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Abstract. We consider a two-stage submodular maximization under p-
matroid (or p-extendible) constraints. In the model, we are given a collec-
tion of submodular functions and some p-matroid (or extendible) system
constraints for each of these functions, one need to choose a representa-
tive set with a cardinality constraint and simultaneously select a series
of subsets that are restricted to the representative set for all functions,
the aim is to maximize the average of the summarization of these func-
tion values. We extend the two-stage submodular maximization under
single matroid to handle p-matroid (or p-extendible) constraints, and
derive constant approximation ratio algorithms for the two problems,
respectively. In the end, we empirically demonstrate the efficiency of our
method on some datasets.

Keywords: Submodular maximization · Approximation algorithms ·
Independence system constraints

1 Introduction

The submodular maximization has many applications, such as document summa-
rization [5,11], recommender systems [13,14,17], and other applications [9,19],
etc. Formally, it can be modeled as maxS⊆Ω:S∈I f(S), where f is a submodular
function defined on ground set Ω and I is some specific constraint. In the text,
we will give a brief summary of the submodular maximization.

For the submodular maximization under a cardinality constraint, [15] pro-
vided a (1 − 1/e)-approximation. Under more general p-matroid constraint, [7]
got a deterministic 1/(p+1)-approximation algorithm. In particular, if p = 1, it
reduced to a 1/2-approximation algorithm for monotone submodular maximiza-
tion under a single matroid constraint (SMMC). [10] improved the ratio from
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1/(p + 1) to 1/(p + ε) for monotone submodular maximization under p-matroid
constraints (SMMC-p). Combining continuous greedy process and pipage round-
ing technique, [4] obtained a random (1 − 1/e)-approximation algorithm for the
monotone SMMC. As the hardness of approximation ratio of the above models
is (1− 1/e+ ε), it is still a long history of closing the gap of approximation ratio
for the monotone SMMC by a deterministic algorithm. The breakthrough result
was presented by [3], who gave the first deterministic 0.5008-approximation algo-
rithm for the monotone SMMC-p. [12] introduced a more general p-extendible
system constraints, which captures a class of constraints, such as p-matroid
constraints, b-matching, maximum profit scheduling and maximum asymmet-
ric traveling salesman problem. He presented a 1/p-approximation algorithm
based on greedy for a monotone submodular maximization under p-extendible
constraint. For a non-monotone submodular maximization under p-extendible
system constraint, [6] presented a p/(p + 1)2-approximation algorithm.

Motivated by the tasks of multi-objective summarization, [2] introduced
the two-stage submodular maximization problem. In the model, we are given
a ground set Ω of size n, integers �, k, and multiple submodular functions
f1, ..., fm, the goal is to choose a subset S of |S| ≤ � such that the sum of
maxTi⊆S,|Ti|≤k fi(Ti) is maximum. Obviously, this problem reduces to classical
cardinality submodular maximization problem if m = 1, or if � = k. Combin-
ing the techniques of continuous greedy and dependent rounding, they firstly
presented an approximation arbitrary close to 1 − 1/e as k → ∞. Secondly,
under the case of that each fi, i ∈ [m] is a coverage function, they obtained
a 1/2(1 − 1/e)-approximation by a local search, while the query complexity is
bounded by O(km�n2 log n). [17] considered a the two-stage submodular maxi-
mization with general matroid constraint, that is,

∑m
i=1 maxTi∈I(S) fi(Ti), where

(S, I(S)) is a matroid. They derived a 1/2(1 − 1/e2)-approximation algorithm,
and its query complexity is at most O(rm�n), where r is the matroid rank.
[14] first studied this problem under streaming and distributed settings, respec-
tively. In the streaming setting, they derived a one pass, 1/7-approximation
algorithm, while its memory complexity is bounded by O(� log(�)/ε) and the
query complexity is at most O(kmn log(�)/ε). In the distributed setting, they
got two 1/4(1 − 1/e2) and 0.107-approximation algorithms, respectively. The
query complexities of the above two distributed algorithms are bounded by
O(kmn�/M + Mkm�2) and O(kmn log �/M + Mkm�2 log �), respectively, where
M is the number of the machines. We first consider the two-stage submodular
maximization under more general constraints. Specifically, we aim to maximize∑m

i=1 maxTi∈Ii(S) fi(Ti), where (S, Ii(S)) is a p-matriod (or p-extendible) for
any i. For the two-stage submodular maximization under p-matroid system con-
straint, we propose a 1/(p+1)(1−1/e2)-approximation algorithm, while its query
complexity is bounded by O(�mnrp), where r is the maximum independence set
size. Under more general p-extendible constraints, we yield a 1/(r+1)(1−1/e2)-
approximation algorithm with the same query complexity. Finally, we demon-
strate the efficiency of our algorithm on some datasets.
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The rest of our paper is organized as follows. We present some necessary
preliminaries in Sect. 2. In Sect. 3, we introduce the two-stage submodular max-
imization under p-matroid system constraints and provide a 1/(p + 1)(1 −
1/e2)-approximation algorithm. In addition, we present a 1/(r + 1)(1 − 1/e2)-
approximation algorithm for two-stage submodular maximization under p-
extendible system constraints in Sect. 4. In Sect. 5, we show the results of some
numerical experiments of our algorithm. Finally, we give a conclusion in Sect. 6.

2 Preliminaries

In our setting, we are given an element ground set Ω of size n, and a collec-
tion F = {f1, ..., fm} of non-negative monotone submodular functions that are
defined on the ground set Ω. For any i ∈ [m] = {1, ...,m}, fi : 2Ω → R+ is a
submoduar function, i.e.,

fi(A) + fi(B) ≥ fi(A ∪ B) + fi(A ∩ B),∀A,B ⊆ Ω.

For any i ∈ [m], there exists a constraint Ii, the objective is to find a rep-
resentative set S ⊆ Ω with |S| ≤ �(� n), such that the average of the sum-
marization of the optimum of fi, i ∈ [m] restricted to S is maximum. Let
Gm(S) = 1

m

∑m
i=1 maxTi∈Ii(S) fi(Ti). Then our model can be defined as

max
S⊆Ω,|S|≤�

Gm(S) = max
S⊆Ω,|S|≤�

1
m

m∑

i=1

max
Ti∈Ii(S)

fi(Ti), (1)

where Ii(S) denotes the constraint Ii restricted to S for any i ∈ [m].
In order to have a better understand of our model and constraints, we restate

some necessary notations and definitions as follows. Given a finite element set
Ω, and a collection I of subsets of Ω. A two-tuples M = (Ω, I) is defined as an
independent system, if it has for any subset T ∈ I, then any subset S ⊆ T such
that S ∈ I. Each subset of I is named as independence set. The independent
system M = (Ω, I) is a matroid if it also satisfies that if for any independence
sets S, T ∈ I with |S| > |T |, then there exists an element e ∈ S \ T such that
T ∪ {e} ∈ I. A maximal independent subset A ∈ I is called a base of the
independent system M = (Ω, I). Given an integer p, Let Mj = (Ω, Ij) be a
matroid according to j ∈ [p], then we call the intersection of these p matroids
(Ω,∩p

j=1Ij) as p-matroid. Given any subsets S, T ∈ I, we say T is an extension
of S if S ⊆ T . We restate the definition of p-extendible system as follows.

Definition 1 [6,12]. An independence system M = (Ω, I) is p-extendible sys-
tem if for every independent set S ∈ I, an extension T of S and an element
e /∈ S obeying S ∪{e} ∈ I there must exist a subset Y ⊆ T \S with |Y | ≤ p such
that T \ Y ∪ {e} ∈ I. Specially, if the independent set S is maximal i.e., T = S,
then we can reduce the definition by setting Y = ∅.
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In our p-matroid constraints model, for i ∈ [m] and S ⊆ Ω, any subset Ti ⊆ S
is feasible if Ti ∈ Ii = ∩p

j=1Ii
j , where M i = (S,∩p

j=1Ii
j(S)) is a p-matroid system

restricted to S. Similarly, for the p-extendible system constraint, M i = (S, Ii)
is defined as p-extendible system. We say subset Ti is feasible if Ti ∈ Ii. We also
assume there are value and independence oracles, i.e., for any i ∈ [m] and subset
A, we can obtain the value of fi(A) and know if A ∈ Ii or not.

3 P -Matroid System Constraints

In this section, we extend the ReplacementGreedy algorithm introduced by [17]
(for comparison, we say their algorithm as One-to-One ReplacementGreedy) for
a single matroid constraint to address the two-stage submodular maximization
under p-matroid system constraints.

Algorithm 1. One-to-Many ReplacementGreedy
1: S ← ∅, Ti ← ∅ for all i ∈ [m]
2: for t ∈ [�] do

3: x∗ ← arg max
x∈Ω

1
m

m∑

i=1

∇′
i(x, Ti)

4: S ← S ∪ x∗

5: for all i ∈ [m] do
6: if ∇′

i(x, Ti) > 0 then
7: Ti ← Ti ∪ {x∗} \ Rep′

i(x
∗, Ti)

8: end if
9: end for

10: t ← t + 1
11: end for
12: Return S and {Ti}i∈[m]

3.1 Algorithm

In order to have a better understand of our One-to-Many ReplacementGreedy,
we investigate the One-to-One ReplacementGreedy in the first. The replacement
gain is denoted as ∇i(x,A), who characterizes how much they can increase the
value of fi(A) by either adding x to A or replacing x with one element of A while
preserving the independence of A. We restate the related notations as follows.
Set Δi(x,A) = fi(A ∪ {x}) − fi(A) as the marginal gain of adding x to A for
any i ∈ [m]. We restate the replace gain of deleting an element y ∈ A and
replacing it with x as ∇i(x, y,A) = fi(A∪{x}\{y})−fi(A). As maintaining the
independence of solution in each iteration is a very important point in One-to-
One ReplacementGreedy algorithm, let I(x,A) be the set of feasible candidate
y ∈ A, i.e., I(x,A) = {y ∈ A : A ∪ {x} \ {y} ∈ I}. Finally, we formally redefine
the replacement gain as
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∇i(x,A) =

{
Δi(x,A), if A ∪ {x} ∈ I
max{0,maxy∈I(x,A) ∇i(x, y,A)}, o.w.

To specific say the element with the maximum replacement gain due to x, they
define

Repi(x,A) =

{
∅, if A ∪ {x} ∈ I
arg maxy∈I(x,A) ∇i(x, y,A), o.w.

In our p-matroid system constraint setting, we define ∇i(x, Y,A) = fi(A ∪ {x} \
Y )−fi(A) as the new replacement gain. To keep the independence in each loop,
we set I ′,i(x,A) = {Y ⊆ A : |Y | ≤ p,A ∪ {x} \ Y ∈ Ii(= ∩p

j=1Ii
j)} as the new

collection of candidate subsets. Let

∇′
i(x,A) =

{
Δi(x,A), if A ∪ {x} ∈ Ii

max{0,maxY ⊆I′,i(x,A) ∇i(x, Y,A)}, o.w.

Similarly, we set

Rep′
i(x,A) =

{
∅, if A ∪ {x} ∈ I
arg maxY ⊆I′,i(x,A) ∇i(x, Y,A), o.w.

In the One-to-Many ReplacementGreedy, we greedily choose an element x∗

with the maximum average new replacement gain in each iteration until the size
of S increases to �. In each iteration, for any current substitute solution set Ti,
i ∈ [m], if the new replacement gain ∇′

i(x,A) > 0, we will update Ti by removing
Rep′

i(x
∗, Ti). The main pseudo codes are presented by Algorithm 1.

3.2 Theoretical Analysis

In this section, we will analyze the performance ratio of One-to-Many Replace-
mentGreedy. For clarity, we adopt the notations provided by [2,14,16]. Let

Sm,� = arg max
S⊆Ω,|S|≤�

{
1
m

m∑

i=1

max
Ti⊆S,Ti∈Ii(S)

fi(Ti)

}

be any optimal solution, and set Sm,�
i = arg maxT∈Ii(Sm,�) fi(T ) to be the inde-

pendent subset of Sm,� with maximum fi value for i ∈ [m]. Let T t
i be the solution

at the end of iteration t. Then our main result can be summarized as following
theorem.

Theorem 1. For any fixed p ≥ 1, the One-to-Many ReplacementGreedy is a
1/(p+1)(1−1/e2)-approximation algorithm for the two-stage submodular maxi-
mization with a p-matroid system constraint M i = (Ω,∩p

j=1Ii
j) for each i ∈ [m].



334 R. Yang et al.

Proof. Let Xt be the total value 1
m

m∑

i=1

fi(T t
i ) in the end of t iteration, then the

increment of value during t iteration can be lower bounded by as follows.

Xt+1 − Xt ≥ Gm(Sm,�)
�

− (p + 1)Xt

�
. (2)

From inequality (2), we could complete the main proof by induction. We assume

Xt ≥ 1
p + 1

(

1 − (1 − 1
�
)2t

)

Gm(Sm,�).

In basis step, if t = 1, we have X1 ≥ 1
� Gm(Sm,�) ≥ 2

(p+1)�Gm(Sm,�), where the
first inequality follows from the line 3 in Algorithm 1. In the reduction step, as

Xt+1 ≥ 1
�
Gm(Sm,�) +

(

1 − p + 1
�

)

Xt

≥ 1
�
Gm(Sm,�) +

(

1 − p + 1
�

)

·
[

1
p + 1

(

1 − (1 − 1
�
)2t

)

Gm(Sm,�)
]

=
1

p + 1
·
[

1 − (1 − 1
�
)2t(1 − p + 1

�
)
]

· Gm(Sm,�)

≥ 1
p + 1

(

1 − (1 − 1
�
)2t+2

)

· Gm(Sm,�).

By the above reduction process, we complete the assumption. At the end of �
iteration, we have

1
m

m∑

i=1

fi(T �
i ) = X� ≥ 1

p + 1
(1 − (1 − 1

�
)2�) · Gm(Sm,�)

≥ 1
p + 1

(1 − 1
e2

) · Gm(Sm,�),

where the second inequality is derived by the inequality of e−x ≥ 1 − x.

In order to prove the inequality (2), we provide two technical lemmas as
follows.

Lemma 1. For any i ∈ [m], given any two independent sets A,B ∈ Ii =
∩p

j=1Ij, there exists a mapping of elements in B \ A to [A \ B]≤p (namely,
a collection of subsets included into A \ B of size at most p), such that each
element u ∈ A \ B appears in at most p subsets.

Proof. Refer to the full version of this paper.

Lemma 2. For any i ∈ [m], t ∈ [�], let πi
t : Sm,�

i \ T t
i → [T t

i \ Sm,�
i ]≤p be the

mapping derived by Lemma 1, then we have
∑

x∈Sm,�
i \T t

i

Δi(πi
t(x), T t

i \ πi
t(x)) ≤ p · fi(T t

i ).
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Proof. Refer to the full version of this paper.

To prove the increment of value during t iteration we have the following

m∑

i=1

∇′
i(x

∗, T t
i ) ≥ 1

�

∑

x∈Sm,�

m∑

i=1

∇′
i(x, T t

i ) (3)

≥ 1
�

m∑

i=1

∑

x∈Sm,�
i \T t

i

∇′
i(x, T t

i ) (4)

≥ 1
�

m∑

i=1

∑

x∈Sm,�
i \T t

i

fi(T t
i ∪ {x} \ πi

t(x)) − fi(T t
i ) (5)

=
1
�

m∑

i=1

∑

x∈Sm,�
i \T t

i

Δi(x, T t
i ) − Δi(πi

t(x), T t
i ∪ {x} \ πi

t(x))

≥ 1
�

m∑

i=1

∑

x∈Sm,�
i \T t

i

Δi(x, T t
i ) − Δi(πi

t(x), T t
i \ πi

t(x)) (6)

≥ 1
�

m∑

i=1

fi(S
m,�
i ) − (p + 1)fi(T t

i ). (7)

The inequality (3) is obtained by the selection of x∗ from the ground set Ω
in each iteration. The inequality (4) follows from the fact of on-negativity of
∇′

i(x, Ti) for all i ∈ [m]. The inequality (5) is derived by

1
�

m∑

i=1

∑

x∈Sm,�
i

∇′
i(x, T t

i ) =
1
�

m∑

i=1

∑

x∈Sm,�
i

fi(T t
i ∪ {x} \ Rep′

i(x, T t
i )) − fi(T t

i )

≥ 1
�

m∑

i=1

∑

x∈Sm,�
i

fi(T t
i ∪ {x} \ πi

t(x)) − fi(T t
i ),

where the inequality holds because the Rep′
i(x, Ti) is the maximum subset and

the πi
t(x) is an feasible subset of Ii(x, T t

i ). The inequality (6) is implied by the
submodularity. By the additivity of submodularity of any fi, i ∈ [m], we have

∑

x∈Sm,�
i \T t

i

Δi(x, T t
i ) ≥ fi(S

m,�
i ) − fi(T t

i ). (8)

Combining Lemma 2 and inequality (8), we obtain the inequality (7). The
inequality (2) can be directly obtained by the above process.

The main result can be described as the following theorem.

Theorem 2. For any fixed p ≥ 1, the query complexity of the One-to-Many
ReplacementGreedy algorithm is upper bounded by O(�mnrp).
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Proof. It concludes that the main time computation is the greedy chosen of line 3
in Algorithm 1. Given any iteration t ∈ [�] and i ∈ [m], it needs to check at most
O(n) elements to find the element x∗ while it also needs at most O(rp) function
evaluations by enumerating all candidate subsets, where r is the maximum size
of feasible subsets belong to p-matroid. Then the total query complexity (i.e.,
the number of function evaluations) of Algorithm 1 is bounded by O(�mnrp).

4 P -Extendible System Constraints

In this section, we extend our algorithm for p-matroid system constraints to
dealing with p-extendible system constraints. As discussed in the work of [6,
12], the p-extendible system constraint is a generalization of p-matroid system
constraint. In our model, we choose a set S of size at most �, while we also
select a set Ti ⊆ S such that Ti ∈ Ii for each i ∈ [m], where M i = (S, Ii) is
a p-extendible system. The aim is to maximize the average of summarization of
their function values.

Algorithm 2. Generalized One-to-Many ReplacementGreedy
1: S, Ti, E(Ti) ← ∅ for all i ∈ [m]
2: for t ∈ [�] do

3: x∗ ← arg max
x∈Ω

1
m

m∑

i=1

∇̃i(x, Ti)

4: S ← S ∪ x∗

5: for all i ∈ [m] do
6: if ∇̃i(x, Ti) > 0 then
7: Ti ← E(Ti) ∪ {x∗} \ R̃epi(x

∗, Ti)
8: end if
9: end for

10: compute an extension E(Ti) of Ti

11: t ← t + 1
12: end for
13: Return S and {E(Ti)}i∈[m]

4.1 Algorithm

Following from the definition of p-extendible system, we have if A ⊆ B ∈ I
and A ∪ {x} ∈ I, then there exists a subset Y ⊆ B \ A with |Y | ≤ p such
that B \ A ∪ {x} ∈ I. Given a p-extendible system M i = (Ω, Ii) for each
i ∈ [m]. The goal is to select a set S of size at most �, such that the average of
the summary of the optimum of fi restricted to S according to a p-extendible
system M i = (Ω, Ii) for all i ∈ [m] is maximum.

In our setting, to keep the independence of Ti, i ∈ [m] in each iteration under
p-extendible system constraint, we modify the One-to-Many ReplacementGreedy
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to a Generalized One-to-Many ReplacementGreedy, the main pseudo codes are
presented in Algorithm 2.

For each i ∈ [m], we define ∇̃i(x,A) as the new replacement gain, in specific,
∇̃i(x, Y,A) = fi(E(A) ∪ {x} \ Y ) − fi(E(A)), where E(A) is an extension of A.
Let Ĩi(x,A) = {Y ⊆ E(A) \ A : |Y | ≤ p,A ∪ {x} ∈ Ii, E(A) ∪ {x} \ Y ∈ Ii} be
the candidate set. Let

∇̃i(x,A) =

{
Δi(x,A), if A ∪ {x} ∈ Ii

max{0,maxY ∈Ĩi(x,A) ∇̃i(x, Y,A)}, o.w.

Simultaneously, let

R̃epi(x,A) =

{
∅, if A ∪ {x} ∈ I
arg maxY ∈Ĩi(x,A) ∇̃i(x,A), o.w.

4.2 Theoretical Analysis

In this section, we present the analyses of the Generalized One-to-Many Replace-
mentGreedy. The setting under p-extendible system constraints differ from the
p-matroid constraints, that is, there is not such similar mapping presented by
Lemma 2. We notice that there is interesting property provided by the following
lemma.

Lemma 3. For any i ∈ [m], let {Y i
j }q

j=1 be a collection of E(Ti) \ Ti such that
each element of E(Ti) \ Ti appears in at most r of these subsets, where r is the
size of maximal independence set in p-extendible system. Then we have

q∑

j=1

(f(E(Ti)) − fi(E(Ti) \ Y i
j )) ≤ r · (f(E(Ti)) − f(Ti)).

Proof. Refer to the full version of this paper.

Theorem 3. For any fixed p ≥ 1, the Generalized One-to-Many Replacement-
Greedy is a 1/(r+1)(1−1/e2)-approximation algorithm, while the query complex-
ity is upper bounded by O(�mnrp), for the two-stage submodular maximization
with p-extendible system constraints M i = (Ω, Ii) for each i ∈ [m], where r is
the size of the maximum independence set in Ii.

Proof. Refer to the full version of this paper.

5 Experiments

In this section, we run Algorithm 2, generalized one-to-many ReplaceGreedy
(say, G-REPLACEGREEDY), on the application exemplar-based clustering
with two dataset and consider the following benchmarks:
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– Random selection (i.e., Random): the output is randomly k elements chosen
for each function fi, i ∈ [m].

– Greedy-Sum (i.e., Greedy-SUM): the output is greedily k elements selected
for each function fi, i ∈ [m], and return the union as S.

Fig. 1. Performances of Algorithm 2 comparing with Random and Geedy-Sum on
Census.

We consider the application of exemplar-based clustering on Census 1990 [1],
which has 24, 581 elements with 68 attributes. Let the first 10 attributes as our
classified genres, such as, age, ancestry, citizen etc. In the experiment, we first
choose a dataset Ω of 500 different people by reservoir sampling [18]. We denote
Ωi as the set of people containing genre i ∈ [m]. All people are expressed by
their features vector, the distance of any two vectors is calculated by Euclidean
distance and d(v, S) = minu∈S d(u, v) denotes the distance of element v to set
S. The goal is to choose a subset S ⊆ Ω of size at most �, such that each genre
i ∈ [m] has a good expression of size limit k. For each genre i ∈ [m], the utility
function fi(S) is defined by Exemplar Based Clustering [1,17]. We restate as
follows

fi(S) = Li({e0}) − Li(S ∪ {e0}),

where e0 is an auxiliary vector (w.l.o.g., e0 = 0), Si = S ∩ Ωi is the set of
people with genre i, and Li(S) = 1

|Ωi|
∑

x∈Ωi
d(x, Si). As the submodularity

and non-negativity of utility function have been discussed by [1,8], we omit the
proof here. The left of Fig. 1 shows the performance of Algorithm 2 on census
application, when k is fixed as 5 and the right figure shows that the performance
of Algorithm 2 with fixing � = 20. We observe that if k is fixed, then the function
value goes to some assured values with the increasing of � and our Algorithm 2
performs similarly to Greedy-Sum.

We also consider a classification application that feature vectors are gener-
ated from a random distribution. Specifically, we generate a 500 × 10 feature
matrix which each component is randomly chosen from the range [0, 3]. Figure 2
shows the performance of Algorithm 2 on the classification, when k and � are
fixed, respectively. We observe that our Algorithm 2 still matches the Greedy-
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Fig. 2. Performances of Algorithm 2 comparing with Random and Geedy-Sum on
Classification.

Sum algorithm, and performs better than Random algorithm. As the generation
process of data, we also observe that the three algorithms perform similarly as
� increases.

6 Conclusion

We consider the two-stage submodular maximization under p-matroid and p-
extendible system constraints for each sub-functions, respectively. Specifically,
for the front model, we derive a 1/(p + 1)(1 − 1/e2)-approximation algorithm,
which needs O(�mnrp) function evaluations. For the second setting, we obtain
a 1/(r + 1)(1 − 1/e2)-approximation algorithm with the same query complexity.
In the end, we show the performance of our generalized One-to-Many algorithm
on some datasets.
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