
0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2918181, IEEE
Transactions on Medical Imaging

1

Automated Classification of Apoptosis in Phase
Contrast Microscopy Using Capsule Network

Aryan Mobiny, Member, IEEE, Hengyang Lu, Hien V. Nguyen, Member, IEEE,,
Badrinath Roysam, Fellow, IEEE, Navin Varadarajan

Abstract—Automatic and accurate classification of apoptosis,
or programmed cell death, will facilitate cell biology research.
State-of-the-art approaches in apoptosis classification use deep
convolutional neural networks (CNNs). However, these networks
are not efficient in encoding the part-whole relationships, thus
requiring a large number of training samples to achieve robust
generalization. This paper proposes an efficient variant of capsule
networks (CapsNets) as an alternative to CNNs. Extensive exper-
imental results demonstrate that the proposed CapsNets achieve
competitive performances in target cell apoptosis classification,
while significantly outperforming CNNs when the number of
training samples is small. To utilize temporal information within
microscopy videos, we propose a recurrent capsule network
constructed by stacking a CapsNet and a bi-directional long
short-term recurrent structure. Our experiments show that when
considering temporal constraints, recurrent capsule network
achieves 93.8% accuracy and makes significantly more consistent
prediction compared to CNNs.

Index Terms—Apoptosis, Capsule network, Cell classification

I. INTRODUCTION

APOPTOSIS is programmed cell death, which occurs in
a well-organized manner with a series of biochemical

and morphological changes [1]. The process of apoptosis
includes cell shrinking, membrane blebbing, deoxyribonucleic
acid (DNA) degradation and in some cases depending on the
size of the target cells, the formation of apoptotic bodies [2].
Automatic detection or classification of apoptosis has been
in great need recently following the development of high-
throughput screening assays [3]–[6]. More recently, with the
advancements in immunotherapy for the treatment of cancer,
single-cell methods like TIMING (time-lapse microscopy in
nanowell grids) [7], [8] enable the monitoring of interactions
between immune cells [9], [10] and cancer cells in hundreds
of thousands of sub-nanoliter wells. These assays have been
used to understand the biology of the immune cells, and their
interaction with tumor cells, in a number of preclinical settings
[11], [12]. Traditional methods using biochemical assays [13]
to tag apoptotic cells are widely used, such as fluorophore-
conjugated Annexin V [14]–[16] and SYTOX [17]. However,
cytotoxicity of chemical assays and phototoxicity due to expo-
sure to light in fluorescent microscopy could adversely affect
cell behaviors and lead to cell death [18]. Non-destructive

A. Mobiny, Hengyang Lu, H. V. Nguyen and Badrinath Roysam are
with the Department of Electrical and Computer Engineering, University of
Houston, Houston, TX, 77004 USA (e-mail: amobiny@uh.edu, hlu9@uh.edu,
hienvnguyen@uh.edu, and broysam@central.uh.edu).

Navin Varadarajan is with the Department of Chemical and Biomolecular
Engineering, University of Houston, Houston, TX, 77004 USA (e-mail:
nvaradarajan@uh.edu).

32

(a) (b) (c) (d)

P
ri

m
ar

y
C

ap
s

C
el

lC
ap

s
In

p
u
t

S
eq

u
en

ce t=1 t=2 t=3 t=4

Live LiveDead Dead Dead DeadLive Live

Fig. 1. A sample illustration of capsule activations at different layers for the
network proposed in [19] Top: four sample images associated to life-span
of a specific target cell when it is: (a) static, (b) moving horizontally, (c)
approached by an effector cell, and (d) killed by the effector cell. Middle:
The corresponding grids of child capsule activations in PrimaryCaps layer
which includes 32 grid of capsules. Each grid is called a Capsule Type and
contains 6 × 6 capsules. Each capsule at this layer is a group of 8 neurons,
thus outputs an 8-dimensional vector shown by a blue arrow. Theoretically,
each capsule type is responsible for detecting a specific feature in the input
image. In this example, the front capsule type is recognizing the edges of
cell body. Bottom: Final capsule layer called CellCaps which contains two
capsule types; one for each class (dead vs. live). Prediction is made according
to the length of output activation vectors.

phase contrast microscopy provides a potential label-free so-
lution to apoptosis classification.

While apoptotic patterns have visual saliency, label-free
apoptosis classification is challenging from the algorithmic
perspective. The disparity in appearance exists between apop-
totic cells. This is due to either characteristic of individual
cells or the different times the images are taken. For example,
the apoptotic cells at the membrane blebbing stage may look
quite different from the ones at DNA degradation stage with
chromatin condensation. Previous works on label-free apop-
tosis classification or detection are mostly based on simple
heuristics, e.g., a terminated cell tracks could possibly indicate
an apoptosis event [18]. More advanced method models the
imaging physics of phase contrast microscopy to restore the
original images [20] and identifies apoptosis using handcrafted
features including changes of brightness and contrast as well
as local binary patterns [18]. All these previous methods
are either too simple and subject to multiple sources of
interferences or have a comparatively complex model which
still has limitations dealing with large variances.

In the last few years, deep learning methods, such as
convolutional neural networks (CNNs), have shown remark-
able performance for a wide range of computer vision tasks.

Copyright © 2019 IEEE. Personal use of this material is permitted. However, permission to use this
material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2918181, IEEE
Transactions on Medical Imaging

2

Specifically related to the classification problem, AlexNet [21],
ResNet [22], and DenseNet [23] achieved the state-of-the-art
recognition level and have been adopted as the desired models
for various medical imaging tasks. Recently, many researchers
work on designing deep networks which are more suitable
for their tasks. This leads to more complex models with a
huge number of parameter and hyper-parameters to be tuned
which makes the overall network harder to be optimized. This
motivates the development of new techniques to address the
fundamental limitations of the current CNN structures.

One fundamental drawback of CNNs is the way they route
information between layers. Routing is the mechanism of
relaying information from one layer to the next layer in the
network. CNNs currently perform routing via pooling layers,
most commonly being max-pooling and average pooling.
However, pooling is a naive way of routing as it discards
information about the precise location and pose of the entity
within the region which can be valuable for the classification
purpose. This gives a limited translation invariance in which a
feature can slightly move within the pooling window and still
does not change the network’s output.

Moreover, while CNNs are translation invariant (and par-
tially rotational invariant while using data augmentation), they
are unable to identify the position of one object relative to
another [24], [25]. They can only identify if the object exists
in a certain region or not. Therefore, it makes it difficult to
correctly identify objects with spatial relationships between
features. For example, a set of randomly assembled face parts
might look like a face to a CNN as it sees all the key features.

Recently, Sabour et al. [19] introduced a new architecture
called Capsule Network (CapsNet in short) to address CNNs
shortcomings. The idea is to encode the relative relationships
(e.g., locations, scales, orientations) between local parts and
the whole object. Encoding these relationships equips the
model with a built-in understanding of the 3-dimensional
space. This makes CapsNets more invariant to viewpoint
which enables them to recognize objects from different view-
points not seen in the training data.

While CapsNets are shown to achieve promising per-
formance in some tasks, they do not scale well to high-
dimensional data. The required number of parameters grows
rapidly which makes the routing computationally expensive
and intractable. Moreover, it remains unclear whether Cap-
sNets are appropriate for dealing with temporally varying data.
Our paper makes the following contributions:

1) We propose an efficient variant of capsule networks. Our
networks achieve higher computational efficiency by
sharing the transformation matrices across capsules of
the same type, locally-constraining the dynamic routing,
and imposing a spatially consistent voting mechanism.
These changes dramatically reduce the number of pa-
rameters and enable us to make capsule networks deeper
to work with larger images. Extensive experimental
results show that the proposed networks compare fa-
vorably to CNNs when the training set is large, and
significantly outperform CNNs for small-size datasets.

2) We investigate the performance of capsule networks for
temporal classification. The proposed architecture con-

sists of a capsule network stacked with a bi-directional
long short-term recurrent network. The proposed archi-
tecture extracts richer features than those from CNNs,
illustrated by higher classification accuracy and temporal
consistency.

3) The proposed CapsNets are extensively evaluated against
CNNs on the apoptosis classification task. We provide
visualization to compare important image features cap-
tured by CNNs and CapsNets. We observe that CNNs
tend to make decisions based on a small region in
the image while CapsNets collectively make predictions
based on a larger image region.

The rest of this paper is organized as follows: works
related to capsule networks and its variants are presented in
Section II. Section III explains the original capsule network, its
limitations, and the proposed network architecture. Section IV
describes the dataset used in this study. Experimental results
are presented in Section V. Section VI concludes the paper
with future research directions.

II. RELATED WORK

Since CNNs are not efficient in capturing the hierarchical
relationship between the entities in the image, CapsNets are
introduced as a structure capable of encoding the part-whole
relationship. CapsNets employ a dynamic routing mechanism
to determine where to send the information. Sabour et al. [19]
successfully used this algorithm for training the network on
hand-written images of digits (MNIST) and achieved state-
of-the-art performance. In [26], Hinton introduces matrix
capsules with expected-maximization (EM) routing to encode
the relationship between entities. Bahadori [27] proposes a
novel variation of capsule networks, called spectral capsule
networks, that is more stable than the capsule network with
EM routing, and converges faster as well. Multi-scale CapsNet
[28] is another variation of capsule networks which employs a
two-stage processing for extracting and encoding the hierarchy
of features. It also uses a modified dropout to improve the ro-
bustness of the network and achieves competitive performance
on FashionMNIST and CIFAR-10 datasets.

CapsNets has also been adopted into various tasks and
fields. CapsuleGAN [29] is proposed as a generative model
which uses a CapsNet discriminator to replace the standard
CNN. Siamese CapsNet [30] is introduced as a variant utilized
in a pairwise learning task. Capsule networks have been
recently used in medical image analysis tasks and achieved
remarkable results. Our preliminary work proposed Fast Cap-
sNets [31] which achieve promising results in the lung cancer
screening task. Lalonde et al. [32] proposed a convolutional-
deconvolutional capsule network, which expands capsule net-
works to segment pathological lungs from low dose CT scans.
These studies show the potential of CapsNet to scale to large
and volumetric images. However, the original CapsNets with
dynamic routing experience unstable training when the number
of layers increases. This has also been noticed in [33]. Our
paper introduces a deeper capsule network in which, similar to
CNNs, the hidden capsules are connected locally and trainable
parameters are shared. The proposed network maintains the
classification power of capsule networks while requiring a

0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2918181, IEEE
Transactions on Medical Imaging

3

child capsule

parent capsule A parent capsule B

children capsules

parent capsules

Fig. 2. Connections between the child and parent capsules in a face detection example. Left: Each child capsule encodes the detailed information about the
lower-level entities (such as nose, mouth, etc.) in its output ui. Then every child predicts the output of the parent capsule. In our example, the mouth capsule
tries to answer: “how is the face going to look like given the mouth pose”. It makes this prediction by computing the dot-product of a transformation matrix
(W3j) with its own activation vector, u3. Right: Routing by agreement: dynamic routing will ensure that a child capsule will send information to the parent
capsules that agree with its prediction. In other words, if several children capsules point at the same pose of the face, then it must be a face there.

dramatically smaller number of parameters. It performs fa-
vorably on large images even when the number of training
samples is small. Most of the existing work does not provide
a deep understanding of how CNNs and CapsNets differ in
making their decisions. This paper gives a visualization to help
us understand this better. Finally, we extensively evaluate the
performance of the proposed capsule network on a temporal
classification task, which have not been sufficiently studied in
the related prior works.

III. METHODOLOGY

A. Background on Capsule Network
Capsule Computation: A capsule is defined as a group of
neurons whose outputs form an activation vector. They predict
the presence and the pose parameters of a particular object at
a given pixel location. The direction of an activation vector
captures the object’s pose information, such as location and
orientation, while the length (a.k.a norm or magnitude) of
the activation vector represents the probability that an object
of interest exists. For instance, if we rotate an image, the
activation vectors also change accordingly, but their lengths
stay the same. This property is usually referred to as equiv-
ariance. Fig. 2 illustrates the way CapsNets route information
from one layer to another layer, using face detection as an
example. The length of the activation vector from a lower-level
capsule (u1,u2, . . . ,uI) encodes the existence probability of
its corresponding entity (e.g. eyes, nose, and mouth). The
direction of the vector encodes various properties of the entity,
such as its size, orientation, position, etc.

The relationship between i-th capsule in a lower layer and
j-th capsule in the next higher layer is encoded using a linear
transformation matrix Wij . The information is propagated as:
ûj|i = Wijui. The vector ûij represents the belief of i-th
capsule in a lower layer about j-th capsule in the higher
layer. In our example, ûj|1 represents the predicted pose of
the face according to the detected pose of the nose. During
the training, the network will gradually learn a transformation
matrix for each capsule pair to encode the corresponding part-
whole relationship.
Dynamic Routing: Having computed the prediction vectors,
the lower-level capsules then route their information to parent

capsules that agree the most with their predictions. The mecha-
nism that ensures that the outputs of the child capsules get sent
to the proper parent capsules is named dynamic routing. Let cij
denotes the routing coefficient from i-th capsule in the lower
layer to j-th capsule in the higher layer, where

∑
j cij = 1 and

cij ≥ 0, ∀j. When cij = 1, all information from i-th capsule
will be sent to j-th capsule, whereas when cij = 0, there is
no information flowing between the two capsules. Dynamic
routing method iteratively tunes the cij coefficients and routes
the child capsules’ outputs to the appropriate capsule in the
next layer so that they get a cleaner input, thus determining
the pose of the objects more accurately.

The right panel of Fig. 2 shows a lower-level capsule (e.g.
nose capsule) making a decision to send its output to the
parent capsules. This decision is made by adjusting the routing
coefficients, cij , that will be multiplied by the prediction
vectors before sending it to high-level capsules. CapsNets
compute the parent capsules activation vector (vj) and routing
coefficients as follows:

vj =
||sj ||2

1 + ||sj ||2
sj
||sj ||

, sj =
∑
i

cijûj|i, (1)

cij =
exp(bij)∑
k exp(bik)

, bij ← bij + ûj|i.vj . (2)

The output of each parent capsule vj is computed as the
weighted sum of all predictions from child capsules (i.e. sj),
then passed through a squash non-linearity. Squashing makes
sure that the output vector has a length no more than 1 (so
that its length can be interpreted as the probability that a given
feature being detected by the capsule) without changing its
direction. each parent capsule receives predictions (ûj|i) from
all children capsules. These vectors are represented by points
in Fig. 2. The dynamic routing mechanism will increase the
routing coefficient to parent capsule-j by a factor of ûj|i.vj

whose value increases for the similar vectors. Thus a child
capsule will send more information to the parent capsule
whose output vj is more similar to its prediction ûj|i.

Capsule Network Architecture: The original capsule net-
work contains two main parts: encoder and decoder, depicted
in the first two figures of [19]. The encoder contains three
layers: two convolution layers and one fully-connected layer.

0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2918181, IEEE
Transactions on Medical Imaging

4

The first layer is a standard convolution layer with 256 filters
of size 9× 9 and stride 1, followed by ReLU activation. The
next layer is a convolutional capsule layer called the Prima-
ryCaps layer. Capsules are arranged in 32 channels (commonly
referred to as 32 capsule types) where each primary capsule
applies 8 convolutional filters of size 9× 9 and stride 2 to the
input volume. Therefore, each primary capsule sees the outputs
of all 256 (the whole input depth) × 81 (that falls inside the
9×9 filter) units of the first convolutional layer. In this setting,
all PrimaryCaps in each of the 32 channels share their weights
with each other and each capsule outputs an 8-dimensional
vector of activations. The last layer is called DigitCaps layer
which has one 16D capsule per class. Routing takes place
in between these capsules and all PrimaryCaps, encoding the
input into 16-dimensional activation vector of instantiation
parameters. The lengths of these prediction vectors are used
to determine the predicted class.

The decoder tries to reconstruct the input from the final
capsules, which will force the network to preserve as much
information from the input as possible across the whole net-
work. This effectively works as a regularizer that reduces the
risk of over-fitting and helps generalize to new samples. In the
decoder, the 16D outputs of the final capsules are all masked
out (set to zero) except for the ones corresponding to the
target (while training) or predicted (while testing) class. They
proposed using a three-layer feed-forward neural network with
512, 1024, and 784 units to reconstruct the input image.

B. Capsule Network with Convolutional Routing
In the original capsule network described above, all Pri-

maryCaps are linked and route information to all DigitCaps.
The routing coefficients are computed by the iterative dynamic
routing process and the transformation matrices Wij are
trained through back-propagation. While dynamic routing has
been shown to improve the classification accuracy of CapsNet
[19], this operation is computationally expensive and does not
scale well to high dimensional data. Technically, the number
of DigitCaps is bounded by the number of classes. However,
the number of PrimaryCaps increases with the size of input
images. This will dramatically increase the required number
of routing coefficients (cij), thus do not scale to large input
images. Moreover, according to [19], each child-parent capsule
pair requires a unique transformation matrix Wij . Therefore,
both the number of non-trainable (cij) and trainable (Wij)
parameters increases with the input size. This makes dynamic
routing the bottleneck of the capsule networks.

A naive solution is to reduce the number of PrimaryCaps
by changing the hyper-parameters of the preceding layers;
e.g. increasing the strides of the convolutional layers or the
number of strided convolutional layers. This practically results
in more information loss and causes a significant drop in
the classification accuracy. Instead, we propose the following
modifications to the routing mechanism which dramatically
reduces the number of parameters in the network while en-
hancing the information routing stability and the overall model
prediction accuracy.

Convolutional Dynamic Routing Inspired by the local con-
nectivity of the neurons in CNNs, [32] proposed locally-

Capsules Capsules

): (

Fig. 3. Depicts the techniques incorporated to solve the memory burden and
parameter explosion and make the capsule network deeper. Different capsule
types are shown in different colors. (a) Convolutional dynamic routing in
which the transformation matrices are shared across capsules of the same
type, and a parent capsule positioned at point (h,w) receives information
from a sub-grid of capsules bounded in a user-defined kernel of size (kh ×
kw) centered at (h,w). (b) The imposed consistent voting technique where
children capsules at the same spatial location (and of different types) are
restricted to agree on their votes to the parent capsule.

constraining the information routing; meaning that only child
capsules within a user-defined kernel centered at position
(x, y) are able to route to parent capsules placed at (x, y)
position of the next layer. Therefore, we call capsule layers
with locally-constrained routing convolutional capsule layer,
compared with the fully-connected capsule layer proposed in
the original structure. Similar to the idea of sharing weights in
CNNs, we share the learnable transformation matrices across
capsules of the same type. Here, capsule type is referred to a
capsule (or a group of capsules) detecting a specific feature
in the input. In the original capsule network proposed in [19],
there exist 32 capsule types in the PrimaryCaps layer and one
capsule type per class in the DigitCaps layer. Transformation
matrix sharing will, therefore, reduce the required number of
Wij matrices by a factor equal to the number of members of
each capsule type (e.g. we require only 32 matrices instead of
6× 6× 32 matrices for the original CapsNet of Fig. 1).

Assume having a H l×W l grid of dl-dimensional capsules
of T l different types at layer l. These capsules form a H l ×
W l×T l grid. Likewise, we have a H l+1×W l+1×T l+1 grid of
dl+1-dimensional capsules at layer l+1 where H l+1×W l+1

is the spatial dimension and T l+1 the number of capsule types.
Let P(h,w)

j be a parent capsule of type j ∈ {1 : T l+1} located
at (h,w) where h ∈ {1, ...,H l+1} and w ∈ {1, ...,W l+1}.
This capsule receives information from a sub-grid of child
capsules of all types, confined in a user-defined kernel of size
klh×klw. This connection is illustrated in Fig. 3 where C(y,x)

1:T l is
the sub-grid of children capsules of all types centered at (h,w)
and y ∈ {(h− kh), ..., (h+ kh)} and x ∈ {(w− kw), ..., (w+

kw)}. Each parent capsule P(h,w)
j receives a prediction vector,

û
(y,x)
j|i per child capsule type:

û
(y,x)
j|i = Wij × u

(y,x)
i , ∀ i ∈ {1 : T l}, x, y (3)

where Wij is the learned transformation matrix for type-i to
type-j capsules and u

(y,x)
i the output of children capsules.

As noted, Wij is defined for each capsule type and does not
depend on the spatial location. This is because it is shared
across locations (similar to convolutional filters) and scans the
whole capsule map. These transformation matrices are learned
during training by back-propagation. Having computed the

0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2918181, IEEE
Transactions on Medical Imaging

5

prediction vectors using eq. (3), the final input to each parent
capsule P(h,w)

j is the weighted sum over the predictions:

s
(h,w)
j =

∑
i

c
(y,x)
j û

(y,x)
j|i , ∀ j = {1 : T l+1} (4)

which shows that only children capsules within the corre-
sponding kernel are routing to the parent capsule. Here, c(y,x)j

is the routing coefficient of the child capsule positioned at
(x, y) (which does not depend on the child capsule type i
according to consistent voting mechanism explained below) to
its corresponding parent of type j. Finally, the parent capsules
activation is computed as:

v
(h,w)
j =

||s(h,w)
j ||2

1 + ||s(h,w)
j ||2

s
(h,w)
j

||s(h,w)
j ||

(5)

which is similar to eq. (2) with the sj in the fully-connected
capsule layer replaced by s

(h,w)
j in the convolutional capsule

layer.
Consistent Voting: While each child capsule can freely vote
to a parent capsule, in [31] we proposed restraining capsules to
agree with capsules of other types at the same spatial location.

cij = ckj , ∀i, k ∈ S = {i, k | loc(i) = loc(k)} (6)

where loc() is the function converting a capsule index to its
pixel location and j is the index of the parent capsule to route
into. Intuitively, even though these capsules detect different
features from the input, they look at the same entity (due to
their same spatial location). Therefore, they should agree upon
what they see and vote to parent capsules accordingly. Our
experimental results show that incorporating this technique
significantly boosts the stability of the routing mechanism
performed in the convolutional capsule layers and improves
the overall network convergence.

These coefficients are determined by the dynamic routing
algorithm and computed as:

b
(y,x)
j ← meani(b

(y,x)
ij + û

(y,x)
j|i . v

(h,w)
j) (7)

c
(y,x)
j =

exp(b(y,x)j)∑
j exp(b(y,x)j)

(8)

where c(y,x)j is the probability that the prediction vector û(y,x)
j|i

to be routed to the parent capsule P(h,w)
j .

C. Deep Capsule Network Architecture

Applying the ideas mentioned above allow us to make the
original capsule network deeper (with adding more convo-
lutional capsule layers) and solve the memory burden and
parameter explosion, thus makes the capsules work on large
images. The final structure of the deep capsule network used
in our cell classification task is presented in Fig. 4.

Similar to the original capsule network, this network con-
tains two main parts: encoder and decoder. The encoder
contains four layers. The first layer is a standard convolution
layer with 128 filters of size 5 × 5 and stride 2, followed by
ReLU activation. The next layer is a convolutional capsule
layer in which capsules are arranged in 8 channels (i.e. 8
capsule types). Each capsule applies 16 convolutional filters

51x51 input image

5

16D

...
8 ...

8
16D

5
5

16D

PrimaryCaps

SecondaryCaps

CellCaps
Live

Dead

Conv1 + ReLU

reconstructed image

51

reshape

: conv+resize
(k=kernel size)

(k=2)(k=3)(k=3)(k=1)

Encoder

Decoder

Fig. 4. Visual representation of the proposed deep capsule network for
classifying live vs. dead cells. Different colors show different capsule types.

of size 5 × 5 and stride 2 to the whole input depth. In
this setting, all capsules in each of the 8 channels share
their weights with each other and each capsule outputs a 16-
dimensional vector of activations. The third layer is another
convolutional capsule layer where each of its 16-dimensional
capsules receives information from only a 5 × 5 × 8 grid of
children capsules (locally-constrained routing). This is similar
to the local connection of neurons in a CNN. The last layer
is called CellCaps layer which has one 16D capsule per
class. Routing also takes place between these capsules and
all capsules in the previous layer, encoding the input into the
16D activation vector of instantiation parameters. The lengths
of these vectors are used to determine the predicted class.

Capsule network uses an additional reconstruction loss
as regularization to prevent over-fitting during learning the
network’s parameters [19]. This encourages the final capsules
to encode as much information from the input as possible.
The reconstruction is done by feeding 16D output of the
final capsules to a three-layer feed-forward neural network.
Clearly, given the larger input images, we need more neurons
in the feed-forward network to reconstruct the input. This
means that the required number of parameters also increases
dramatically. For example, for reconstructing a 51× 51 input
image out of the two 16-dimensional CellCaps activations, we
need 32, 1000, and 2601 (51×51) neurons, thus more than 2.6
million parameters (weights and biases) to be trained which
is very large. To solve this, we propose using a convolutional
decoder to serve as the training regularization. We first mask
the 16-dimensional activity vector of the wrong CellCap, then
reshape the activity vectors into two 4×4 feature maps which
are to be fed into the convolutional layers. Here, we used
four convolutional layers with 8, 16, 16, and 1 filters of
sizes 2, 3, 3, and 3 respectively. After each convolution, the
resulted maps are resized to double the size of the feature
maps. This structure has much fewer parameters (about 4K)
and significantly outperforms the feed-forward network in the
reconstruction task.

Loss Function: We used the margin loss proposed in [19] to
enforce the activation vector of the top-level capsule k (k ∈
{0, 1}) to have a large length if and only if the cell type (live
vs. dead) is present in the image. The total margin loss is the
sum of the losses for each CellCap and is computed as:

0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2918181, IEEE
Transactions on Medical Imaging

6

Lmargin =
∑
k

[
Tk max(0,m+ − ||vk||)2

+λ(1− Tk) max(0, ||vk|| −m−)2
]

(9)

where Tk = 1 iff a cell of class k is present, and m+ =
0.9, m− = 0.1, and λ = 0.5 as set in [19]. Sum of squared
differences between the input and reconstructed images is used
as the reconstruction loss and the total loss is computed as:

LTotal = Lmargin + αLreconstruction (10)

where α is set to 0.0005 to scale down the reconstruction loss
so that it does not dominate the margin loss during training.

D. Sequential data with temporal constraints
Dealing with the classification of time-lapse image frames,

we must ideally consider the temporal dependencies between
individual frames. Ignoring such dependencies and treating
images as if they are independent yields noisy predictions.
In the case of our time-lapse data, there exist at most one
apoptosis event happening in a time-lapse sequence (i.e. a cell
death occurs in the sequential frames). Thus the prediction
should look like a step function in which the jump is the
apoptotic transition moment (programmed cell death) which
is irreversible; once a cell is dead, it will remain dead.

Given the time-lapse frames, we reformulate the temporal-
constrained apoptosis classification as a sequential classifi-
cation problem. There is a large number of methods for
classification of sequential data, among which Hidden Markov
Models (HMMs) [34], Conditional Random Fields (CRFs)
[35], and Recurrent Neural Networks (RNNs) are the most
popular ones. RNNs are equipped with an “internal memory”
that captures the information about what has been seen so far.
Long short-term memory (LSTM) [36] model is introduced as
a modification of RNN with a hidden memory cell and dedi-
cated gated logic. This makes LSTMs capable of learning to
keep, update, or forget the memory cell state according to the
context and incoming data. Moreover, unlike the vanilla RNNs,
LSTMs are capable of encoding long-term dependencies.

Here, instead of feeding cell patches directly to LSTM,
we use the pre-trained networks (both CNN and CapsNet) as
feature extractors. However, instead of freezing their param-
eters, we let them get trained and fined-tuned along with the
LSTM parameters. Other than accuracy, model predictions are
also evaluated and compared according to the oscillations. We
typically expect the predictions to look like a step function
(same as the ground truth) and do not fluctuate much. This
is quantified using the mean absolute ups and downs error
(MAUDE) metric. For a sequence i (sequence of L frames),
suppose yi and ŷi ∈ RL are the vectors of ground truth labels
and model predictions respectively. Function UD(.) : RL → R
is the function counting the number of ups and downs (from
0 to 1 and vice versa) in the sequence. Then the metric is
defined as:

MAUDE =
1

N

N∑
i=1

|UD(yi)− UD(ŷi)| (11)

Fig. 5. Nanowell array demonstration and time-lapse microscopy illustrating a
CAR T-cell E1 killing a cancer cell T1 in one nanoliter well. (B)-(D) showing
the CAR T-cell started contacting the cancer cell; (E)-(I) indicating that the
cancer cell was killed as we can see clear lumenal changes in cell nucleus
pointed by black arrows. Scale bar: 25 µm.

where N is the total number of test sequences used in the
evaluation phase. We also compare the quality of model
prediction in terms of their accuracy in detecting the death
time. This is measured by the mean absolute death-time error
(MADTE) computed as:

MADTE =
1

N

N∑
i=1

|DT (yi)−DT (ŷi)| (12)

where DT (.) : RL → R is the function that returns the death
time, i.e. index of the first frame labeled ‘1’.

IV. DATASET

Cell Culture and Imaging: Cell images in this work are
derived from 4 datasets in TIMING project. Specifically, CAR
T-cells and NALM6 cell-line cancer cells were labeled with
fluorescent bio-markers PKH67 and PKH26 respectively. CAR
T-cells and cancer cells are then loaded to nanowells at a
concentration of 106 cells/mL sequentially. The entire nanow-
ells were immersed in the media containing fluorochrome
(AlexaFluor 647, Invitrogen) conjugated Annexin V. The cell
incubator was fixed at 37°C with 5% CO2. Cells were
monitored in both phase contrast and fluorescent modes using
Carl Zeiss Observer Z1 fitted with Hamamatsu sCMOS camera
using a 20x 0.8 NA objective for 6 hours at 5-min intervals.
Fig. 5 depicts the structure of a nanowell array and frames
captured from a nanowell demonstrating an apoptotic cell.

TIMING Pipeline and the Ground Truth: TIMING pipeline
consists of a set of algorithms for nanowell detection, cell seg-
mentation and cell tracking, with which, we are able to identify
single-cell status at each time point. For example, we cropped
cell patches around their centers with size 51 × 51 pixels.
For the purpose of apoptosis classification, we only cropped
images in phase contrast and Annexin V fluorescent channels.
Instead of annotating each cell patch manually by looking
at its phase contrast or fluorescent channels, we attained the
binary labels (‘0’ for live and ‘1’ for dead) using simple
threshold method. Note that the Annexin V intensity threshold
for apoptotic cells was generally consistent in a certain dataset

0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2918181, IEEE
Transactions on Medical Imaging

7

due to variations in imaging conditions and fluorescent bio-
marker concentrations across different experiments, we chose
different threshold values for the 4 datasets before applying the
threshold operation for all. Labels of all the cell patches are not
always clean using simple threshold method. Multiple sources
of annotation errors do exist, such as incorrect calculation of
ANNEXIN V fluorescent intensity due to segmentation errors
and spectral leakage between fluorescent channels.

We collected 92,000 cancer cell patches of live and apop-
totic samples in total. For the sequential experiment, 9818
time-lapse sequences of cancer cell patches were collected
where each sequence contains 72 consecutive crops from a
delineated cell track. Performance is measured using 10-fold
cross-validation where each train and test set is selected from
different nanowells to ensure independence.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Apoptosis Classification
The proposed capsule network is used for classifying live

and dead cells. We compared its performance with that of the
original capsule network proposed in [19], along with some of
the famous structures, namely AlexNet [21], ResNet-50 [22],
and DenseNet-BC [23]. These networks are modified to make
them compatible with our data and improve their performance.
All networks are trained using images of size 51× 51 pixels,
except the capsule network which was trained on the same
images down-sampled to 28×28 pixels. The final architectures
are the result of random search over hyper-parameters such as
filters’ sizes, number of channels, and dense/residual blocks.

For all networks, training is done using ADAM optimizer
[37] with an initial learning rate of 10−4 and mini-batches
of size 16. We annealed the learning rate exponentially from
its initial value to the minimum of 10−5 over the course of
training. Cross-entropy loss function is used for CNNs, while
capsule networks are trained using the margin-reconstruction
loss combination. We perform data augmentation by randomly
rotating images around the center of images with the maximum
rotation degree of 180o. Afterward, pepper noise was added
to the rotated images. It is similar to applying dropout to the
visible layer, i.e., the input. The dropout rate is set to 5% and
all the model weights are initialized using Xavier initializa-
tion. Moreover, L2-regularization and dropout technique are
applied to all weights and convolutional layers of the CNNs
respectively to ensure that no over-fitting happens.

Test prediction results for the live vs. dead cell classification
is presented in Table I for the various network architectures.
As can be seen, the proposed deep capsule network achieves
the best performance with almost one-third of parameters used
in DenseNet-BC. Using the techniques explained in Section 3

TABLE I
THE DEAD/LIVE CLASSIFICATION PERFORMANCE OF THE CLASSIFIERS ON
TEST DATA. WE PERFORMED 10-FOLD CROSS VALIDATION AND REPORTED

MEAN AND STANDARD DEVIATION OF THE METRICS OVER ALL RUNS.

Model #params. Test accuracy F1-score
AlexNet 4.1M 85.9 (±0.18) 0.855 (±1.7 e-3)
ResNet-50 5.0M 86.5 (±0.10) 0.863 (±1.0 e-3)
DenseNet-BC (k = 24)(1) 1.8M 88.0 (±0.08) 0.878 (±1.1 e-3)
Capsule Network(2) 6.9M 87.2 (±0.11) 0.870 (±1.6 e-3)
Deep Capsule Network 615K 88.6 (±0.07) 0.882 (±1.0 e-3)

(1): k denotes the network’s growth rate.
(2) : The only network with 28 × 28 input size. Other models take in 51 × 51 input images.

and adding convolutional capsule layers, we were not only able
to make the capsule network scale with larger input, but also
to get significant classification improvement from 87.2% for
the original capsule network (on input images of size 28×28)
to 88.6% with more than 10 times reduction of the parameters.

We also compared the classification performance of the
capsule networks with that of CNNs when fewer numbers
of training examples are available. Models are trained 10
times on random subsets of the original training set and the
average prediction accuracies (± std.) over the same test set
are presented in the right panel of Fig. 6. It is observed
that capsule networks are more robust when less training
samples are available. Interestingly, while DenseNet performs
better than the original CapsNet when trained on the whole
data (88.0% compared with 87.2%), its prediction accuracy
goes below capsule network when using only 20% of the
training samples. The original and deeper proposed capsule
networks are performing more robust and achieving almost
similar performances when the number of samples is reduced
to more than 10%. This emphasizes the intrinsic robustness of
the capsule networks rooted in its viewpoint invariant matrix
of weights, meaning that even the poses of test sample’s
parts change by a large degree, capsule networks are capable
of getting back the pose of the whole object. This property
possibly accounts for the proposed capsule network’s ability
to generalize well with the smaller number of training samples.

B. Temporal Apoptosis Classification
As mentioned, we use LSTM to capture and encode the

temporal information from within the sequential time-lapse
apoptotic frames. However, instead of directly feeding the
raw image patches to LSTM, we use the models trained in
the previous section as feature extractors. For the CNNs,
the extracted features are the 512 features of the last fully-
connected layer in AlexNet and the global average pooling
layer in both ResNet-50 and DenseNet-BC. Note that the struc-
ture of these networks is modified to make them compatible
with our data. In capsule networks, the two 16-dimensional
activation vectors of the CellCaps are used as features. More
importantly, the feature extractor model parameters are not
frozen but are left free to get trained and fine-tuned along
with the LSTM parameters. According to our experiments,
fine-tuning the pre-trained models results in more informative
features and higher overall prediction accuracy compared with
initializing the model weights randomly.

Multiple variants of LSTMs were tested, including stacked
(multi-layer) and bi-directional LSTMs, and the best perform-
ing models with the optimal configurations are reported in
Table II. In the table, the frame-based accuracy is simply the
percentages of images classified correctly and the sequence-
based accuracy is computed on the single label generated
for each sequence. To make the sequence label, we define
a mapping from the frame labels to the sequence label which
assigns one binary label to each movie sequence indicating
live (label ‘0’) or dead (label ‘1’). According to this mapping,
a sequence is labeled dead or apoptotic (‘1’) if it contains
either 5 consecutive dead frames or one-fifth of the frames
are labeled dead. Otherwise, it is labeled live (‘0’).

0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2918181, IEEE
Transactions on Medical Imaging

8

0.5 0.6 0.7 0.8 0.9 1.0
0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
re

ci
si

on

65

70

75

80

85

90

Number of training samples

P
re

di
ct

io
n

ac
cu

ra
cy

 (
%

)

72000 7200 720 72

AlexNet Deep-CapsNetDenseNet-BCResNet-50 CapsNet

Fig. 6. Classification performance of various networks on the test data. Left: precision-recall curves for the networks trained on the whole training set. The
points on the curves show the precision and recall values at the default threshold of 0.5. Right: prediction accuracy of models trained on different numbers
of training samples. Training is conducted 10 times on random subsets of the training set, and the mean prediction accuracy (± std.) is reported.

Experimental results indicate that the best performances are
achieved using bi-directional LSTMs. However, it should be
noted that bi-direstional LSTMs are not causal and do not
fit in the real-time classification systems as they need the
whole sequence for making the inference. Capsule networks
achieve the highest prediction performance with our proposed
deep CapsNet model achieving 93.8% and 93.9% frame
and sequence-based accuracies respectively. More importantly,
CapsNets achieve such high prediction performances using a
simple recurrent model with only one hidden layer and much
fewer hidden units. This points out that the very few features
extracted from CapsNets (32 features; 16 per Cell Capsule) are
rich and informative enough to make an accurate inference.
This is partially enforced by using the reconstruction network
which reconstructs the whole input image out of these vectors.

Fig. 7 depicts the predictions for thirty sequences sampled
randomly from the test data. The top left panel shows that
the ground truth labels also contain some level of noise
(labels changing from ‘dead’ to ‘live’) which is due to the
thresholding method used for generating labels out of the
death marker intensity curve (see Section IV). While DenseNet
and CapsNet (with no recurrent structure stacked) achieve
88.0% and 88.6% prediction accuracies, stacking the recurrent
networks improves the performance up to 93.3% and 93.8%.
Incorporating a recurrent structure not only improves the pre-
diction accuracy but also significantly reduces the fluctuations
in the sequential predictions. It also helps to predict the
cell death time more accurately. This is quantified using the
MAUDE and MADTE metrics respectively whose values are
presented in Table II for all models. While networks with

no recurrence make unstable predictions (MAUDE of 9.82
and 7.11 for DenseNet and CapsNet respectively), stacking
the recurrent model and end-to-end fine-tuning reduces the
fluctuations with the MAUDE value decreasing to 0.80.

C. Visual Explanations of Deep Networks Inference
While the results support the superior prediction perfor-

mance of capsule network, it is still unclear How they predict
what they predict. Finding an explanation for the way these
models make inferences helps to build trust in intelligent
systems and to identify their failure mode. In the cases that
AI works significantly better than humans, the goal of model
transparency is machine teaching- i.e. a machine teaching a
human how to make better decisions.

Grad-CAM [38] is a technique for providing such visual
explanation of the CNN decisions. It uses the gradient of
the predicted class to produce a localization heat-map high-
lighting the image regions that are most important in making
a prediction. We adapted Grad-CAM to our trained deep
CapsNet by flowing the gradient from the target output capsule
(in CellCaps layer) into the 7 × 7 SecondaryCaps layer to
understand the importance of each capsule for a decision of
interest. The same method is applied to the last 6× 6 layer of
the DenseNet for comparison as depicted in Fig. 8.

As depicted in Fig. 8, CapsNet detects the whole cell
and makes prediction according to the cell edges and body
texture while CNN’s region of interest is bounded to confined
regions mostly around the cell edges. This is due to the
routing mechanism employed in CapsNet which lets lower-
level capsules (those capturing relevant information) to agree
and consistently route information to higher-level capsules

TABLE II
TEST PREDICTION PERFORMANCE RESULTS FOR THE DEAD/LIVE CLASSIFICATION OF SEQUENTIAL APOPTOSIS DATA. EVALUATION IS CONDUCTED

USING 10-FOLD CROSS VALIDATION AND AVERAGE (±STD.) OVER THE RUNS IS REPORTED FOR EACH OF THE METRICS.

L and H are the number of hidden layers and their corresponding number of hidden units of the recurrent structure.

Models L H frame-based
accuracy (%)

sequence-based
accuracy (%) F1-score MAUDE MADTE

AlexNet + Bi-LSTM 2 [256, 256] 92.4 (±0.06) 92.3 (±0.07) 0.894 (±8.0 e-4) 4.35 (±0.12) 3.12 (±0.21)
ResNet-50 + Bi-LSTM 2 [256, 128] 92.8 (±0.06) 92.6 (±0.06) 0.901 (±7.4 e-4) 2.30 (±0.10) 1.79 (±0.15)
DenseNet - - 88.0 (±0.08) 86.3 (±0.08) 0.875 (±1.1 e-3) 9.80 (±0.33) 6.15 (±0.42)
DenseNet + LSTM 2 [512, 256] 93.0 (±0.04) 92.8 (±0.05) 0.913 (±8.4 e-4) 1.82 (±0.05) 2.90 (±0.16)
DenseNet + Bi-LSTM 2 [256, 128] 93.2 (±0.03) 93.0 (±0.04) 0.921 (±6.8 e-4) 1.38 (±0.10) 2.12 (±0.13)
Deep CapsNet - - 88.6 (±0.07) 87.5 (±0.08) 0.882 (±1.0 e-3) 7.15 (±0.19) 4.28 (±0.23)
Deep CapsNet + LSTM 1 32 93.6 (±0.03) 93.6 (±0.02) 0.931 (±6.1 e-4) 1.25 (±0.06) 1.34 (±0.08)
Deep CapsNet + Bi-LSTM 1 32 93.9 (±0.03) 93.9 (±0.04) 0.934 (±5.8 e-4) 0.77 (±0.04) 1.39 (±0.08)

0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2918181, IEEE
Transactions on Medical Imaging

9

Ground Truth DenseNet DenseNet+BiLSTM CapsNet+BiLSTM
0

20

10

30

20 40 60 20 40 60
Frame # Frame

20 40 60 20 40 60
Frame # Frame

S

eq
ue

nc
e

t=1 t=2 t=3 t=4 t=6 t=12 t=17 t=21 t=23 t=40

Live
Dead

t=2 t=5 t=7 t=9 t=12 t=14 t=17 t=18 t=26 t=36

t=1 t=7 t=9 t=14 t=15 t=16 t=17 t=18 t=19

S
eq

ue
nc

e
#1

S
eq

ue
nc

e
#2

S
eq

ue
nc

e
#3

t=24

t=1 t=4t=3 t=25t=20t=10

t=3 t=20t=5 t=25 t=26 t=36

t=19t=18t=5 t=9 t=11 t=15

Fig. 7. Illustrating the sequential classification results on samples from test data. Top: the ground truth labels and deep networks predictions for 30 sequences
(selected randomly) each of length 72 frames. CapsNet+BiLSTM gives the most accurate and stable prediction outputs compared to other structures. Bottom:
Some of the frames of three example apoptotic sequences (marked with dashed lines on the top panel) and their associated prediction. The four squares at
the bottom of each frame shows (from left to right) the ground truth, DenseNet, DenseNet+BiLSTM, and CapsNet+BiLSTM predictions respectively.

which can more effectively process it. It is superior to the
max-pooling operation used in the CNNs which only attends
to the most active neuron in the pool and ignores the rest.
Although the CNN’s localized region of interest observed to be
sufficient for making inference in simpler cases (a-d), it failed
in more complex scenarios. Examples are a cell with irregular
shape mimicking the appearance of the other class (e), or
existence of other objects such as effector cells or nanowell
wall (f-k) which sometimes distracts the model. This happens
because CNNs are unable to identify the position of one object
relative to another. CapsNet, however, encodes the relative
orientation and position of components, thus performs better in
crowded scenes. Capsnet’s failure cases were observed when
the distraction is more severe (l-n). This is inevitable as we
only labeled the cancer cells. Due to CapsNet’s natural ability
to detect multiple objects at once (as experimented in [19]),
labeling the T-cells (effectors) along with the cancer cells
and detecting both could potentially address this shortcoming.
We observe that both CNN and CapsNet fail more often
during the live-to-dead transition periods. This is understand-
able given the high visual uncertainty corresponding to these
instances. An example is shown in Fig 7. (seq. #2), where
DenseNet+BiLSTM model completely misses the death time
(detects it at t = 24), while CapsNet+BiLSTM does fairly
better and detects it at t = 16.

D. Scaling to Large Images

In principle, the proposed CapsNet can work with large
images or volumetric data similar to CNNs. Converting from
CNNs to CapsNets can be done by replacing the last few
convolutional and fully-connected layers of a regular CNN
with the proposed convolutional and fully-connected capsule
layers, respectively. Dynamic routing mechanism is the com-
putational and memory bottleneck of the original CapsNet
[19]. However, the proposed convolutional dynamic routing
significantly mitigates this computational issue by allowing
only child capsules within a user-defined kernel, instead of all
child capsules, to route information to parent capsules. The
proposed architecture also reduces the memory footprint of
CapsNet by sharing the transformation matrices Wij among
capsules of the same type. As an illustration, for CT scans
of 512× 512× 256 voxels, the proposed CapsNet has around
16.2 million parameters compared to 22.7 million parameters
of a 3D ResNet with 50 layers.

E. Clinical Significance
Consistent with prior studies on tracking of individual cells

within series of timelapse images, an accuracy of classification
of least 90 − 95% in any single image is essential for the
biological user to accept the automated results without the
need for manual proof-reading and editing [7], [39]. Unlike
Annexin V based staining (accuracy of >99%) for the de-
tection of apoptosis, classification of apoptosis based on only

(a) (b) (c) (d) (e) (h) (i) (j) (k) (l) (m) (n) (p) (q) (r)

Live

in
pu

t

im
ag

e
G

ra
d-

C
A

M
D

en
se

N
et

G
ra

d-
C

A
M

D
ee

p
C

ap
sN

et

(f) (g) (s)

Dead

Fig. 8. Visualizing sample images (top) and their corresponding Grad-CAM localization of the region of interest for DenseNet (middle) and CapsNet (bottom).

0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2918181, IEEE
Transactions on Medical Imaging

10

the phase images is more challenging and the routine expert
based classification accuracy is ∼ 95%. As we have illustrated
with our results in Table II), the accuracy is greatly enhanced,
from 88.6% to 93.9%, by taking advantage of the time-lapse
data on the same cell. Since the accuracy is close to that of
a routine expert, we expect the proposed apoptosis classifier
to have high clinical significance. In addition, the ability to
generalize well with fewer training examples make CapsNets
an appealing choice for the clinical domains.

VI. CONCLUSION

Our work shows that CapsNet is a promising alternative
to CNN. Experimental results demonstrate that CapsNets
compare favorably to CNNs when the training size is large,
but significantly outperform CNNs on small size datasets.
This is especially helpful when the system must learn from
small amounts of data, which is often the case in medical
settings where data collection is either expensive (due to
the requirement of highly-trained experts), or time-consuming
(due to the multiple repetitions of an experiment). We showed
that by modifying the routing mechanism and stacking a
recurrent structure, we can reduce the number of trainable
parameters more than 10 times while enhancing the prediction
accuracy and stability at the same time. Future work will
explore unsupervised methods for training capsule networks,
as well as the possibility of employing the proposed capsule
network in transfer learning and one-shot learning tasks.

REFERENCES

[1] S. Elmore, “Apoptosis: a review of programmed cell death,” Toxicologic
pathology, vol. 35, no. 4, pp. 495–516, 2007.

[2] Y. Fuchs and H. Steller, “Programmed cell death in animal development
and disease,” Cell, vol. 147, no. 4, pp. 742–758, 2011.

[3] A.-L. Nieminen, G. J. Gores, J. M. Bond, R. Imberti, B. Herman, and
J. J. Lemasters, “A novel cytotoxicity screening assay using a multiwell
fluorescence scanner,” Toxicology and applied pharmacology, vol. 115,
no. 2, pp. 147–155, 1992.

[4] J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Cham-
bon, Y. Emery, P. Magistretti, C. Depeursinge et al., “Label-free cyto-
toxicity screening assay by digital holographic microscopy,” Assay and
drug development technologies, vol. 11, no. 2, pp. 101–107, 2013.

[5] L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham,
“Label-free imaging of cancer cells using photonic crystal biosensors
and application to cytotoxicity screening of a natural compound library,”
Sensors and Actuators B: Chemical, vol. 132, no. 2, pp. 418–425, 2008.

[6] Z. Wang, M.-C. Kim, M. Marquez, and T. Thorsen, “High-density
microfluidic arrays for cell cytotoxicity analysis,” Lab on a Chip, vol. 7,
no. 6, pp. 740–745, 2007.

[7] A. Merouane, N. Rey-Villamizar, Y. Lu, I. Liadi, G. Romain, J. Lu,
H. Singh, L. J. Cooper, N. Varadarajan, and B. Roysam, “Automated
profiling of individual cell–cell interactions from high-throughput time-
lapse imaging microscopy in nanowell grids (timing),” Bioinformatics,
vol. 31, no. 19, pp. 3189–3197, 2015.

[8] H. Lu, J. Li, M. A. Martinez Paniagua, I. N. Bandey, A. Amritkar,
H. Singh, D. Mayerich, N. Varadarajan, B. Roysam, and R. Murphy,
“Timing 2.0: High-throughput single-cell profiling of dynamic cell-
cell interactions by time-lapse imaging microscopy in nanowell grids.”
Bioinformatics, vol. 1, p. 3, 2018.

[9] C. H. June and M. Sadelain, “Chimeric antigen receptor therapy,” New
England Journal of Medicine, vol. 379, no. 1, pp. 64–73, 2018.

[10] M. N. Androulla and P. C. Lefkothea, “Car t-cell therapy: A new era in
cancer immunotherapy,” Current pharmaceutical biotechnology, vol. 19,
no. 1, pp. 5–18, 2018.

[11] D. Pischel, J. H. Buchbinder, K. Sundmacher, I. N. Lavrik, and R. J.
Flassig, “A guide to automated apoptosis detection: How to make sense
of imaging flow cytometry data,” PloS one, vol. 13, no. 5, p. e0197208,
2018.

[12] P. Eulenberg, N. Köhler, T. Blasi, A. Filby, A. E. Carpenter, P. Rees, F. J.
Theis, and F. A. Wolf, “Reconstructing cell cycle and disease progression
using deep learning,” Nature communications, vol. 8, no. 1, p. 463, 2017.

[13] T. H. Ward, J. Cummings, E. Dean, A. Greystoke, J.-M. Hou, A. Backen,
M. Ranson, and C. Dive, “Biomarkers of apoptosis,” British journal of
cancer, vol. 99, no. 6, p. 841, 2008.

[14] I. Vermes, C. Haanen, H. Steffens-Nakken, and C. Reutellingsperger, “A
novel assay for apoptosis flow cytometric detection of phosphatidylser-
ine expression on early apoptotic cells using fluorescein labelled annexin
v,” Journal of immunological methods, vol. 184, no. 1, pp. 39–51, 1995.

[15] M. Van Engeland, L. J. Nieland, F. C. Ramaekers, B. Schutte, and C. P.
Reutelingsperger, “Annexin v-affinity assay: a review on an apoptosis
detection system based on phosphatidylserine exposure,” Cytometry: The
Journal of the International Society for Analytical Cytology, vol. 31,
no. 1, pp. 1–9, 1998.

[16] G. Zhang, V. Gurtu, S. R. Kain, G. Yan et al., “Early detection of
apoptosis using a fluorescent conjugate of annexin v,” Biotechniques,
vol. 23, no. 3, pp. 525–531, 1997.

[17] D. Wlodkowic, J. Skommer, S. Faley, Z. Darzynkiewicz, and J. M.
Cooper, “Dynamic analysis of apoptosis using cyanine syto probes:
from classical to microfluidic cytometry,” Experimental cell research,
vol. 315, no. 10, pp. 1706–1714, 2009.

[18] S. Huh, H. Su, T. Kanade et al., “Apoptosis detection for adherent
cell populations in time-lapse phase-contrast microscopy images,” in
International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2012, pp. 331–339.

[19] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Advances in Neural Information Processing Systems, 2017,
pp. 3856–3866.

[20] Z. Yin, T. Kanade, and M. Chen, “Understanding the phase contrast
optics to restore artifact-free microscopy images for segmentation,”
Medical image analysis, vol. 16, no. 5, pp. 1047–1062, 2012.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[23] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks.” in CVPR, vol. 1, no. 2, 2017, p. 3.

[24] T. Cohen and M. Welling, “Group equivariant convolutional networks,”
in International conference on machine learning, 2016, pp. 2990–2999.

[25] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J. Brostow,
“Harmonic networks: Deep translation and rotation equivariance,” in
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
vol. 2, 2017.

[26] G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with em
routing,” 2018.

[27] M. T. Bahadori, “Spectral capsule networks,” 2018.
[28] C. Xiang, L. Zhang, W. Zou, Y. Tang, and C. Xu, “Ms-capsnet: A novel

multi-scale capsule network,” IEEE Signal Processing Letters, 2018.
[29] A. Jaiswal, W. AbdAlmageed, and P. Natarajan, “Capsulegan: Generative

adversarial capsule network,” arXiv preprint arXiv:1802.06167, 2018.
[30] J. O. Neill, “Siamese capsule networks,” arXiv preprint

arXiv:1805.07242, 2018.
[31] A. Mobiny and H. Van Nguyen, “Fast capsnet for lung cancer screening,”

arXiv preprint arXiv:1806.07416, 2018.
[32] R. LaLonde and U. Bagci, “Capsules for object segmentation,” arXiv

preprint arXiv:1804.04241, 2018.
[33] D. Rawlinson, A. Ahmed, and G. Kowadlo, “Sparse unsupervised

capsules generalize better,” arXiv preprint arXiv:1804.06094, 2018.
[34] S. R. Eddy, “Hidden markov models,” Current opinion in structural

biology, vol. 6, no. 3, pp. 361–365, 1996.
[35] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields:

Probabilistic models for segmenting and labeling sequence data,” 2001.
[36] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[37] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.
[38] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra

et al., “Grad-cam: Visual explanations from deep networks via gradient-
based localization.” in ICCV, 2017, pp. 618–626.

[39] M. Hejna, A. Jorapur, J. S. Song, and R. L. Judson, “High accuracy
label-free classification of single-cell kinetic states from holographic
cytometry of human melanoma cells,” Scientific reports, vol. 7, no. 1,
p. 11943, 2017.

