Unemployed (%)	-29.3950** (9.7263)	-789.3421* (333.7555)	576.8853 (454.2844)
High school education (%)	-7.5130* (3.6677)	-185.2703 (129.7733)	112.9551 (166.4937)
CO ₂ Transportation sector	-0.3147 (0.7003)	-31.8661 (38.4237)	-40.4975 (27.5456)
Renewable energy (%total energy)	-0.6055 (0.5898)	4.8535 (20.7126)	27.2314 ⁺ (14.5346)
Democrats in the legislature (%)	0.3618	23.7343	12.3645

	(0.5330)	(24.8114)	(34.6580)
Green Party Victories	1.2210*	94.6295*	87.3069 ⁺
	(0.5207)	(40.0875)	(50.6592)
Gasoline price (USD)	141.5656	9513.8500	3951.2146
	(169.2166)	(7036.6933)	(2457.5954)
Price of electricity	-6.1964 ⁺	-264.1117	4.0680
	(3.6030)	(170.9291)	(184.2635)
Licensed drivers (Millions)	98.5847	4790.1470	897.7637
	(74.2998)	(3231.4137)	(1104.5166)
Constant	-433.6307	-38502.9290	-21503.7454*
	(637.1861)	(27607.5821)	(8727.8439)
Observations	350	350	350
Clusters	50	50	50
State and Year fixed-effects	Yes	Yes	Yes
First-stage F statistic			10.01
R ₂ within	0.7431	0.7098	0.8251
Intra-class correlation	0.9913	0.9930	0.9654

439 Cluster robust standard errors in parentheses: ⁺ $p < 0.10$, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

440 Note: all variables are lagged one period except tax credits for individuals