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Abstract—Effect of interference correlation on wireless systems
is often studied by modeling the locations of interferers as a
Poisson Point Process (PPP). However, in many cases, the compli-
cated nature of this correlation limits the analytical tractability
of the PPP-based approach. For example, for an interference-
aware N-antenna Maximum-Ratio Combining (MRC) receiver,
the analytical expression for outage probability is available only
for N = 2. For N > 2, the exact analysis using standard PPP-
based approach becomes intractable because of which one has
to either resort to bounds or to simulations. In this letter, we
overcome this issue and derive the MRC outage probability for an
arbitrary N by employing the mixture-based method of modeling
the correlation in the interference powers. This method offers a
much simpler analytical structure to the correlated interference,
thereby lending analytical tractability to such analyses. The
mixture parameter (g) is tuned based on the matching of joint
Signal-to-Interference Ratio (SIR) statistics, which results in
a very accurate mixture-based result. The tightness of these
approximations is verified using Monte Carlo simulations.

Index Terms—Maximum ratio combining, Poisson point pro-
cess, interference correlation, mixture of random variables.

I. INTRODUCTION

Owing to its optimality under white noise [1], MRC has
become almost ubiquitous in multi-antenna systems used in
the current wireless ecosystem. However, like other diversity-
combining techniques, it suffers from performance losses in
the presence of spatially correlated interference [2]. Therefore,
it is important to characterize its exact performance under
correlated interference, which is the main topic of this letter.

Initial attempts towards characterizing the post-combining
SIR, or equivalently the MRC outage/success probability,
under spatially correlated interference include [3] [4], which
model the interference field as PPP and employ tools from
stochastic geometry for the analysis. However, due to the
structure of the problem, the exact analysis was limited to
only the case of N = 2. For the general case of N > 2, only
simple bounds were provided.

Therefore, in this letter, our objective is to characterize,
or tightly approximate, the Cumulative Distribution Function
(CDF) of the interference-affected post-combining SIR for
arbitrary N. To achieve this, we employ the mixture-based
method [5] of modeling the correlation in the interference
powers experienced at multiple antennas. This method, at
its core, employs a correlation framework constructed using
mixture of random variables, which not only offers a much
more amenable analytical structure but also mimics the PPP
characteristics quite well. The derived analytical expressions
for MRC outage probability are shown to tightly approximate

A. Ghosh is with Centre for Development of Telematics, Bengaluru,
India. Email: arindam.gm@gmail.com. H. S. Dhillon is with the Bradley
Dept. of Electrical and Computer Engineering, Virginia Tech, USA. Email:
hdhillon@vt.edu. The work of H. S. Dhillon was supported by the U.S.
National Science Foundation under Grant ECCS-1731711.

the exact PPP-based results obtained using Monte Carlo sim-
ulations.

As a part of this contribution, we also provide a method for
improving the accuracy of the mixture-based approximation
method of [5]. Originally, in [5], the mixture weights (¢’s)
were chosen so as to match the interference correlation of the
mixture-based and PPP-based models. Different from [5], in
this letter, we show that tuning ¢ instead to match the joint
SIR statistics, i.e. joint complementary CDF (CCDF) of SIR,
of the two models results in much tighter approximations. This
tuning requires solving an N degree polynomial equation in
q, which can be easily accomplished using commonly available
numerical packages.

II. SYSTEM MODEL

We consider a Poisson dipole network [6] wherein the trans-
mitters (single antenna) are distributed as per a homogeneous
PPP ® = {2z} C R? of intensity \. Each transmitter has, at
a distance d in an arbitrary direction, an /N-antenna receiver
capable of MRC processing. By Slivnyak’s theorem [7], we
then add a new reference transmitter into the network with its
receiver placed at the origin o, which can be referred to as the
“typical” pair. In this letter, we focus on this pair to study the
perfomance of the considered MRC.

We denote the location of the typical receiver’s antennas
by {z}X, € R2 The separation between these antennas
is assumed to be negligible (of the order of wavelength)
in comparison to other distances in the network (such as
d). Therefore, for the purpose of path-loss calculations, we
will assume that all antennas are co-located with the receiver
itself, i.e. {z; = o}. That said, it should be noted that the
small separation between the antennas may still allow them to
experience significantly different fading characteristics.

For the typical receiver, the nodes at ® (not including the
serving transmitter) act as interferers. These interferers are
assumed to follow ALOHA protocol whereby each interferer
transmits independently on the same time-frequency resource
block as the typical link with probability p. Therefore, the set
of active interferers @ that interfere with the typical receiver
in any given time slot is simply a thinned PPP of intensity
Ap (parent PPP @ thinned with probability p). For channel
fluctuations, we assume i.i.d. Rayleigh fading across all the
links. For path-loss, between x and i-th antenna (z;), we
consider the standard function £(z,2;) = PEn e where
o > 2 is the path-loss exponent and € — 0. For the case of
z; = o, we simply have {(z, z;) = w Lastly, we assume
that all nodes in the system transmit with P units of power.

Then, in this setting, the SIR at the ¢-th antenna due to a
transmission from the reference transmitter is given by
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where, I(z;) is the interference power normalized by P,
and h,.,, h; ~ exp(l) are the exponentially distributed
fading gains of the link between x and z; and between
the reference transmitter and ¢-th antenna, respectively. We
focus on interference-limited scenario in which thermal noise
is negligible compared to interference. Since all antennas
of the receiver of interest are collocated from the path-loss
perspective and all links experience i.i.d. Rayleigh fading, it
is easy to argue that the interference power experienced across
different antennas is identically distributed, i.e., {I(2;)} is a
sequence of identically distributed random variables. Further,
these interference powers exhibit spatial correlation because
of the common interference field. The spatial correlation
coefficient (;; = Corr[I(z;),1(z;)], Vi # j, can be readily
quantified using only the spatial aspect of [2, (11)], i.e.
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where, the last step follows from E[h"] = n! for h ~ exp(1).

For MRC, we consider the interference-aware case, as also
assumed in [3] [4], where the receiver has perfect knowledge
of the instantaneous interference powers and the transmitter-
to-receiver link fading gains for every antenna. The combiner
treats the interference as white noise and the MRC weights
are taken to be proportional to the ratio of fading amplitude
and interference power [1]. The post-MRC SIR, denoted by
SIRMmgc, is therefore given by

hid™“ n hyd™®
I(z1) I(zn)

For the case of N = 2, this SIR has been fully characterized in
[3]. However, for the general case, the standard approaches are
not analytically tractable, which makes the analysis extremely
difficult. In the next section, we present an alternate approach,
wherein we employ the mixture-based method of interference
modeling [5], to obtain the CDF of SIRyrc for arbitrary V.

SIRMrc = 3)

III. OUTAGE PROBABILITY OF MRC

The mixture-based model in [5] can be used to construct
a set of arbitrarily (non-negatively) correlated interference
powers {I(z;)}X . For the multi-antenna case of this letter,
where I(z;) and I(z;) are equally correlated Vi # j, the
mixture-based framework of [5] can be reduced to a more
simpler form as presented in the following.

A. Mixture-based Construction of Interference Powers

The main idea is to represent the PPP-based interference
random variables {I(z; = o)}, with their mixture-based
equivalents having the same PPP-based distributional and
correlational properties. To achieve this, we first generate a se-
quence of i.i.d. random variables {.J,,}_ that are distributed
identically to I(o) of (1). For that, we imagine an auxiliary
setup wherein we take a set of independent homogeneous PPPs
of interferers {¥,,}V_ . of intensity Ap, on R? and model {J,, }

to be the respective interference powers observed at the origin
o due to these PPPs, i.e.

Jp = Z haol(x, 0)
zev,

Note that {U,,}, which are used to obtain {J,,}, belong only
to the auxiliary system and in no way interfere with the actual
PPP & of the interferers in the original system of Section II.

Next, using these .J,,’s, we model {I(z;)} as the mixtures

I(z) =

where, {A;}Y, are independent binary random variables
whose probability mass functions are given by

forn €{0,...,N}. 4

Ja,, forie {1,...,N}, (5)

q, ifa; =0
pa(a;))=<¢1—gq, ifa;=1 (6)
0, otherwise.

From the distribution preservation property of mixtures [5],
we have the mixture-based I(z;) distributed identically to Jy
and J; and therefore to PPP-based I(z;) Vi. Further, it can be
easily verified that the mixture-based Corr[I(z;), I(z;)] = ¢,
for all i # j. At this point, it appears natural to select ¢ = 0.5
so as to match the values of the correlation coefficient with (2),
but, as discussed in the sequel, this does not necessarily offer
the most accurate approximation. Next, we use this mixture-
based framework to derive the MRC outage probability for an
arbitrary N.

B. CDF of SIRygc for arbitrary N
The main result of this paper is stated in the next Theorem.

Theorem 1 The outage probability of MRC, defined as
Pous 2 P(SIRyrc < T), derived using the mixture-based
method, is given by (15), where T is the glven threshold,
71'2 1 2 ’U
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is the Bell polynomial [8].
Proof: From (3), we have
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where, (b) follows from the mixture-based representations of
{I(z;)} in (5), and (c) from the law of total probability. Next,
by collecting the common terms, the above can be compactly
written as: Poy =

(N n N—n = o

7;)<n)q (1—q) P( Ly Z — <Td ) o
=W,

Here, we define U, = anilh and V, = Z—Z and find

their distributions. In this regard, we observe that U,d™®
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is equivalent to the random variable SIRygrc when all the
N antennas see the same interference power. This has been
studied as the full-correlation case in [3], and therefore, from
[3, Lemma 1, Proposition 1], we have the CDF of U, given

by n—1 2™ 9™
1 _ _qymY _ 2/a
Fy, (uw)=1 mz::{)( 1) B exp( Cu ) , (8
where C' = 21X Next, note that Vi is distributed

asin(27/a)”

identically to Uy; hence, from (8), we have the CDF and PDF
of Vi, respectively, given by

Fy (vk) =1—exp (—Cvim) , and (9)
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Using thesg distri}lv:rutions, W, can now be derived as
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where |, means the function inside the expectation is evaluated
at s =Td" — Zsz_ln V. Next, using Faa di Bruno’s formula
[9] and Bell polynomial B, ;(-) [8], for the m-th derivative,
we get n_1
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Finally, averaging over the i.i.d. {V}} and substituting into (7),
we get the result.

C. Tuning of the Mixture Parameter “q”

We conclude the mixture-based model of this letter by
choosing a value for the parameter ¢ that results in highly
accurate mixture-based approximations. Here, we propose a
new method of tuning (based on matching of joint statistics
of the SIR) which offers a much tighter approximation than
the tuning presented originally in [5]. Recall that tuning in [5]
is based on interference correlation matching, which results in
g?> = 0.5 from (2).

The MRC outage probability involves (jointly) multiple
correlated SIRs; and, as the accuracy of the mixture-based
approximation depends on how closely it mimics the PPP-
based characteristics, we propose to match the two models

directly at the level of joint SIR statistics. That is, tune g such
that the joint CCDFs of SIR match. The difference between
the two CCDFs, for a threshold T, is given by

Br(N+%)

flg) = emj
"X (j:) (-t BXP{—B(n% +N — n)},

n=>0

(13)

2
where, B = % The first CCDF term is PPP-
based that is available from [10, Theorem 1]. The sec-
ond term is for the mixture-based case, which is given as:

P(SIRy > T,...,SIRy > T) =
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where, (b) follows from the total probability law and (c) by
collecting the common terms. Lastly, by taking the Laplace
transform of interference [7], we get the expression in (13).

The tuned g which matches the two CCDFs is simply the
solution of the equation f(g) = 0. From Abel-Ruffini’s theo-
rem [11], there is no general algebraic solution for polynomial
equations with arbitrary coefficients for N > 5. Although
this does not mean that some particular classes of higher
degree polynomials may not have explicit form of algebraic
solutions, such an exploration for the above equation is outside
the scope of this study. Therefore, we simply use commonly
available numerical packages from Mathematica or Matlab to
find the appropriate value of ¢ € [0,1] which satisfies the
above equation.

The above tuning, as shown in the next section, results in far
better accuracy compared to simply setting ¢ = (;; = 0.5 as
per [S]. This is because even if the two models are matched at
the interference correlation level, deviations may still appear
at the SIR correlation level. To understand this, note that the
SIR correlation can be expressed as

_ Var(I (z;) '] Var[I(z;) "]
ComlStR, SIR;] = \/ Varfhul () Varlhy (=) ]
(14)
where, (i = Corr [I(z;)~*,1(z;)~*]. From results obtained
using Monte Carlo simulations, we find that for an interference
correlation of 0.5 (for @ = 4 and Ap = 1072/m?), C;g" ~
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0.76, which is then brought down to the SIR correlation of
~ 0.3. However, for mixtures, it can be easily shown that if
Gij = 0.5, ;‘7“’ is also 0.5, which therefore will result in an
SIR correlation of < 0.3. Clearly, this mismatch will affect
the accuracy of the derived approximations, which motivated

us to tune ¢ as per (13) instead.

IV. SIMULATION RESULTS

For simulations, we consider a square region [—L,L]?
centered at the origin such that there are on an average 1000
interferers present, i.e. L satisfies (2L)?\p = 103. The receiver
is then placed at the center with its reference transmitter at a
distance d = 10m. For path-loss, we take o = 4.

Figure 1 plots the outage probability of the 4-antenna MRC
receiver with respect to the threshold 7'. Clearly, the accuracy
of the mixture-based approximations depends on the value of
q. The tightest match with the simulation data is obtained
when ¢ is tuned as per (13). Setting ¢* = ¢} = 0.76 (which
matches the two models at the SIR correlation level) gives
better accuracy than ¢? = Cij = 0.5, however, it still slightly
undershoots the plot. A very high value of ¢ (= 0.9), on the
other hand, causes overshooting.

0.85 I I I I I
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Fig. 3: Tuned ¢2, T = 1dB, A\p = 107%/m?, a = 4, d = 10m.

Similar behavior is observed in Fig. 2, which plots Poy
against the number of receiver antennas. We see that the
tuned values of ¢ (plotted in Fig. 3), provide the tightest
approximations to the actual PPP-based data. For comparison
purpose, we also plot the upper and lower bounds of the MRC
outage probability that were proposed in [3, Proposition 2] for
arbitrary V. Not surprisingly, the mixture-based approxima-
tions offer far accurate results than the PPP-based bounds.

V. CONCLUSIONS

In this letter, using the mixture-based method of mod-
eling spatially correlated interference, we derived accurate
expressions for the MRC outage probability for any arbitrary
number of antennas, which was earlier not possible through
standard PPP-based approach. In addition, different from [5],
we present a new method of tuning the mixture parameter
q that is based on matching the joint CCDF of SIR. These
tuned mixture-based approximations are shown to obtain far
better accuracy than the tuning in [5] and the previously known
bounds in the literature. The mixture-based model in this letter,
therefore, can be used to study many such related scenarios
of correlated interference in multi-antenna systems.
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